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Abstract

We use the model developed in Sarin and Vahid (1999, GEB) to explain the
experiments reported in Erev and Roth (1998, AER). The model supposes
that players maximize subject to their “beliefs” which are non-probabilistic
and scalar-valued. They are intended to describe the payoffs the players
subjectively assess they will obtain from a strategy. In an earlier paper
(Sarin and Vahid (1997) we showed that the model predicted behavior in
repeated coordination games remarkably well, and better than equilibrium
theory or reinforcement learning models. In this paper we show that the
same one-parameter model can also explain behavior in games with a unique
mixed strategy Nash equilibrium better than alternative models. Hence, we
obtain further support for the simple dynamic model.

Keywords: Payoff assessments without probabilities, games with a unique
mixed strategy equilibrium, reinforcement learning.



1 Introduction

In a recent paper, Erev and Roth (1998) show how simple reinforcement
learning models can explain behavior in all the published experiments in-
volving repeated play of 100 periods or more of games with a unique mixed
strategy equilibria. They study not only the ez-post descriptive power of the
models (by looking at “best fit” parameters), but also their ez-ante predic-
tive power (by simulating each experiment based on parameters estimated
from other experiments). They show that a one-parameter model robustly
outperforms equilibrium predictions in both respects, and that a “general-
ized” reinforcement learning model outperforms belief based maximization
models such as probabilistic fictitious play.

These results are remarkable not only because reinforcement learning
models perform better than the equilibrium theory typically used by economists
to analyze strategic situations, but also because the reinforcement learn-
ing models outperform belief-based models of learning, typically used by
economists to describe the dynamic learning behavior of agents in strategic
situations. How could a model that does not posit maximizing behavior
of any sort and supposes that agents choose among their strategies proba-
bilistically, do better than models which postulate maximizing behavior and
that behavior is deterministic which economists typically assume? These
results are all the more surprising because the data sets used by Erev and
Roth (henceforth, ER) were collected by a variety of other researchers who
collected the data under widely different assumptions regarding the infor-
mation available to the subjects and the manner in which the subjects were
paid, if they were paid at all.

In this paper we attempt to explain the same data using a model based
explicitly on the maximizing hypothesis, which we introduced in Sarin and
Vahid (1999). The model assumes that agents explicitly have “beliefs” that
are scalar-valued and non-probabilistic. They represent the subjective as-
sessment of the player regarding the payoff she would obtain from the choice
of any strategy at any time. The beliefs are not about how the other play-
ers are likely to play but rather they reflect a more immediate concern of
the players: the payoffs they “expect” from different strategies. Hence, a
player need not know the payoff matrix or even that she is playing a game.
Such “beliefs” are intended to describe procedurally rational players who
simplify the actual, or objective, choice environment they face. Each time
the individual is called upon to make a choice she chooses the action that
she assesses will give her the highest payoff. The agent, hence, is assumed
to be a myopic subjective optimizer. Upon receiving the payoff, which may
depend on the state of the world or the choice of other players, the individual
updates her assessments.

The Sarin and Vahid (henceforth, SV) model has many similarities with



belief based learning models typically studied by economists (e.g. fictitious
play). Like fictitious play,' an agent in the SV model is assumed to be
myopic — choosing at each time the action she considers to be the best and
ignoring the implications of current choices on future choices and payoffs.
Like fictitious play, the beliefs of the agent need not be correct and like it
the agent updates these beliefs each period according to what she observes.
Furthermore, the subjective model of the environment in each is (possibly)
mis-specified: In fictitious play this arises because the agent assumes the
environment to be stationary, and in SV it arises because the environment
is not deterministic. However, unlike fictitious play, the agent’s beliefs are
not probabilistic. In fictitious play an agent’s beliefs concern the probability
with which her opponents will play their various strategies. In SV beliefs
concern the payoffs the agent “expects”® she will receive from the choice
of any strategy. In fictitious play the agent is assumed to know the payoff
matrix, whereas in SV she need not.

Given the “closeness” of the SV model to those typically studied by
economists, and given the ER finding that reinforcement learning models
explain the data better than these models, it would be surprising if the SV
model would perform better than theirs. This is probably especially so in
the class of games with a unique mixed strategy equilibrium. Reinforcement
learning models, which postulate that agents choose stochastically, seem
more suitable for studying this class of games than the SV model which
supposes that choice is deterministic. In coordination games with multiple,
symmetric, efficient strict Nash equilibria, we have shown (Sarin and Vahid
(1997)) that the SV model explains the data better than equilibrium the-
ory and also considerably better than reinforcement learning models closely
related to those studied in ER. It is, therefore, of interest to see how the
two models compare in explaining the data on repeated games with unique
mixed strategy equilibria.

This paper shows that the SV model explains the data at least as well as
the RE model.? This is true also when we look at the data period-by-period
and compare blocks of several periods with blocks of several periods. In this
case, the performance of our model improves over time in comparison with
the RE model. This is good news for the traditional economic precepts of
maximizing subject to “beliefs” and choosing deterministically. Given that
the model does better than the traditional belief-based models considered
by ER, it also suggests that the SV model might represent player “beliefs”
more appropriately that traditional probability-belief-based models. That
is, the manner in which the SV agents are assumed to simplify their choice

!See Fudenberg and Levine (1998) for a careful discussion of fictitious play.

Zor, “assesses” or “anticipates”.

3Following ER, we refer to the reinforcement learning model they study as the RE
model.



environment may be similar to the way in which people actually deal with
those environments.

The next section describes the data. Section 3 then presents the SV
model and also the ER model. In Section 4 we confront the SV model with
the data and present our results and compare them with ER’s. We also look
here at period-by-period data and see the relative performance of the two
models.Section 5 concludes.

2 The Data

The data set is the same as that used by Erev and Roth (1998). The
data comes from experiments involving more than 100 repetitions of 12
games with unique mixed strategy equilibria collected under a variety of
informational assumptions and payoff structures. We explain these games
briefly here. A more detailed summary can be found in Erev and Roth

(1996, 1998).

Five of the 12 games were based on Suppes and Atkinson (1960). Four
of these five were actually used in experiments conducted by Suppes and
Atkinson, which for ease of comparison, we label as in ER: (S&A2, S&AS,
S&A3k, S&A3u). All the games are two by two bi-matrix games. Payoffs
in these games are binary lotteries. The interaction between the row and
column players (players 1 and 2, respectively) determines the probability
of the “good” outcome for each player. The following matrices show the
probability of the good outcome for each player in these games.

S&A2: A2 B2 S&AS: A2 B2

Al £.2) (1,0 Al (1,00 (2,1)

s (L) 1y B (03 (39
S&A3: A2 B2

Al (0.3,0.7) (0.8,0.2)
Bl (0.4,0.6) (0.1,0.9)

In S&A2, in equilibrium, player 1 chooses A with probability %, and player 2
chooses A with probability %. In the unique mixed strategy equilibrium for
S& A8, both players choose A with probability 0.2. S&A3k and S&A3u are
two variants of S&A3 with the difference that in S&A3k the payoff matrix is
known to the subjects, and in S&A3u the payoff matrix is unknown. In the
mixed strategy equilibrium for S& A3, player 1 chooses A with probability %,
and player 2 chooses A with probability %. S&A2 was played by 20 pairs of
players for 200 rounds, and other games were played by 20 pairs of players
for 210 rounds. However, round by round data are not available, and only
the proportions of A choices for each player in 5 blocks of 40 rounds for
S&A2 and 7 blocks of 30 for other experiments are available.



The fifth game based on the Suppes and Atkinson design is labelled
S&A3n. It was conducted by Erev and Roth and uses the same payoff ma-
trix as S&A3u, except that correct outcome earns 0.1 Shekel, and incorrect
outcome earns 0. The game is played by 10 pairs of players for 500 rounds.
Round by round data for this experiment is available, and for compatibility
with other models, Erev and Roth (1996) also present this data in frequency
of choice A by each player in 10 blocks of 50 rounds.

Game 6 is the game used by Malcolm and Lieberman (1965) and is a
standard zero-sum game with payoff matrix,

M&L: A2 B2
Al (3,-3) (-1,1)
Bl (=9,9) (3,-3)

where the entries are chips that were converted to money at the conclusion of
the experiment. The mixed strategy equilibrium is where player 1 chooses
strategy Al with probability 0.75, and player 2 chooses his strategy A2
with probability 0.25. This game is played by 9 pairs, who know the payoff
matrix, for 200 rounds. Only block averaged data (proportion of choice Al
for the row players and proportion of choice A2 for the column players) for
8 blocks of 25 rounds are available.

In games 7, 8 and 9 each player has more than 2 available strategies.
Game 7, denoted by “On”, is a 4x4 zero-sum game from O’Neill (1987)
and games 8 and 9, denoted by R&B10 and R&B15, are 5 x 5 constant-
sum games from Rapoport and Boebel (1992). The following matrices show
“win” (W) or “lose” (L) outcomes for the row player. Obviously when the
row player wins, the column player loses and vice versa.

On A2 B2 C2 D2 R&B A2 B2 C2 D2 E2

Al W L L L L
Al W L L L

Bl L L W W W
Bl L L W W

cT. L W L L W
cTn L W L W
DI L W W L DT L W L W L

rFlr L W W L L

In On, win has a payoff of +5 and lose has a payoff of —5. In R&B10 and
R&B15 the events of win or lose are determined by the matrix R&B, but in
R&B10 a W earns +10, and an L earns —6, while in R&B15 W earns +15,
and L earns —1. Equilibrium strategy for On is when both players play A
with probability 0.4, and their three other strategies with probability 0.2
each. In both versions of the R&B game, equilibrium play for both players
is characterized by the probability vector (g, £,% % g). On was played by
25 pairs for 105 rounds, and the frequency of A choices in 7 blocks of 15



are available. R&B games were played by 10 pairs for 120 rounds, and the
frequency of A and B choices of each player for 4 blocks of 30 are available.

The other three games are from Ochs (1995), and have the payoff matrix:

OcX A2 B2
Al (X,0) (0,1)
Bl (0,1) (1,0)

where X=9 in Oc9, X=4 in Oc4 and X=1 in Ocl. Although the games are
standard bimatrix games, the experiments were designed to make players
think probabilistically. Each player had to announce the proportion of A
choices they make in the next 10 rounds. Therefore, even though Oc9 is
repeated for 560 rounds, and Oc4 and Ocl are repeated for 640 rounds, the
players only made 56 and 64 rounds of decisions, and only received payoff
feedback 56 and 64 times respectively. Eight row players and eight column
players are randomly paired in each round of decision making. The blocked
averaged data for 7 blocks in Oc9 and 8 blocks in Oc4 and Ocl of 8 rounds
are available.

3 The Model

To simplify notation, we describe the SV model for one of a finite number of
players. Suppose that the player has J strategies S = {s1, s2,...,s5}. The
player associates a subjective assessment with each of her possible strategies.
At time n = 0, the player’s vector of initial assessments is denoted by
u(0) = (u1 (0),...,uy (0)). Her assessment of the payoff she will obtain from
choosing strategy s; at time n, u; (n), represents her (scalar valued) belief
about the payoff she will obtain from the choice of that strategy that time.
Her scalar valued beliefs reflect a manner in which she simplifies the decision
problem (or game) that she faces. Initial assessments v (0) may have been
formed by hearsay, strategy labels, or by similarity of the decision situation
to other decision problems that the individual may have faced in the past,
as in Gilboa and Schmeidler (1995).

The Sarin and Vahid model is dynamic. It specifies how the individual
chooses at each time given her (subjective) assessments at that time, and
how these assessments are updated with experience. At each period n the
individual is assumed to choose the strategy that she assesses to give the
highest payoff. That is, she chooses the strategy that she evaluates to be the
best. Implicitly, the individual is myopic, ignoring all the future implications
of her current choice on her future choices and payoffs.

The payoff the agent obtains from the choice of any strategy at any time

is allowed to be stochastic. The payoff from the choice of s; when the state
of the world is w is denoted 7; (w). At the time of making her decision the



agent is not assumed to know the state of the world. When playing a normal
form game (repeatedly) with other players, the different possible states of
the world correspond to the different possible pure strategy choices of the
other players.*

If at time n, u; (n) is the maximum of her assessments, the individual
will play s;. Upon choosing s;, a state of the world is realized. The decision
maker need not observe the state of the world. According to the strategy
chosen and the state of the world realized, she receives a payoff. The decision
maker then updates her subjective assessments. If she played s; at time n
and the state of the world was w, she updates her J subjective assessments
in the following manner:

wj(n+1) = (1= N (n)+Am; (@)
w(n+1) = ug(n) h £ j

where 0 < A < 1. That is, if the individual chooses s; and receives 7; (w),
then she updates her subjective assessments about the payoff of s; by adding
a proportion of her surprise (i.e. the difference between the observed payoff
and her assessment) to her previous assessment. She does not update her
subjective assessments about the payoff that other strategies yield. In the
next round, she chooses the strategy which she assesses to be the best, ob-
serves a payoff, and adapts her assessments, and so on. Apart from her initial
assessments, the only parameter of this model is the “learning parameter”

A

The model of Sarin and Vahid is in the tradition of models typically
postulated by economists. Agents are optimizers. Their optimization is,
however, constrained in two ways. Firstly, the agents are not assumed to
know the true model of the choice environment they face, and in the light of
this incomplete knowledge they simplify the problem they face rather than
work with large and extremely cumbersome models. Specifically, they asso-
ciate with each strategy a scalar rather than a probability distribution (or
a probability distribution over a probability distribution) as the traditional
Bayesian models would suppose. Secondly, the agents are assumed to be
myopic. This can be seen as their response to the incomplete information
about their choice environment which they face. It may be the case that
because of the uncertainty in the agent’s mind about the choice problem the
agent behaves myopically.

Next we present the basic (one-parameter) RE reinforcement learning
model and contrast it with the SV model.? In the RE model of reinforcement
learning, the probabilities of different strategies being chosen in period n

"We do not specify the distribution according to which the state of the world is chosen.
This distribution, in particular, is allowed to be non-stationary.

® A more complete presentation of this model, the RE three parameter model, and the
ER four parameter fictitious play model can be found in Erev and Roth (1998).



are determined by their “propensities”. A player starts with a vector of
(positive) initial propensities (¢1 (0),¢2 (0),...,qs (0)), which determine the
probability of each strategy being chosen in the following way:

g5 (0)
Zz'J=1 q: (0)
If a draw from this distribution leads to choice of s;, and the state of the

world is w, then the player receives payoff of 7; (w), and she updates the
propensities of different strategies as follows,

g (1) = ¢;(0)+ (7j (W) = Tmin)
(1) = q(0) VE#]

where Ty, is the minimum of all possible payoffs. Subtracting the minimum
payoff ensures that the propensities are updated by a non-negative amount,
and hence that they will never become negative. The updated propensities
imply the probabilities with which each action will be taken in the next
period, and so on. The parameters of this model are the initial propensities
(both their relative size across strategies and their absolute magnitude). The
one parameter version of this model arises when all the initial propensities
are assumed to be the same.

p; (0) = j=1d

Two important features of reinforcement learning models, and of the RE
model in particular, are that choice is described, at each stage, as proba-
bilistic, and that no beliefs are attributed to the agent. A basic principle of
this class of models is that actions that result in “good” payoffs are more
likely to be played in the future. A specific feature of the (basic) RE model
is that all actions that are played are more likely to be played in the future.
A more detailed discussion of reinforcement learning models can be found
in Borgers and Sarin (1997, 1999) and Roth and Erev (1995).°

In the SV model, the parameter A determines how fast the assessments
adapt to the observed payoffs. The larger the A, the stronger the influence
of observed payoffs on assessments. The strength of the influence of the
observed payoffs on the assessments is constant at all rounds of play. In the
RE model, the larger the ¢, the smaller the influence of observed payoffs on
the propensities would be, and since these propensities are non-decreasing
as the play progresses, the influence of observed payoffs on propensities
diminishes through time.

4 The Model meets the data

In the first subsection we compare the two models according to the criteria
of Erev and Roth. That is we study the ez post descriptive power (by

®See Camerer and Ho (1999) for a model which “nests” some reinforcement learning
models and belief-based models like fictitious play.



looking at “best fit” parameters) and we look at the ex ante predictive
power (by simulating each experiment based on parameters estimated from
other experiments) of the SV model. To study the descriptive power of the
SV model we compute the value of A which minimizes the mean squared
deviation (MSD) over all 12 games. We then compare this with the results
obtained from the RE model. To study the predictive power of the SV
model we compute the value of A from 11 games and use this to compute
the MSD in the remaining game. We then provide a sensitivity analysis to
test the robustness of our conclusions. This is done by looking at several
alternate specifications of the initial assessments. In the next subsection we
check the explanatory power of our model on period by period data when it
is available and seems relevant. We explain at that point why we think this
is an important test of the explanatory power of the model.

4.1 The Comparison

Our first task is to estimate the learning parameter A, which is the only
parameter of the SV model, based on the observed data. That is, we want
to find the value of A which produces the “best fit” of the SV model to
the observed data. The observed data are the block averaged data (i.e. the
proportion of A choices in 2x2 games and the proportion of non-symmetrical
strategies in the others) for each player in each game, which add up to a
total of 180 observations.” Following ER we choose the average of the MSD
of block averaged data over all 12 games as our measure of fit. Specifically,
we find the value of A that minimizes the MSD between the block averages
of data simulated from the SV model and the observed block averaged data,
averaged over all 12 games, i.e.,

) 1 12 1 n; )
S angmin | 5537 (3 @5 ) - 49)
i—1 \ M j=1

where g7; is the j-th observed block averaged data in game %, 7 (A) is
the corresponding simulated block averaged data for game i, and n; is the
number of blocks in game 7. Since A is in [0,1], grid search is the most
efficient optimization method for this problem. To obtain the simulated
block averages, each game is simulated 200 times, and in the simulated
games, the players are paired the same way as in the actual experiments,
and each game is repeated the same number of rounds as in the actual
experiments. The length of each game is then divided to as many blocks

"There are 5 x 2 observations in S&A2, 7 x 2 observations in each of S&AS8, S&A3u
and S& A3k, 10 x 2 observations in S&A3n, 8 x 2 observations in M&L, 7 x 2 observations
in On, 4 x 2 x 2 (4 blocks of two non-symmetric choices for two players) observations in
each of R&B10 and R&B15, 7 x 2 observations in Oc9, and 8 x 2 observations in each of
Oc4 and Ocl.



as the experimental data have been, and then the choice indicators in each
block are averaged to yield proportions of each choice for each block.

The initial assessments for each game are drawn uniformly from [Upin, Umaz] ,
where Uy, is the minimum payoff a player may obtain in the game and
Umaz 18 the maximum payoff a player may obtain. Even though in the
games where payoffs are known one can think of more plausible methods
of assigning initial assessments, we chose this method because it leads to
uniform play (i.e. all strategies are equally likely) in the first round of play,
which is the assumption made by Erev and Roth.®

Some further choices had to be made to complete the correspondence
between the SV model and the RE model for the aforementioned experi-
ments. We had to make choices about S&A games in which there were no
monetary payoffs, and Oc games in which the players did not actually play
the game characterized by the Oc payoff matrix stated in the previous sec-
tion, but rather they chose how many choice A’s they were going to make
in 10 simultaneous rounds of that game. For the S&A games we assigned a
payoff of 1 to a “correct” choice, and 0 to an “incorrect” choice. This choice
is arbitrary, but because we choose initial conditions from [Upin, Umaz] it
doesn’t matter what we assign to good and bad payoffs. For the Oc games,
we recognize that each player does not just have two choices consisting of
playing A or not playing A, but rather they have 11 choices of playing A 0 to
10 times in the next 10 rounds. To account for this, initial assessments are
drawn uniformly for each of these 11 choices. The optimal choice is made
based on them, and assessments for these 11 choices are updated. The re-
sults of the basic comparison between the (one-parameter) SV model and
the RE models are summarized in the Table 1.

(Table 1 about here)

The value of the parameter A which minimizes the MSD of the simulated
and observed data is A\ = 0.010, and the overall minimum MSD is 0.92.
Although the minimization is done over all games together, game by game
MSD scores are also provided in the first row of Table 1. For comparison
purposes, the second to the fifth row of this table quotes the MSD scores
for the best fitted one parameter RE model, for the best fitted 3 parameter
RE model, for the best fitted 4 parameter fictitious play model,” and for

8Note that, as initial assessments are drawn from [Usmin, Umaz], when payoffs undergo
an affine transformation the initial assessments are appropriately modified, and choice
behavior remains unaffected. We are grateful to Ido Erev for suggesting this choice of
initial assessments.

9For the sake of brevity, we do not discuss the three parameter RE model of reinforce-
ment learning or the four parameter fictitious play model. The reader should consult the
ER paper for these models.



the equilibrium play, are all taken from Table 1 of ER. As can be seen from
this table, the MSD score of the SV model is lower than the MSD score
of the basic reinforcement model of RE (i.e. RE (1 par.)). The games for
which the SV model fits worse than the RE model are mainly the S&A game
experiments, in which there were no monetary payoffs.

The sixth row of Table 1 presents the MSD score of each of the 12 games,
when the data for each game is simulated based on the parameters that best
fit the other 11 games. We perform these calculations, as do Erev and Roth,
to test the predictive power of the model. The overall mean of the MSD for
the 12 games with the SV model is 1.01 which is similar to the 1.02 obtained
by ER (see their Table 1) for the basic RE model.

The last two rows of Table 1 report the MSD fit of the SV model if
a different learning parameter is chosen for each game, and the optimal
value of this parameter for each game. The overall MSD score of the SV
model optimized by game is 0.43, which is significantly smaller than that of
the basic RE model by game (0.68), and it is slightly above that of the 3
parameter RE model by game (0.35).1"

In order to ensure that the favorable results of the SV model is not
a consequence of a lucky choice of initial assessments, we examine several
different sets of initial assessments. We re-estimate the model with five dif-
ferent sets of initial assessments: (i) a truncated normal distribution with
mean equal to the average payoff and standard deviation equal to the stan-
dard deviation of the payoffs but truncated so that all initials are in the
range of possible payoffs; (ii) a normal distribution with mean equal to the
average payoff and standard deviation equal to the standard deviation of
the payoffs, (iii) a normal distribution with mean equal to the average pay-
off and standard deviation equal to half of the standard distribution of the
payoffs, (iv) a normal distribution with mean equal to the average payoff
and standard deviation equal to twice the standard deviation of the payoffs,
and (v) a uniform with range from the maxmin payoff (which is the payoffs
the subjects could over secured themselves in the game) and the maximum
payoff.

Table 2 shows the estimated parameters (X) and the overall mean de-

viation scores for the above five sets of initial assessments. As it can be
seen from this table, all these alternate initial assessments result in MSD
values which are lower than those we obtain with our basic set of initial
assessments. This suggests that the minimized value of the MSD over all
games is not too sensitive to reasonable alternative distributions of initial
assessments.

(Table 2 about here)

19See Table 1 of ER for game by game MSD scores of variants of the RE model.
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4.2 An Extension

We take the analyses reported above as an indication that the SV model is
a useful model of learning and choice in a repeated game setup when games
have a unique mixed strategy equilibrium. However, we have reservations
about comparing learning models based on their blocked averaged MSD
scores. Firstly, the MSD measure has the undesirable mathematical property
that it is not invariant to the choice of the number of blocks. That is, it
is possible for model X to have smaller MSD score than model Y if the 80
rounds of play are divided to 8 blocks of 10 rounds, but to have larger MSD
score than model Y if the 80 rounds of play are divided to 4 blocks of 20
rounds. This shortcoming can be remedied by using an alternative measure
which would be invariant to merging or splitting the blocks. The literature
on invariant measures for model forecast comparison in econometrics can
lead us to define appropriate measures for this purpose (e.g. Clements and
Hendry (1994)).

Secondly, if we suppose that the payoff distribution was stationary, we
could derive the implied stochastic processes which block averaged choices
by each model would follow. This would allow us to design statistical tests
to refute (or not) each model. However, in a repeated game situation, the
payoff distribution is evolving endogenously over time, and is non-stationary.
Deriving the properties of block averages in this situation would be extremely
difficult.'’ Hence, we need to think of other ways of testing the compatibility
of alternative models with the data. Our suggestion is to use the fact that
there are repeated observations of each game in each experiment (usually
games are played by 10 to 25 pairs of players). Hence we have an empirical
distribution of choice in each round of play, and we also have a model-implied
distribution of choice in each round for each model based on simulated data.
We can then test the closeness of the two distributions at each round of play
for each model. The results of these tests will reveal a lot more information
than a summary statistic such as the MSD score can. They can tell us
which model fits the initial play better, and more importantly, they can
tell us which model “learns” better, i.e. processes the observed information
similar to how the experimental subjects do.

Round by round data are available for the O’Neill experiment (On), the
Erev and Roth new experiment based on the Suppes and Atkinson design
(S&A3n), and the Ochs experiments (Oc9, Oc4 and Ocl). From Table 1, we
can see that the SV model has smaller MSD score in the O’Neill and Ochs
games (Oc9 and Oc4) than the RE model, and a worse MSD score in S&A3n
than the RE model. We only use O’Neill and Erev-Roth data to compare

"'Note that the cross section averages over all individuals at one time, and time series
averages for each individual over all rounds in a block are quite different random variables
in these models because of learning and feed-back in choices over time. The block averages
are a mixture of these two.
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the round by round performance of the RE and the SV models against the
data. We do not use Och’s data because of the complicated design of those
experiments (recall that at each stage each player was asked to announce
the proportion of choice A in the next 10 rounds, and that the players were
randomly matched at each stage).

We use the Pearson’s statistic (see Kendall, Stuart and Ord, 1991, chap-
ter 30) to compare the observed and theoretical distributions at each round.
In the O’Neill experiment, 25 pairs of players had to choose one of their
four available strategies at each round for 105 repetitions. Let n;; denote
the number of row players who chose alternative i € {1,2,3,4} at round j
in the actual experiment. Also let p;; be the proportion of the row play-
ers who choose alternative ¢ at round j according to one of the theoretical
models, derived through many (here 1000) simulations. Then the Pearson’s
statistic for testing the null hypothesis that the theoretical and the observed
distributions are the same is:

2
o (= 2m3)
N 25pfj

i=1

which has a y? distribution with 3 degrees of freedom.

Table 3 shows the number of times the hypothesis of equality of the
observed and the theoretical distributions was rejected at the 5% significance
level,'? for the row and the column players when the theoretical distributions
are simulated from (i) the SV model that is fitted to block averaged data
for O’Neill game only (“SV by game”), (ii) the SV model which is fitted
to block averaged data for all 12 games (“SV over all”), (iii) the RE model
that is fitted to all 12 games (“RE over all”), and (iv) the equilibrium play
(“EQ”, the equilibrium play probabilities for this game are (0.4,0.2,0.2,0.2)
for both players). It can be seen from this table that the SV model which
is fitted exclusively to block averaged data from the O’Neill experiment,
performs well in learning from the observed information. In particular, the
SV model gets closer to the empirical distribution as the game progresses.

(Table 3 about here)

In the Erev-Roth new experiment with S& A3 design and monetary payoff
of 0.1 shekels for a “correct” choice and zero for an “incorrect” choice, the

12The level of significance of each individual test is 5%. However, the tests statistics for
different rounds are not independent, and therefore the level of significance of the entire
procedure might be different from 5%.
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observed data come from 9 pairs'® of players choosing one of their two choices
at each round for 500 rounds. In this case, using the same notation as above,
the Pearson’s statistic for testing the null hypothesis that the theoretical and
the observed distributions are the same is:

which has a y? distribution with 1 degree of freedom. The simulated prob-
abilities for each model were calculated from 1000 replications.

Table 4 shows the number of times that the SV model fitted to block
averaged data of the S&A3n experiment and the SV and RE models that
are fitted to block averaged data for all games, and the equilibrium play, are
rejected over all 500 rounds, and in the first, second, third, fourth and fifth

100 rounds of play. The equilibrium play in S&A3 game is (%, g) for the

row player, and (%, %) for the column player. With the payoff matrix being
so complex and neither player knowing it, there is no reason to expect that
equilibrium play has any significance in this setup. Both the MSD score
and the round by round statistics show that it does not have any descriptive
power for the experimental data. Even though the SV model has a higher
MSD score than the RE model in Table 1 (0.85 versus 0.57), Table 4 shows
that the SV model fits the round by round experimental data as well as
the RE model. Both models are rejected about 10% of the times in all 500
rounds for each player. The SV model that is fitted to the S&A3n data

exclusively, is rejected less than 5% of the time for each player.

(Table 4 about here)

5 Conclusion

We have shown that the one parameter simple dynamic model introduced
in Sarin and Vahid (1999) can explain the experimental data in games with
unique mixed strategy equilibria at least as well as the reinforcement learning
model of Roth and Erev (1995). We obtained this result both in terms
of ex post descriptive power and in terms of ex ante predictive power of
the model. Our conclusions did not change when we evaluated the data

3Due to a technical problem in the file transfer, the data of one of the original pairs 10
pairs was not used.
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at a more disaggregated, period by period, level. These results are good
news for the traditional economic principles of choosing deterministically
and with a view to maximizing some objective. The results suggest that
models, which incorporate the manner in which individuals simplify their
objective environment, might be adequate in explaining large bodies of data
reasonably well.

Some caveats regarding these conclusions are, however, in order. First,
even while we have used all the data that Erev and Roth could find with 100
of more repetitions involving repeated play of games with a unique mixed
strategy equilibria, more data would be required for firmer conclusions. Our
earlier analysis (Sarin and Vahid (1997)), using data from repeated coordi-
nation games, reveals that some of these conclusions are robust to different
games. Second, our analysis did find that probabilistic choice models might
be useful in explaining data in some games. Further work is required in de-
termining the games and conditions under which probabilistic choice models
might perform well. This paper suggests a question regarding how different
the predictions based on stochastic or deterministic choice models may be.
In future work we plan to conduct an experiment which would differentiate
between the deterministic and stochastic choice models.

Our analysis, like that of Erev and Roth, has largely been concerned
with average choice frequencies. We could, however, also be interested in
other aspects of the data. One such concern could be to try and explain
individual learning curves as opposed aggregate learning curves. A first
place to study individual learning curves would be in decision theoretic data
involved two-armed bandit models. Bereby-Meyer and Erev (1998) have
recently gathered and studied such data. Another area of research that
we believe is important is the careful econometric evaluation of alternate
learning models. This would help in further understanding alternate models,
and distinguishing their key features.
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Table 1: MSD scores (x100) for the SV model and various

versions of the RE model

Game — S&A | S&A | S&A | S&A | S&A | M&L | On | R&B | R&B Oc Oc Oc Mean
Model | 8 2 3u 3k 3n 10 15 9 4 1 overall
SV(1 par.) 0.26 | 0.78 | 0.37 | 0.64 | 0.85 | 0.52 | 1.69 | 0.89 | 0.87 | 2.53 | 1.08 | 0.53 0.92
RE(1 par.) 0.16 | 0.30 | 0.31 | 0.11 | 0.57 | 2.27 | 1.81 | 0.73 | 0.98 | 2.71 | 1.54 | 0.48 1.00
RE(3 par.) 0.38 | 0.18 | 0.12 | 0.07 | 0.31 | 1.24 | 0.72 | 0.33 | 0.65 | 1.54 | 1.09 | 0.48 0.59
FP(4 par.) 0.34 | 020 | 0.16 | 0.09 | 0.37 | 1.26 | 1.05 | 0.44 | 0.71 | 2.04 | 1.48 | 0.42 0.71
Equilibrium* 691 | 718 | 7.30 | 7.60 | 6.12 | 2.11 | 0.14 | 0.48 | 1.06 | 2.24 | 1.37 | 0.44 3.57
SV prediction | 0.31 | 1.05 | 045 | 0.65 | 1.28 | 0.71 | 1.69 | 0.89 | 0.87 | 2.53 | 1.08 | 0.61 1.01
SV by game 0.21 | 031 | 0.37 | 0.59 | 0.41 | 0.51 | 0.29 | 0.15 | 0.28 | 1.16 | 0.55 | 0.34 0.43
(12 par.) 5\1 0.012 | 0.004 | 0.009 | 0.015 | 0.004 | 0.011 | 0.979 | 0.939 | 0.904 | 0.110 | 0.059 | 0.950

*There is a slight discrepancy between the MSD scores of the equilibrium play that
we have calculated, and those reported in Table 1 of Erev and Roth (1998). We
have not found out the source of this discrepancy, yet. The differences though are

very

minor.

Table 2: Estimation results for alternative sets of initial

assessments
Initial Assessments A Overall MSD
TN (T, Sx, Tmin, Tmax) | 0.010 0.83
N(7,s7) 0.025 0.77
N(7,0.5 % s7) 0.007 0.91
N(7,2 % sz) 0.120 0.71
U (T max min s Tmax) 0.009 0.83
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Table 3: Rejection frequencies of the theoretical models when
confronted with the O’Neil data

Model Row player Column player
Over all 105 rounds
SV by game 11 8
SV over all 32 10
RE over all 30 10
EQ 9 1
Initial 35 rounds
SV by game 7 2
SV over all 11 9
RE over all 9 9
EQ 7 1
Middle 35 rounds
SV by game 3 4
SV over all 9 1
RE over all 8 1
EQ 1 0
Final 35 rounds
SV by game 1 2
SV over all 12 0
RE over all 13 0
EQ 1 0
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Table 4: Rejection frequencies of the theoretical models when
confronted with the Erev-Roth
new experimental data (S&A3n)

Model Row player Column player
Over all 500 rounds
SV by game 24 23
SV over all 42 48
RE over all 52 46
EQ 153 219
First 100 rounds
SV by game 9 7
SV over all 5 6
RE over all 9 7
EQ 23 57
Second 100 rounds
SV by game 2 6
SV over all 1 2
RE over all 3 9
EQ 13 39
Third 100 rounds
SV by game 4 3
SV over all 5 11
RE over all 10 7
EQ 32 50
Fourth 100 rounds
SV by game 8 2
SV over all 15 24
RE over all 14 7
EQ 39 50
Fifth 100 rounds
SV by game 1 5
SV over all 16 5
RE over all 16 16
EQ 46 23

19



