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Abstract

This paper presents a comprehensive empirical evaluation of option-implied and
returns-based forecasts of volatility, in which recent developments related to the im-
pact on measured volatility of market microstructure noise are taken into account.
The paper also assesses the robustness of the performance of the option-implied
forecasts to the way in which those forecasts are extracted from the option market.
Using a test for superior predictive ability, model-free implied volatility, which aggre-
gates information across the volatility ‘smile’, and at-the-money implied volatility,
which ignores such information, are both tested as benchmark forecasts. The fore-
casting assessment is conducted using intraday data for three Dow Jones Industrial
Average (DJIA) stocks and the S&P500 index over the 1996-2006 period, with fu-
ture volatility proxied by a range of alternative noise-corrected realized measures.
The results provide compelling evidence against the model-free forecast, with its
poor performance linked to both the bias and excess variability that it exhibits as a
forecast of actual volatility. The positive bias, in particular, is consistent with the
option market factoring in a substantial premium for volatility risk. In contrast,
implied volatility constructed from liquid at-the-money options is given strong sup-
port as a forecast of volatility, at least for the DJIA stocks. Neither benchmark
is supported for the S&P500 index. Importantly, the qualitative results are robust
to the measure used to proxy future volatility, although there is some evidence to
suggest that any option-implied forecast may perform less well in forecasting the
measure that excludes jump information, namely bi-power variation.
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1 Introduction

In recent years, many studies have investigated the relative performance of option-implied

and returns-based forecasts of the future volatility of an asset. Since the advent of the

realized volatility literature (e.g. Barndorff-Nielsen and Shephard, 2002, Andersen et al.,

2003), the measurable proxy used for the unobserved asset volatility has almost exclusively

been constructed from high-frequency intraday returns. The most common such measure

has been based on the sum of squared returns over small, regular intervals, such as 5 or

30 minutes (e.g. Poteshman, 2000, Blair, Poon and Taylor, 2001, Neely, 2003, Martens

and Zein, 2004, Pong, Shackleton and Taylor, 2004, Jiang and Tian, 2005, and Koopman,

Jungbacker and Hol, 2005), with such time intervals deemed to be sufficiently small to

provide an accurate estimate of volatility over the time period of interest (a day, say),

whilst, at the same time, avoiding much of the bias induced by the microstructure noise

present in transactions data.1 Studies that have adopted the realized volatility proxy

have produced more definitive results, overall, than earlier work which used squared (or

absolute) daily returns as the volatility measure (e.g. Day and Lewis, 1995). Nevertheless,

conclusions have still been mixed, with the information content of option prices sometimes

deemed to be superior to (or to subsume) that of historical returns (e.g. Blair et al., 2001,

Jiang and Tian, 2005) and sometimes not (e.g. Neely, 2003, and Martens and Zein, 2004).

The primary aim of this paper is to reassess the relative importance of option and

spot prices in the prediction of future volatility by exploiting very recent developments

related to the measurement of volatility in the presence of the empirical regularity of

microstructure noise. The forecasting assessments are performed using a range of measures

of future volatility that are alternatives to the conventional estimator based on squared

returns sampled at an arbitrarily chosen regular interval. The first three such measures

are designed to cater explicitly for microstructure noise, namely: the two scales realized

volatility estimator of Zhang, Mykland and Ait-Sahalia (2005) and Ait-Sahalia, Mykland

and Zhang (2005); the realized kernel estimator of Barndorff-Nielsen et al. (2005, 2006a,

2007); and the optimal sampling frequency estimator of Bandi and Russell (2006). As a

fourth alternative, and in the spirit of the analysis conducted in Busch, Christensen and

Nielsen (2006) and Anderson and Vahid (2007), only the continuous path component of

future volatility is measured, via the bi-power variation estimator of Barndorff-Nielsen and

Shephard (2004). The bi-power calculations are corrected for microstructure noise using

the approach proposed in Andersen, Bollerslev and Diebold (2005). Finally, we pursue

1Jiang and Tian (2005) make some adjustment to the conventional realized variance measure to ac-
commodate autocorrelation in intraday returns; see also Andersen et al. (2003).
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the method of Large (2007), whereby a consistent estimator of quadratic variation, in the

presence of microstructure noise, is constructed from a scaled function of the number of

discrete price movements from transaction to transaction.

A secondary aim of our paper is to assess the robustness of the performance of option-

implied forecasts to the way in which they are extracted from the option market. In par-

ticular, we compare the predictive performance of the ‘model free’ (MF) implied volatility

of Britten-Jones and Neuberger (2000) and Jiang and Tian (2005), with implied volatility

forecasts extracted from at-the-money market option prices.2 The comparison is con-

ducted both for individual DJIA stocks, on which American-style options are written,

and the S&P500 index, for which the options are European.

In the case of the index, at-the-money (ATM) volatility forecasts are produced via the

Black-Scholes (Black and Scholes (BS), 1973) option pricing model. A priori, and as was

first argued by Jiang and Tian, one might expect the MF implied volatility to be a more

accurate forecast of true volatility than the volatility implied by the empirically misspec-

ified BS model.3 Moreover, as the MF volatility is an estimate of quadratic variation in

both the continuous and jump component of returns, it may be expected to produce a

better prediction than BS for that reason alone, as long as the realized measure of future

volatility itself incorporated jump information.

On the other hand, the fact that the MF quantity is a risk-adjusted expectation of

actual volatility means that MF implied volatility incorporates any non-zero premium for

volatility risk (or jump risk) that is factored into market option prices. As demonstrated

by Bollerslev and Zhou (2006), under the assumption of a particular stochastic volatility

specification, a non-zero volatility risk premium unambiguously leads to MF values that

are biased forecasts of true volatility. To the extent that the BS volatility, for which

no risk premium is formally incorporated, is less affected by this bias, it may actually

out-perform the more flexibly specified MF alternative. Further, with the MF volatility

being based on the full spectrum of option strike prices, i.e., using information from the

volatility ‘smile’, it is necessarily more influenced than BS by the more extreme and noisy

away-from-the-money option prices that prevail in high volatility periods in particular.

The influence of these values may serve to further disconnect the MF volatility from the

true underlying volatility process and thereby offset any accuracy gains associated with

2An option contract is said to be in-the-money if its immediate exercise would lead to a positive cash
flow, that is, if the current value of the spot price exceeds the value of the strike price. Similarly, the
option is out-of-the-money if the spot price is less than the strike price and at-the-money if the two prices
are equal.

3The BS model assumes that returns on the underlying asset are normal with constant variance;
assumptions that conflict with virtually all empirical evidence on financial returns.
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the use of more options-based information.

In the case of the American options written on the DJIA stocks, neither the BS nor

the MF formula is strictly appropriate. Rather than approximating the American price

with the BS formula, as has often been done in past work (e.g. Christensen and Prabhala,

1998), we extract an ATM forecast using published option-market volatilities, calculated

using a binomial tree method that caters for early exercise. For the MF calculation

however, we do invoke an approximation by applying the European formula, with this

approximation necessarily introducing some measurement error into the MF calculations.

The spirit of the comparison in the stock option case, however, remains the same as for the

index options: which form of option-implied volatility is given more support as a forecast

of the volatility of the underlying, one that exploits the distributional information in the

volatility smile, or one that does not?

To assess the relative performance of returns- and options-based forecasts of volatil-

ity, we take a different approach from previous analyses by using the test for superior

predictive ability (SPA) of Hansen (2005) and Hansen and Lunde (2005a). That is, we

address the question of whether any forecast method out-performs a particular options-

based forecast while taking appropriate account of the fact that multiple forecast models

are legitimate competitors. We use, in turn, the MF and ATM (or BS) implied volatility

as the benchmark forecast, and document the robustness of the test results to the way

in which microstructure noise, and random jumps, are handled in the measurement of

future volatility. We also use different versions of the MF measure, ranging from a mea-

sure based on the full (empirically available) moneyness spectrum, to a measure based

on a very truncated representation of that spectrum. Returns-based forecasts are pro-

duced both directly, via time series models for the volatility proxy itself, and indirectly,

via generalized autoregressive conditional heteroscedastic (GARCH)-type models for daily

returns. In the spirit of much of the recent literature, and as tallies with the features of

our empirical data, we include long memory autoregressive fractionally integrated moving

average (ARFIMA) models for the volatility proxy, in addition to short memory ARMA

specifications. We also consider both short memory and long memory fractionally in-

tegrated GARCH (FIGARCH) models for daily returns, as well as certain asymmetric

specifications.4

The forecasting assessment is conducted using a comprehensive set of intraday spot

and option price data for three DJIA stocks - International Business Machines (IBM),

4The empirical work is conducted using Time Series Modelling 4.17 (www.timeseriesmodelling.com.),
Ox (www.nuff.ox.ac.uk/Users/Doornik) and the SPA module for OX made publicly available by P. Hansen
(http://www.stanford.edu/~prhansen/).
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Microsoft (MSFT) and General Electric (GE) - and the S&P500 index, over the 1996 to

2006 period. Given that the noise adjustments to be discussed have their main motivation

in the context of traded assets, we produce a more limited set of results for the index, with

the primary focus for this particular data set being on the relative performance of the

alternative option-implied forecasts. Analysis of the index data also enables MF-related

results to be checked against results that use the VIX implied volatility as benchmark,

where the latter is constructed by the Chicago Board Option Exchange (CBOE) using

the MF methodology.

In quantifying the impact on the ranking of volatility models of different proxies of the

true unobservable volatility, we expand upon the theme in Hansen and Lunde (2006a).

In the latter work, the conventional realized volatility estimator, as proxy, is compared

with squared daily returns, with the more accurate former measure found to produce a

more reliable ranking of models in simulation experiments; see also Blair et al. (2001) and

Hansen and Lunde (2005a). A further link with Hansen and Lunde is the way in which

we conduct the SPA test for a criterion identified as ‘robust’ by these authors, namely

mean squared forecast error (MSFE) constructed for variance quantities. Our work is

also related to that of Andersen, Bollerslev, and Meddahi (2005), in which the R2 of

regression-based evaluations of alternative forecasting models are adjusted (upwards) to

cater for the error-in-variables problem associated with proxying the unobserved forecast

variable with a realized volatility measure that is biased in the presence of microstructure

noise.

Other related work that assesses the relative forecasting performance of various noise-

corrected realized volatility measures includes Anderson, Bollerslev and Meddahi (2006)

and Ghysels and Sinko (2006). Neither of these analyses, however, includes options-based

forecasts or assesses forecasting performance using the SPA approach. Bandi, Russell and

Yang (2006) consider a range of noise-corrected measures, but evaluate those measures

according to the profits/losses that option dealers would incur from pricing options on the

basis of the alternative volatility forecasts. Bandi, Russell and Zhu (2006) and De Pooter,

Martens and van Dijk (2006) also use an economic (rather than statistical) criterion

function, gauging the impact of alternative volatility measurement on portfolio allocation

decisions.

An outline of the remainder of the paper is as follows. In Section 2, we present the

continuous time jump diffusion model for asset prices that underlies our analysis, and

discuss the measurement of volatility within that context. The issues associated with

forecasting (measured) volatility and evaluating alternative forecasts are addressed in

Section 3. In Section 4, all aspects of the empirical investigation are outlined, including the
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details of the construction of realized and option-implied volatility measures. The results

represent strong evidence against the superiority of the MF implied volatility forecast.

In contrast, the ATM implied volatility is given support as the benchmark forecast, at

least for the three individual equity series investigated. Both options-based forecasts are

rejected as superior benchmarks in the case of the S&P500 index. The qualitative results

are robust to the measure used to proxy future volatility, apart from some results that

suggest that option-implied forecasts may perform less well when the volatility measure

excludes jump information. Section 5 concludes.

2 Measurement of Volatility

Denoting by p(t) the logarithm of the asset price P (t) at time t, we assume a continuous

time jump diffusion process,

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dq(t), t ≥ 0, (1)

where µ(t) is a continuous (locally bounded) function, σ(t) is a strictly positive volatility

process, W (t) is standard Brownian motion, and κ(t)dq(t) is a random jump process that

allows for occasional jumps in p(t) of size κ(t). The quadratic variation (QV) for the

return over one day (say),

rt = p(t)− p(t− 1) (2)

is then given by

QVt =
R t
t−1 σ

2(s)ds+
P

t−1<s≤t κ
2(s). (3)

That is, QVt is equal to the sum of the integrated volatility of the continuous sample path

component,

IVt =
R t
t−1 σ

2(s)ds (4)

and the sum of the q(t) squared jumps that occur over day t. Denoting by pti the ith

logarithmic price that is observed on day t, and rti = pti − pti−1 as the ith transaction

return, it is now well known (see, in particular, Barndorff-Nielsen and Shephard, 2002,

and Andersen et al., 2003) that

RVt =
P

ti−1,ti∈[t−1,t]
r2ti

p→ QVt (5)

where RVt is referred to as realized volatility5.
5As is quite common in the literature, we use the term ‘volatility’ to refer to either a variance or a

standard deviation quantity. Exactly which type of quantity is being referenced in any particular instance
will be made clear by both the context and the notation.
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Three comments can be made about the consistency result in (5). Firstly, the result

in (5) is contingent upon observed price data adhering to the model in (1). In practice,

observed prices should be viewed as reflecting both the process in (1) and a process that

results from market microstructure noise. Secondly, the sample quantity RVt will reflect

both the continuous and jump components of the asset price process. In particular, only in

the absence of jumps (κ(t) = 0) will realized volatility estimate integrated volatility alone.

Thirdly, in practice, prices are not continuous random variables, but move in discrete

numbers of ticks. This discreteness can be viewed as one component of the microstructure

noise referred to in the first point. We take up these points in Sections 2.1, 2.2 and 2.3

respectively .

2.1 Realized Volatility Calculation in the Presence of Microstruc-
ture Noise

As highlighted in Barndorff-Nielsen et al. (2005, 2006a, 2007), Zhang et al. (2005), Ait-

Sahalia et al. (2005) and Bandi and Russell (2006), amongst others, observed transactions

data do not adhere to (1), due to a range of factors collectively referred to as market mi-

crostructure. That is, the true price is distorted by effects that include price discreteness,

separate trading prices for buyers and sellers (the bid-ask spread) and the information

asymmetry of market participants. Due to the presence of such factors, the ‘true’ latent

logarithmic price process, p∗(t), may be assumed to follow (1), but is observed with error.

Hence, a suitable model for the observed ith logarithmic price on day t, is

pti = p∗ti + εti , (6)

where εti is assumed (at least initially) to be an i.i.d. white noise component. The ith

observed transaction return, rti , is thus given by the sum of the latent return, r
∗
ti
= p∗ti −

p∗ti−1 , and a first order moving average (MA) process, ηti = εti−εti−1. It is straightforward
to show (see Zhang et al. 2005) that

E (RVt| p∗(ti)) =
P

ti−1,ti∈[t−1,t]
r∗2ti + 2nσ

2
ε, (7)

where n denotes the number of transaction returns observed on day t. Hence, realized

volatility constructed from the observed returns is a biased representation of
P

ti−1,ti∈[t−1,t]
r∗2ti

and, hence, a biased estimator of quadratic variation. Moreover, the bias is O(n), meaning

that bias is proportional to the number of returns used to construct the realized volatility

measure. Defining bσ2ε = 1

2n
RVt, (8)
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Zhang et al. (2005) also demonstrate that as n→∞, n1/2( bσ2ε − σ2ε)→ N(0, E(ε4)). That

is, (scaled) realized volatility constructed from observed transactions data is a consistent

estimator, not of quadratic variation, but of the variance of the microstructure noise, σ2ε;

see also Bandi and Russell (2005).

Given the clear deficiency of the realized volatility estimator based on all observed

data, alternative estimators that adjust for the impact of noise have been suggested. We

include three such estimators in our empirical analysis, referring readers to the relevant

papers for more details about the construction of these specific estimators and discussion

of related variants.

2.1.1 The Two-Scale Realized Volatility (TSRV) Estimator

The TSRV estimator of Zhang et al. (2005) and Ait-Sahalia et al. (2005) is based

on a weighted difference between two estimators: 1) an average of realized volatilities

calculated essentially as per (5), but over moving windows of subgrids defined on a ‘slow’

time scale (only observations several transactions apart are used); and 2) realized volatility

calculated on a ‘fast’ time scale, as per (5) with all transactions used. More specifically,

the full grid of observational points on day t, G = {t0, t2, . . . , ti, ti+1, . . . , tn}, is partitioned
into K nonoverlapping subgrids G(k), k = 1, 2, 3, . . . ,K, where

G(k) = {tk−1, tk−1+K , tk−1+2K , . . . , tk−1+nKK} , (9)

with nK = [n−K−1
K

]. Realized volatility is then constructed from returns over successive

time points in G(k), denoted by ti,− and ti respectively,

RV
(k)
t =

P
ti,−,ti∈G(k)

r2ti , (10)

and the TSRV estimator then defined as

TSRVt =

µ
n

(K − 1)nK

¶³
RV

(K)

t − nK
n
RVt

´
, (11)

where RV
(K)

t = 1
K

KP
k=1

RV
(k)
t , RVt is as defined in (5) and the scale factor

³
n

(K−1)nK

´
is

used to improve the performance of the estimator when K is large.

The TSRV measure is shown to be a consistent estimator of quadratic variation, in

the presence of microstructure noise. In the spirit of recent work (e.g. Hansen and Lunde,

2006b) in which the increased prevalence of time dependent noise has been documented,

we accommodate dependent noise via the modification to (11) suggested by Ait-Sahalia

et al. (2005),

TSRV 2t =

µ
n

(K − J)nK

¶µ
RV

(K)

t − nK
nJ

RV
(J)

t

¶
. (12)

8



The elements in the average defining RV
(J)

t = 1
J

JP
j=1

RV
(j)
t are defined analogously to

RV
(k)
t in (10), but with 1 < J < K), and nJ = [

n−J−1
J
].6

2.1.2 The Realized Kernel (RKERN) Estimator

Barndorff-Nielsen et al. (2005, 2006a, 2007) develop kernel estimators of the quadratic

variation, with the weights used in constructing the kernel chosen to ensure that the

resultant estimator is consistent in the presence of microstructure noise, and the autocor-

relation in transaction returns that it induces7. Consistent with the definition of RV (k)
t

above, we define

RCV
(k)
t (h) =

P
ti,−,ti,ti+h,−,ti+h∈G(k)

rtirti+h , h = −H, . . . ,−1, 0, 1, 2, . . . H,

as the realized autocovariance function constructed from returns observed over pairs

of successive time points in G(k) in (9), k = 1, 2, 3, . . . ,K, with the returns being |h|
time points apart.8 When h = 0, we regain the variance quantity, RV (k)

t . The averaged

(or ‘subsampled’) version of RCV (k)
t (h) is then given by RCV

(K)

t (h) = 1
K

KP
k=1

RCV
(k)
t (h),

analogously with the averaged version of RV (k)
t above. A symmetric version of the realized

kernel (RKERN) estimator is given by

RKERNt =
HP

h=−H
w(

h− 1
H

)RCV
(K)

t (h) = w0RV
(K)

t

+
HP
h=1

w(
h− 1
H

)
n
RCV

(K)

t (h) +RCV
(K)

t (−h)
o
, (13)

with the particular form chosen for the weights, wh, h = 2, 3, . . . , H, determining the

precise version of the estimator. In the empirical work we report results based on the

6Following Zhang et al. (2005) we use K = cn2/3, where c =
¡
16σ4ε/TE

¡
η2
¢¢1/3

and η2 =
4
3

R t
t−1 σ

4(s)ds. The term σ4ε is square of the variance of the noise, while
R t
t−1 σ

4(s)ds is the inte-
grated quarticity. σ2ε is estimated as in (8), but using transactions that are approximately one-minute
apart. This modified estimate of the noise variance is an attempt to reduce the impact of dependent
noise; see Barndorff-Neilsen et al. (2006a). The term in the denominator, E(η2), is estimated as
\E(η2) = 4

3 [RVt(∆)]
2 using ∆ ≈ 30 minutes, and we use J = max(1, K4 ). See Barndorff-Neilsen et

al. (2006b) for further discussion of some of these computational issues.
7Although the kernel estimator is introduced within the context of general semimartingales, the prop-

erties of the estimator are demonstrated under the assumption of a model without random jumps (i.e.
with κ(t) = 0 in (6)). In Barndorff-Nielsen et al. (2006a and 2007) the properties of kernel estimators
under a non-i.i.d assumption for the noise process are investigated.

8The notation rti+h denotes the return over successive time-points in the sub-grid G(k), where that
return is |h| time points distant from rti according to the sub-grid G(k).
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cubic kernel estimator, in which w(0) = w(1) = 1; w(h−1
H
) = 1 − 3(h−1

H
)2 + 2(h−1

H
)3,

h = 2, 3, . . . H. 9

2.1.3 The Optimally Sampled Realized Volatility (OSRV) Estimator

Bandi and Russell (2006) propose an estimator that optimally balances the noise-induced

bias associated with an increase in the number of transactions used in the construction of

realized volatility, with the increased efficiency produced by higher sampling frequency.

Specifically, they define the optimally sampled realized volatility (OSRV) estimator,

OSRVt =
PM∗

t
j=0 r

2
t+jδt,δt, (14)

based on M∗
t discretely sampled δt-period returns, rt,δt = p(t) − p(t − δt), where the

sampling frequency, δt = 1/M∗
t , is chosen to minimize the mean squared error (MSE)

of OSRVt as an estimator of quadratic variation. Under certain conditions10, the MSE

is shown to be a function of M∗
t , the second and fourth moments of the noise process,

the integrated variance,
R t
t−1 σ

2(s)ds, and the integrated quarticity,
R t
t−1 σ

4(s)ds. Given

sample estimates of all population moments, M∗
t is chosen so as to minimize MSE where,

as indicated by the notation, M∗
t (and, hence, δt) varies with t.11

2.2 Realized Bi-Power Variation

With regard to the role of the continuous and jump components of the asset price process

in the calculation of realized measures, Barndorff-Nielsen and Shephard (2004) focus on

the separate identification and estimation of integrated volatility, exclusive of jumps.

9The weights w(0) = w(1) = 1 ensure that the kernel is asymptotically unbiased, with inclusion
of the additional terms in the kernel (h = 2, 3, . . . ,H) serving to reduce the variance. The value of

H = cK

s
σ2ε
\R t

t−1 σ
4(s)ds

n is chosen to (approximately) minimize the asymptotic variance of the estimator,

where cK is specified exactly as in Barndorff-Nielsen et al. (2007) for the cubic kernel case, with K
determined as per Footnote 6. Note that we adopt a subsampled version of the kernel estimator despite
the results in Barndorff-Nielsen et al., which indicate that the subsampling can increase the asymptotic
variance of the estimator. The estimates of the noise variance (σ2ε) and integrated volatility used in the
construction of H are the same as those used in the construction of K, as detailed in Footnote 6. See
Barndorff-Nielsen et al. (2006a) for discussion of the connection between the kernel estimator and the
two-scale estimator of Zhang et al. (2005).
10In particular, with reference to (1), it is assumed that µ(t) = κ(t) = 0.
11Following Bandi and Russell (2006), we approximate the optimal value of M∗t as M∗t ∼Ã \R t
t−1 σ

4(s)ds

σ4ε

!1/3
. The numerator and denominator are both calculated as explained in Footnote 6.

Returns on day t are thus sampled less frequently (M∗t is smaller), the larger is the squared variance of
the noise in the data relative to the quarticity of the underlying efficient price process.
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Defining realized bi-power variation as

BPVt =
π

2

P
ti−1,ti∈[t−1,t]

|rti|
¯̄
rti−1

¯̄
, (15)

they show that as n → ∞, BPVt
p→ IVt =

R t
t−1 σ(s)ds, i.e. that realized bi-power

variation consistently estimates the integrated variance of the continuous sample path

component of the price process in (1). Analogous to the realized volatility estimator

in (5), for very large n the statistic in (15) is adversely affected by the presence of mi-

crostructure noise. To at least partially offset this bias, Andersen, Bollerslev and Diebold

(2005), and Huang and Tauchen (2005) propose a modification of (15), whereby the sum

of absolute adjacent returns is replaced with the sum of the corresponding one-period

staggered returns. In the empirical section we implement an averaged version of this

modified estimator,

BV
(K)

t =
1

K

KP
k=1

BV
(k)
t , (16)

where BV (k)
t = πn

2n−4k
P

ti,−,ti,ti+2,−,ti+2∈G(k)
|rti|

¯̄
rti+2

¯̄
, and k and K are defined with respect

to the transaction grid in (9).12

A-priori one would anticipate that option-implied forecasts, to the extent that such

forecasts incorporate jump information, may be less accurate in forecasting (16) than in

forecasting other realized volatility measures. This issue is investigated in Section 4.

2.3 Realized Volatility for Discrete Prices

To address the fact that prices move in discrete numbers of ticks, Large (2007) proposes

an estimator of quadratic variation that focusses on the number and direction of price

changes during the day, rather than the magnitude of such changes, as measured by

intraday returns. The estimator, which we refer to as the ‘alternation’ estimator, is given

by

ALTt = n(ch)tick2
C

A
, (17)

where n(ch) ∈ N is the number of price changes in a day and tick is the price tick (i.e. the
minimum amount by which the price can change on the relevant exchange). Defining an

alternation as a price change that occurs in the opposite direction to the previous price

12As pointed out by a referee, the subsampling process may affect the robustness of the bi-power
measure to jumps.
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change, and a continuation as a price change in the same direction, A then denotes the

number of alternations and C the number of continuations, with A+ C = n(ch).13

Without the presence of microstructure noise, the estimator n(ch)tick2 is a consistent

estimator of quadratic variation, whilst in the presence of noise the value of n(ch)tick2 is

asymptotically biased. Given that the presence of noise implies an excess of alternations,

multiplication by the fraction C/A produces a consistent estimator in the presence of

noise. The modified version of the alternation estimator that we apply in the empirical

investigation (see also Barndorff-Nielsen and Shephard, 2005), and which we denote by

the acronym ALTM, is given by

ALTMt = RV
(K)

t

C

A
, (18)

which is simply the (average of the) realized volatility measure in (10) multiplied by C/A

in order to correct for the upward bias induced by the noise.14

3 Forecasting Volatility

3.1 Overview

Since the advent of the realized volatility literature, not only has focus shifted from daily

returns to the use of a measurable proxy for volatility based on intraday day returns, but

emphasis is also now given to production of direct forecasts produced from standard time

series models; see Andersen, Bollerslev and Meddahi (2004) for relevant discussion. In

particular, the stylized empirical properties of the (logarithmic) realized volatility mea-

sures are such that long-memory Gaussian ARFIMA models for this (transformation of)

realized volatility have become the mainstay of empirical work. As such, the interest is

now in the merit of these direct forecasts of some proxy of future volatility, compared with

indirect forecasts based on low-frequency (usually daily) returns, in particular returns pro-

duced via the ubiquitous GARCH-type specifications. Such returns-based specifications

are then compared with forecasts from the options market, with the relative predictive

performance of the latter thereby assessed.

In this paper eight volatility measures are used in the comparative analysis, including

the six volatility measures outlined in Section 2 namely TSRV and TSRV2 in (11) and

(12) respectively, RKERN in (13), OSRV in (14), BV in (16) and ALTM in (18). A

measure based on fixed 5 minute sampling, denoted by RV(5), is also included as being

representative of the type of measure used in literature prior to the development of the

13The first price of the day is defined as an alternation.
14See Oomen (2006) for a related measure based on a discrete jump process.
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more formal noise-(and/or jump-)adjusted measures. As an intermediate type of measure

we also include a subsampled (or averaged) version of RV(5), denoted by RVAV(5).15 All

measures are used both as proxies for the latent volatility and as the basis for forecasting

future volatility. Following Hansen and Lunde (2005b) we extend all eight within-day

volatility measures to 24-hour measures by taking a weighted average of the within-day

measure and the squared overnight (close-to-open) return, where the weights are deter-

mined empirically using a mean squared error (MSE) criterion.16

Details of the models used to produce the direct and indirect returns-based forecasts

follow, plus details of the production of alternative options-based forecasts.

3.2 Forecast Model Set

3.2.1 Indirect (Daily) Returns-Based Forecasts

In order to cater for the standard empirical features exhibited by daily returns on all

three individual stocks and the S&P500 index, namely varying degrees of time-varying

volatility, excess kurtosis, skewness, plus long memory in the squared returns, the forecast

set includes forecasts produced from a range of GARCH-type specifications with a Stu-

dent t conditional distribution.17 Given rt = µ+ εt = µ+ σtet, where rt denotes the tth

daily return in (2), µ the mean daily return, σ2t the variance for day t and et ∼ Student

t(0, 1, ν), the following GARCH, threshold GARCH (TGARCH), power ARCH (PARCH)

and fractionally integrated GARCH (FIGARCH) models are included in the initial fore-

cast set:

GARCH(p, q) : σ2t = ω + αε2t−1 + βσ2t−1 + ...+ αε2t−q + βσ2t−p

TGARCH(p, q) : σ2t = ω + αε2t−1 + αγstε
2
t−1 + βσ2t−1 + ...+ αε2t−q + αγstε

2
t−q + βσ2t−p

PARCH(p, q) : σδt = ω + α |εt−1|δ + βσδt−1 + ...+ α |εt−q|δ + βσδt−p

FIGARCH(p, d, q) : β(L)(σ2t − ω) =
£
β(L)− (1− L)dα(L)

¤
ε2t .

The notation L is used to denote the lag operator, with α(L) and β(L) being polynomials

of order q and p in L, d > −0.5 is the fractional parameter, (1− L)d =
P∞

j=0 bjL
j, with

b0 = 1 and bj =
−dΓ(j−d)

Γ(1−d)Γ(j+1) , and the remaining parameters satisfy the usual restrictions.

15The measure RV(5) is based on artificial returns five minutes apart. We experimented with both the
previous tick and interpolation methods to construct these returns. The results were so similar (for the
particular purpose at hand) that we report only the results using the interpolation method. The measure
RVAV(5) is the averaged version of RV(5) based on successive subgrids of (artificial) prices spaced five
minutes apart.
16See Hansen and Lunde (2005b) for precise details, including of the rule adopted for discarding outliers

when calculating the weights.
17Details of all preliminary data analysis are available from the authors on request.
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In the asymmetric TGARCH model, st+1 = 1 if εt < 0 and 0 otherwise. The PARCH

model nests the GARCH model when and δ = 2. Maximum lag lengths of p = q = 2 are

entertained for each model type.

3.2.2 Direct (Intraday) Returns-Based Forecasts

To cater for the long memory properties exhibited by all of the realized volatility measures,

for each of the four time series under investigation, we produce direct forecasts using the

following ARFIMA(p,d,q) model with Student t innovations (where the generic notation
yt refers to any of the volatility measures described in Section 2, and α its mean):

φ(L)(1− L)d (ln yt − α) = θ(L)ut ; ut ∼ Student t (0, σ2
ν

ν − 2 , ν).

The autoregressive and moving average polynomials φ(L) and θ(L) are of lag length p and

q respectively and (1−L)d is as defined earlier. For completeness we also produce forecasts
via short memory ARMA (p,q) models. As with the GARCH models, the ARFIMA and

ARMA models are estimated for lag lengths up to and including p = q = 2. In the

model set we include both own-forecasts (i.e. a forecast for a particular measure based

on a model estimated for that same measure) and cross-forecasts (i.e. forecasts based on

other measures).

3.2.3 Option-Implied Forecasts

The BS option price model assumes that the asset price, P (t), follows a geometric Brown-

ian motion process with constant diffusion parameter σ. Under this distributional as-

sumption, the BS price of a European call option with strike price X and maturity T

is

BS(σ) = P
(D)
t Φ(d1)−X−itτΦ(d2), (19)

where d1 =
³
ln(P

(D)
t /X) + (it + 0.5σ

2) τ
´
/σ
√
τ , d2 = d1 − σ

√
τ , P (D)

t = the (dividend-

discounted) spot price at time t, it = the (annualized) risk free rate of return at time

t, τ = T − t = the time to maturity (expressed as a proportion of a year) and Φ(.) =

the cumulative normal distribution. An observed market option price at time t for a call

option with maturity T and strike X, Ct(T,X), can be used to produce an estimate of σ

implied by Ct(T,X), by equating Ct(T,X) to the right-hand-side of (19) and solving for

σ.

If the BS model were correct, the estimate of σ implied by Ct(T,X) would be invariant

to both X and τ . As is now standard knowledge however, implied volatilities across

strike prices (or across ‘moneyness’, X/Pt, with Pt the current spot price) exhibit stylized
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‘smile’ patterns, with these patterns varying, in turn, with the time to expiry, τ . Such

patterns have been shown to be a manifestation of the misspecification of the BS model

(e.g. Bakshi, Cao and Chen, 1997, Corrado and Su, 1997, Bates, 2000, Lim, Martin and

Martin, 2005), with the downward skew shape for equities, in particular, being evidence

that market option prices have factored in the negative skewness that characterizes equity

returns.

It is with this misspecification issue in mind that Britten-Jones and Neuberger (2000)

and Jiang and Tian (2005) motivate the MF implied volatility. As demonstrated by

these authors, under the assumption of a diffusion process for the spot price a forecast of

integrated variance for the period t to T can be determined from observed European call

option prices with maturity T as follows

E∗t

∙
TR
t

σ2(s)ds

¸
= 2

∞R
0

Ct(T,X)e
itτ −max

h
0, P

(D)
t eitτ −X

i
X2

dX, (20)

where E∗t denotes the time t expectation with respect to the risk-neutral distribution

of the asset price. Jiang and Tian point out that the result in (20) can be extended

to jump-diffusion processes, in which case the method produces a forecast of quadratic

variation. That is, in the case where the true latent price follows the model in (1), the

implied variance is an estimate of (3), rather than an estimate of the integrated volatility

in (4). Crucially, the calculation in (20) avoids the BS misspecification of the spot price

process as geometric Brownian motion with a constant diffusion parameter. Instead, the

right hand side of (20) harnesses the distributional information about P (t) incorporated

in the variation of the Ct(T,X) across X. Details of how (20) is estimated using a finite

number of strike prices are given in Section 4.1.

In the case of the individual DJIA stocks analysed in Section 4, on which American

options are written, we continue to use the MF formula in (20) as a method for extracting

information from the full spectrum of observed option prices. As noted earlier, the error

associated with this approximation can be viewed as contributing to measurement error

in the forecast. The ATM forecasts for the individual stocks are extracted from published

option-market data in a manner described in Section 4.1, rather than via the inappropriate

BS formula in (19).

3.3 Evaluation of Volatility Forecasts: Superior Predictive Abil-
ity (SPA) Testing

The forecast evaluation involves the assessment of multiple GARCH-type specifications

for daily returns, ARFIMA (and ARMA) specifications for the realized measures based
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on the intraday returns, and option-implied volatility forecasts. The assessment is to be

performed for each of the eight volatility proxies, as measures of the latent, or actual,

volatility quantity of interest, denoted by V 2
t . When the true latent price follows the

model in (1), V 2
t = QVt. Only one proxy, BV , is consistent for IVt when the true process

contains random jumps.

For each proxy, alternative forecasts are compared with an option-implied benchmark

using the SPA test of Hansen (2005) and Hansen and Lunde (2005a). Denoting by bV 2
t the

realized proxy for the latent volatility at time t, and fj,t as the forecast of V 2
t produced

by the jth model (or forecast method), j = 0, 1, 2, . . . ,m, the SPA test is conducted via

the following steps:

1. Based on rolling samples of fixed length R, m + 1 forecasts are produced for an

evaluation period, t = 1, 2, . . . , N.

2. Associated with each forecast method is a sequence of losses, Lj,t = L(bV 2
t , fj,t),

t = 1, 2, . . . , N. With j = 0 denoting the benchmark forecast, all m alternative

forecasts are compared with the benchmark via the time series of loss differentials,

Dj,t = L0,t − Lj,t, j = 1, 2, . . . ,m, t = 1, 2, . . . , N.

3. A test of whether or not the benchmark model is outperformed by any other model is

conducted by testingH0 : E (Dj,t) ≤ 0 for all j = 1, 2, . . . ,m againstHA : E (Dj,t) >

0 for at least one j = 1, 2, . . . ,m, using the test statistic SPA = maxj=1,2,...,m
√
NDj

ωjj
,

where Dj =
1
N

NP
t=1

Dj,t and bωjj is a consistent estimator of ωjj = lim
n→∞

var(
√
NDj),

j = 1, 2, . . . ,m.

In short, a large value for the SPA test statistic represents evidence against the null

hypothesis and indicates that at least one model in the model set significantly outperforms

the benchmark model. As detailed clearly in Hansen (2005) and Hansen and Lunde

(2005a), the null distribution of the test statistic needs to be approximated numerically,

the bootstrap method used to this end taking into account the time series dependence in

the loss differentials. The p-value associated with the observed test statistic is calculated as

the proportion of times the bootstrap draws produce a statistic that exceeds the observed

value. Given the need to recentre the bootstrap draws around the true (but unobserved)

value of E (Dj,t), alternative p-values are produced corresponding to alternative estimates

of E (Dj,t). In the empirical section we report results based the estimated p-value that is

consistent for the true p-value.

Crucially, this test procedure caters explicitly for the multiple models included in the

comparison. Hence, the results are not subject to the criticism of data-mining, whereby a
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sequence of pair-wise comparisons between a benchmark model and any set of comparators

has a high probability of leading to incorrect rejection of a true null due to an implicit

inflation of the size associated with the overall procedure.18

4 Empirical Analysis Using U.S. Stock Market Data

4.1 Computational Details

The numerical analysis is performed using equity and option data for IBM, GE and MSFT

over the ten year period from 30 June, 1996 to 30 June, 2006. Results are also produced

for the S&P500 index using data over the same period, but with only the RV(5) and

BV measures used as forecast variables of interest. All equity data has been supplied by

the Securities Industries Research Centre of Asia Pacific (SIRCA) on behalf of Reuters,

with the raw data then cleaned using the methods of Brownless and Gallo (2005). The

VIX data is extracted from the CBOE website (www.cboe.com). All ATM, BS and MF

calculations are based on the implied volatility surface data provided by IVOLATILTY

(www.ivolatility.com). The surface data consists of implied volatilities for options with

values of moneyness (X/Pt) ranging from 0.5 to 1.5 in steps of 0.1, and with varying times

to maturity. The raw option data from which the surface is constructed is end-of-day out-

of-the-money (OTM) put and call quote data.19 For the individual stocks, we take as

our estimate of ATM volatility (denoted by \ATM), the value on the surface associated
X/Pt = 1 and one month (22 trading days) to maturity. For the S&P500 index, on

which European options are written, the corresponding value on the surface is taken as

an estimate of BS volatility (denoted bydBS).
Given maximum and minimum strike values Xmax and Xmin respectively, the estimate

of MF implied volatility in (20) is given by

dMF = E∗t

∙
TR
t

σ2(s)ds

¸
≈ 2

XmaxR
Xmin

Ct(T,X)e
it(T−t) −max

h
0, P

(D)
t eit(T−t) −X

i
X2

dX

≈
MP
j=1

[g(T,Xj) + g(T,Xj−1)]∆X, (21)

18See Hsu (1996), White (2000), Sullivan, Timmermann and White (2003) and Romano and Wolf
(2005) for other size-controlled multiple comparison tests. Other approaches to forecast evaluation include
Granger and Pesaran (2000), Giacomini and White (2006), Hansen, Lund and Nason (2003), Giacomini
and Komunjer (2005) and Corradi and Swanson (2006).
19For American options a binomial tree method is used, while the Black-Scholes model is used to

produce the implied volatilities for European options. For more details on the construction of the surface,
see
http://www.ivolatility.com/doc/IVolatility_Data_detailed.pdf.
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where ∆X = (Xmax − Xmin)/M , Xj = Xmin + j∆X for 0 ≤ j ≤ M and g(T,Xj) =

(Ct(T,Xj)e
it(T−t) −max

h
0, P

(D)
t eit(T−t) −Xj

i
)/X2

j . Given the finite number of points on

the moneyness spectrum of the IVOLATILITY surface, a procedure similar to that used by

Jiang and Tian (2005) is adopted, with steps as follows: 1) Extract the IVOLATILTY one-

month implied volatilities for the available range of moneyness values: 0.5 < X/Pt < 1.5

in steps of 0.120; 2) Use linear interpolation between these values to produce a smooth

function of implied volatilities and use this function to extract implied volatilities at the

M grid points Xj; 3) Use the BS model in (19) to translate the X j into ‘observed’

prices Ct(T,Xj); 4) Use the full set of M X j and Ct(T,Xj) values to estimate MF

integrated volatility as in (21).21 The forecasts\ATM,dBS and dMF all represent forecasts

of volatility over the next 22 trading days (by construction), and thereby avoid the so-

called ‘telescoping’ problem highlighted by Christensen et al., 2001, amongst others.

Rolling one day ahead forecasts are produced for the period 29 August, 2001 to 30

May, 2006. Forecasts for 22 days ahead (one-month) are produced from the same starting

point, but with the final date extended accordingly. The 22-day-ahead forecast is the

average of the one-day-ahead, two-day-ahead, up to 22-day-ahead forecasts, with the

average then expressed as an annualized figure. Correspondingly, the variance measure

being forecast corresponds to the (annualized) average of the daily variance values over the

forecast period. Each returns-based forecast is produced using both daily and intraday

observations from R = 1000 days. The first year of observations (30 June, 1996 to 30

June, 1997) is used to set pre-sample values in the estimation of all long-memory models.

All models are estimated using conditional maximum likelihood, with the infinite lag

structure in the long memory models truncated at the lag determined by the number of

sample observations plus the number of pre-sample observations.22 Each option-implied

20Note that this curve itself has been produced via an initial interpolation procedure given the quoted
option prices for particular strikes.
21As pointed out by Jiang and Tian (2005), the BS model is simply being used as a mechanism to

produce (artificially) a larger range of option prices than is available in practice, with the curve fitting
procedure not requiring the BS model to be the ‘true’ model underlying the observed prices. That said,
there is a slight inconsistency in the case of the American options, in that the artificial option prices
are created using a formula (BS) that does not match that used to produce the initial implied volatility
surface. Given that the IVOLATILITY surface is constructed from OTM put and call options only, one
would not expect that a substantial premium for early exercise has been factored into the options. Hence,
the mismatch between the inital prices used to construct the smile and the artificial, interpolated prices
produced for use in (21) may not be too large. This also means that the prices used in (21) may not
be too different from prices based on a European formula, and the approximation error in MF reduced
accordingly.
22In the production of some of the rolling forecasts convergence problems occur, in particular for certain

of the more highly parameterized GARCH-type models. When this occurs the models are re-estimated up
to six times with different starting values each time. If the model still fails to converge then the forecasts
for this date and model are marked as non-convergent. If a model produces only a few non-convergent
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forecast is based on option prices observed on the day immediately prior to the forecast

day (or period).

4.2 Empirical Results

4.2.1 SPA Tests of Option-Implied Forecasts for Individual Stocks

In this section we present the SPA test results for all three individual stocks, IBM, MSFT

and GE, with both dMF and \ATM used as respective benchmarks. Comparative results

for the S&P500 index are reported in Section 4.2.5. In the spirit of Hansen and Lunde

(2006a) and Patton (2006) we use a ‘robust’ criterion, to measure the accuracy of forecast

j, namely MSFE for variance quantities, with Lj,t =
hbV 2

t − fj,t
i2
. We provide results for

one and 22 days ahead in Table 1 and 2 respectively, with the maturity of the options

used to construct dMF and \ATM matching the forecast horizon in the second case only.

To aid in the interpretation of the large number of numerical results, in each table we

group the eight measures, and associated results, according to the way in which the

different volatility measures accommodate noise and/or jumps. Specifically we define: I.

Measures that do not formally adjust for noise or jumps (No ADJ): RV(5) and RVAV(5);

II. Measures that adjust for noise only (NOISE_ADJ): TSRV, TSRV2, RKERN, OSRV

and ALTM; and III. The measure that adjusts for both noise and jumps (NOISE and

JUMPS_ADJ): BV. We annotate the results in the following way: i) if a benchmark is

not rejected at the 5% level, the SPA p-value appears in bold; ii) if a benchmark is not

rejected and its MSFE loss is the smallest of that of all m+1 models in the choice set, the

bolded p-value is allocated a # superscript; iii) in the case where either the dMF or\ATM
benchmark is rejected, the ‘most significant’ forecast model according to the pair-wise ‘t

statistics’ is indicated by a superscript .23

The results in Table 1 provide little evidence that the MF implied volatility is an

accurate forecast of actual volatility one day ahead. For IBM the SPA test rejects at the

5% level for all eight measures of volatility. In all cases, \ATM is the most ‘significant’

alternative, as based on the individual pair-wise ‘t statistics’. For MSFT and GE there

is support for dMF using the ALTM measure, and a small amount of support in the case

of GE using the RKERN measure also; however, in all other cases the dMF benchmark

is rejected, with \ATM again the most ‘significant’ alternative in many instances. Both

forecasts then we simply remove these days from the out-of-sample dataset; however if a large number
of days for a particular model are non-convergent then we remove that particular model from the model
set used in the SPA test.
23It is important to remember that the ‘most significant’ forecast model is not necessarily the model

with the smallest MSFE loss. Also, most importantly, the ‘most signficant’ alternative according to the
pair-wise comparisons may itself be rejected as a benchmark model using the SPA test.
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Table 1:

SPA p-values: forecasts based on a one-day-ahead forecast horizon. An option-implied volatility

forecast is used as benchmark: dMF (model free) and \ATM (at-the-money). The SPA test is based

on a mean squared forecast error (MSFE) loss criterion, for variance quantities. For each data set the

number of models against which the benchmark model is compared (m), plus the number of
observations in the forecast evaluation period from which the p- values and sample loss are calculated

(N ) are as follows: IBM: m = 67; N = 1149; MSFT: m = 63; N = 1154; GE: m = 66;
N = 1147.

IBM MSFT GE

Benchmark: dMF \ATM dMF \ATM dMF \ATM

I. No ADJ

RV(5) 0.000(ATM) 0.301 0.014(ATM) 0.472 0.003(ATM) 0.934#

RVAV(5) 0.000(ATM) 0.207 0.012(ATM) 0.474 0.000(ATM) 0.941#

II. NOISE_ADJ

OSRV 0.000(ATM) 0.233 0.006(ATM) 0.485 0.000(ATM) 0.935#

RKERN 0.000(ATM) 0.346 0.014(LMown) 0.471 0.075 0.740
TSRV1 0.000(ATM) 0.238 0.001(SMcross) 0.306 0.041(LMcross) 0.560
TSRV2 0.000(ATM) 0.217 0.001(LMcross) 0.337 0.015(ATM) 0.626
ALTM 0.011(ATM) 0.746# 0.364 0.382 0.121 0.404

III. NOISE and
JUMPS_ADJ

BV 0.000(ATM) 0.002(SMcross) 0.025(ATM) 0.502 0.000(ATM) 0.804

(ATM): In this case, when the dMF benchmark is rejected, the \ATM forecast is the ‘most significant’

according to the pair-wise ‘t statistics’.

(LMown (cross)). In this case, when the dMF benchmark is rejected, a long-memory own (cross)

forecast is the ‘most significant’ according to the pair-wise ‘t statistics’.

(SMcross). In this case, when the dMF or \ATM benchmark is rejected, a short-memory cross forecast

is the ‘most significant’ according to the pair-wise ‘t statistics’.

# indicates that \ATM has the smallest MSFE loss of all m+ 1 models in the choice set.
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Table 2:

SPA p-values: forecasts based on a 22-day-ahead forecast horizon. An option-implied volatility

forecast is used as benchmark: dMF (model free) and \ATM (at-the-money). The SPA test is based on

a mean squared forecast error (MSFE) loss criterion, for variance quantities. For each data set the

number of models against which the benchmark model is compared (m), plus the number of
observations in the forecast evaluation period from which the p− values and sample loss are calculated

(N ) are as follows: IBM: m = 67; N = 1149; MSFT: m = 63; N = 1154; GE: m = 66;
N = 1147.

IBM MSFT GE

Benchmark: dMF \ATM dMF \ATM dMF \ATM

I. No ADJ

RV(5) 0.000(ATM) 0.117 0.000(ATM) 0.571# 0.000(ATM) 0.964#

RVAV(5) 0.000(ATM) 0.045(LMcross) 0.000(ATM) 0.961# 0.000(ATM) 0.960#

II. NOISE_ADJ

OSRV 0.000(ATM) 0.043(LMcross) 0.000(ATM) 0.934# 0.000(ATM) 0.946#

RKERN 0.000(ATM) 0.208 0.000(ATM) 0.585# 0.004(ATM) 0.984#

TSRV1 0.000(ATM) 0.060 0.000(ATM) 0.870# 0.001(ATM) 0.956#

TSRV2 0.000(ATM) 0.052 0.000(ATM) 0.940# 0.000(ATM) 0.927#

ALTM 0.000(ATM) 0.844# 0.038(ATM) 0.579# 0.057 0.993#

III. NOISE and
JUMPS_ADJ

BV 0.000(ATM) 0.000(LMcross) 0.000(ATM) 0.592# 0.000(ATM) 0.816#

(ATM): In this case, when the dMF benchmark is rejected, the \ATM forecast is the ‘most significant’

according to the pair-wise ‘t statistics’.

(LMcross). In this case, when the \ATM benchmark is rejected, a long-memory own cross forecast is

the ‘most significant’ according to the pair-wise ‘t statistics’.

# indicates that \ATM has the smallest MSFE loss of all m+ 1 models in the choice set.
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long-memory and short-memory direct forecasts also feature in some cases.

Whilst the lack of support for the dMF benchmark may, superficially, be unsurprising,

given the mismatch between option maturity (22 trading days) and forecast horizon (1

day), the results for the \ATM benchmark provide a startling refutation of the maturity

explanation. In all but one case (the BV measure for IBM)\ATM is accepted as a superior

forecast, with the p-values all exceeding 0.2, usually well and truly so. In four cases the
\ATM is not only not rejected as benchmark, but also has the smallest MSFE loss of all

models considered.

Most importantly, given one of the main focusses of this paper, apart from the odd

exception and some variation in the magnitudes of the p-values, these qualitative results -

strong support for\ATM and lack of support for dMF - are almost completely invariant to

the measure used to proxy future volatility. This result is consistent with the robustness

results reported by Ghysels and Sinko (2006), in the context of a more limited forecasting

analysis of direct intraday returns-based forecasts. The only result that really stands out

here is the inability of \ATM to forecast the “jump-free” BV measure for IBM, a result

that contrasts with all other results in the table related to this benchmark. It is also

worth noting that none of the results that indicate some support for dMF are associated

with the BV measure.

Given the particular maturity associated with the option-implied forecasts - 22 trading

days - one would anticipate an improved performance when the forecast horizon matches

that maturity. As indicated by the results reported in Table 2, for the \ATM forecast of

MSFT and GE volatility this is indeed the case, with the p-values for the\ATM benchmark

uniformly higher for the 22 day forecast horizon than the corresponding p-values for the

one day horizon, and close to one in many cases. Moreover, and as is not surprising given

the strength of the test results for \ATM , the latter forecast has the lowest MSFE for all
eight forecast variables, for both series. The results for IBM are less clear-cut, although

there is still support for the benchmark \ATM for the majority of forecast variables.

In contrast, the results for the dMF benchmark are even weaker at the longer horizon,

with only a single failure to reject dMF as the superior forecast, across all series and

all measures, and that support for dMF being only marginal (p-value = 0.057). Once

again, both option-implied volatilities fail to successfully predict the BV measure for

IBM. Moreover, the p-value for the BV measure for MSFT, although supportive of the
\ATM benchmark, is smaller than the majority of p-values for the other measures. In the

case of GE the BV p-value is smaller than the p-values for all other measures.

As with the one-day-ahead predictions, there is some support for direct forecasts,

in that for the three instances in which \ATM is rejected as the benchmark model, a
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long memory direct forecast is the ‘most significant’ according to the pair-wise test. For

the longer time horizon, short-memory direct forecasts do not feature at all. For neither

forecast horizon is any support given to the GARCH-type forecasts based on daily returns.

Indeed, although these figures are not reported here, this category of model is consistently

ranked the lowest in terms of MSFE, for all series and measures, and for both forecast

horizons.

In summary, the results of this section highlight a distinct contrast between the per-

formance of the two alternative option-implied forecasts, dMF and \ATM . They also give
some support to the idea that both option-implied forecasts factor in jump information

and thus do less well at forecasting the BV measure, in which such information has,

in principle, been eliminated. The results do not support the proposition that dMF , as

an forecast of quadratic variation, forecasts those measures that include jump variation

better than does \ATM . For no measure, and for no series, is the support for dMF as

benchmark stronger than the corresponding support for \ATM.

In the following section we attempt to shed some light on the contrasting performances

of dMF and \ATM via an examination of the option market information from which the

options-based forecasts have been extracted. In Section 4.2.3 we shed further light on the

issue via reference to the analysis in Bollerslev and Zhou (2006) and Bollerslev, Gibson

and Zhou (2006) of the volatility risk premium.

4.2.2 Implied Volatility Curves

In Figure 1, Panels (a), (c) and (e) we plot one particular volatility measure, OSRV,

for each series, against dMF .24 In the right-hand panels, (b), (d) and (f) respectively, we

plot dMF against \ATM for each series. The intraday measure reported is for the 22-day-

ahead forecast horizon and all volatility measures (both realized and option-implied) are

graphed as annualized standard deviation figures.25 Four features in Figure 1, common

to all three series, are immediately apparent: 1) There are two distinct sub-periods: a

high-volatility period from 28 August, 2001 to (approximately) 30 July, 2004, and a lower

volatility period from 2 August, 2004 to 30 May, 2006;26 2) The dMF forecast tends to

exceed realized volatility (overall), and by a greater amount in the high- than in the

low-volatility period; 3) The dMF forecast tends to exceed the \ATM forecast, again by

a greater amount in the high volatility period; 4) The dMF forecast is excessively noisy,

24Qualitatively similar results are produced for the other measures of volatility.
25All graphs in the paper present annualized standard deviation quantities in order to enable easy

visual comparisons with the types of volatility graphs that usually appear in this literature.
26For the purposes of this illustration we omit the last 44 observations from the second MSFT sub-

sample so that this second sub-period is accurately described as ‘low-volatility’.
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Table 3:

Summary statistics for the two option-implied forecasts, over the full sample and the high- and
low-volatility sub-periods; realized volatility measured by OSRV.

IBM MSFT GE

Forecast: dMF \ATM dMF \ATM dMF \ATM

Full sample period (28 August, 2001 to 30 May, 2006)

bE(bV 2
t − ft) -0.0611 -0.0389 -0.0457 -0.0227 -0.0418 -0.0178dvar(ft) 0.0061 0.0038 0.0107 0.0060 0.0079 0.0046

High-volatility sample period (28 August, 2001 to 30 July, 2004)

bE(bV 2
t − ft) -0.0824 -0.0507 -0.0711 -0.0337 -0.0589 -0.0202dvar(ft) 0.0068 0.0044 0.0108 0.0060 0.0080 0.0049

Low-volatility sample period (2 August, 2004 to 30 May, 2006)

bE(bV 2
t − ft) -0.0282 -0.0204 -0.0198 -0.0188 -0.0153 -0.0142dvar(ft) 1.12e-004 8.81e-005 7.58e-005 7.12e-005 3.14e-005 2.89e-005

relative to realized volatility, and more so than is the \ATM forecast, again in the high-

volatility period in particular.

The empirical features of OSRV, dMF and \ATM , for all three series, and for the full
sample period and both sub-periods identified here, are summarized in Table 3. Using bV 2

t

to represent OSRV and setting ft = dMF ,\ATM (as variance quantities), we report sample

estimates of the forecasting bias, E(bV 2
t −ft) and the variance of the forecast, var(ft). The

numerical results clearly support the informal graphical evidence: dMF are both a more

biased forecast and a noisier one than\ATM , in particular over the high-volatility period.
Specifically, both the variance and the (magnitude of the) bias of dMF is approximately

twice as large as the corresponding statistics for \ATM in the high volatility period. In

the low volatility period, however, the corresponding bias and variance figures for both

forecasts are much more similar, for MSFT and GE in particular. Both options-based

forecasts overestimate actual volatility.

From the high- and low-volatility sub-periods we reproduce, in turn, a representative

sequence of implied volatility curves from which both dMF and \ATM have been con-
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Figure 1: GE, MSFT and IBM Volatility (Annualized standard deviation): 29 August,
2001 to 30 May, 2006.
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structed, as per the explanation in Section 4.1. In Figure 2, all three curves, on each

of four representative days from the high volatility period, give higher implied volatility

figures for each moneyness ratio, when compared with the comparable curves for the low

volatility period in Figure 3. Moreover, the former also exhibit a much more pronounced

curvature than the latter, with the volatilities associated with very low values for X/Pt

(and, in some instances, those associated with very high values for X/Pt) exceeding the

near-the-money volatilities (X/Pt ≈ 1) by a large amount. This pattern reflects, in turn,
both the existence of quotes for OTM put options (X/Pt low) and OTM calls (X/Pt high),

plus the assignment of high values to some of those options. In a high volatility state the

market thus places high value on options that pay off only if the asset price either rises

or falls by a large amount, i.e. only if the present high volatility state persists. A positive

liquidity premium, associated with the relative lack of liquidity in far-from-the-money

options, may also contribute to some of the high volatilities observed at the extreme ends

of the moneyness spectrum. Only on one of the chosen days (17 May, 2002) do all three

implied volatility curves display the downward sloping skew pattern that is often a feature

of equity option data.

Given that \ATM is equated to the ordinate of the volatility curve at X/Pt = 1, anddMF constructed from a formula that uses all ordinates, the reason why dMF tends to

exceed \ATM by a large amount in the high-volatility period is clear. In addition, an ex-

amination of the sequence of implied volatility curves over the entire high-volatility period,

of which the graphs in Figure 2 provide a snapshot, highlights a large degree of variation

in the away-from-the-money volatilities in particular, a feature that contributes to the

large variation in dMF reported in Table 3. Again, this noise is likely to be exacerbated

by the lack of liquidity in the away-from-the-money options.

In contrast to the rather distinct smile shape that characterizes some of the curves in

Figure 2, during the low volatility period higlighted in Figure 3, skewed curves, mostly

with the typical negative slope, are more in evidence, with much less variation exhibited

across the moneyness spectrum. The flat curves beyond certain narrow ranges around

X/Pt = 1 indicate that no quotes on away-from-the-money options are made at the end

of the relevant day, with the implied volatilities at these boundary points simply being

extrapolated to the outer boundaries of 0.5 and 1.5; see Jiang and Tian (2005). In the

low volatility state, options that have positive pay-offs only if Pt varies substantially from

its current value, i.e. if volatility is high over the maturity of the option, are not traded.

In this case, there is much less difference between the dMF and \ATM values, plus much

less variation in the dMF values, than during the high volatility state.

In summary, close examination of the volatility smile information from which dMF
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Figure 2: Implied volatility curves for representative days on four sequential months
during the high-volatility period. Volatility is represented as an annualized standard
deviation figure.
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Figure 3: Implied volatility curves for representative days on four sequential months dur-
ing the low-volatility period. Volatility is represented as an annualized standard deviation
figure.
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and\ATM are extracted provides some explanation for both the discrepancy between the

two measures and for the added variability in the dMF measure, in particular in times

of high volatility. The excessive variability in dMF would only be exacerbated by any

measurement error associated with the application of the MF formula to the American-

style option data. In the following section we draw upon the insights of Bollerslev and

Zhou (2006) and Bollerslev et al. (2006) in order to provide an explanation for the positive

bias in both measures and for the fact that the magnitude of that bias is larger in the

high volatility period.

4.2.3 Forecasting Bias: Implied Volatility Risk Premium

Bollerslev and Zhou (2006) demonstrate that under the assumption of the square root

stochastic volatility model of Heston (1993), the coefficients in the regression,R T
t
σ2(s)ds = φ0 + φ1E

∗
t

∙
TR
t

σ2(s)ds

¸
+ et,T (22)

are functions of the parameters of the risk-neutralized version of the distribution with

respect to which E∗t (.) in (22) is defined. We refer readers to Bollerslev and Zhou for

details of the objective and risk-neutral distributions in question and the links between

them. It is sufficient to note here that for standard values of the objective parameters, the

negative market price of volatility risk that is observed empirically (e.g. Guo 1998, Eraker,

2004, Forbes, Martin and Wright, 2007) leads unambiguously to φ1 < 1. Translated into

the option context, the negative price means that the risk-neutralized distribution for

volatility reverts more slowly to a higher long-run mean, in comparison with the objective

distribution. That is, option prices have a positive premium factored in, as a consequence

of stochastic volatility. It is this positive premium that leads to the implied volatility

measure exceeding, on average, the objective measure of volatility, with the bias in the

forecasting regression in (22) being a manifestation of the deviation between the two

forms of volatility. As Bollerslev and Zhou demonstrate via simulation experiments, this

qualitative result is unaffected by the estimation of
R T
t
σ2(s)ds using observed intraday

returns. The empirical results reported in the previous section, in which both option-

implied forecasts have positive bias with respect to one particular estimate of
R T
t
σ2(s)ds,

namely OSRV, support this finding.27

The assumption of an underlying stochastic volatility process for returns is completely

consistent with the implied volatility patterns observed in practice, including for the data

analysed here. That is, implied volatility smiles/skews can be linked to the fat tails

27Again, the same qualitative results, although not reported, were obtained for the other realized
measures.
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(and/or skewness) that characterize empirical returns, characteristics that, in turn, can

be associated with a stochastic volatility process (see, for e.g. Heston, 1993, Bakshi, Cao

and Chen, 1997, and Bates, 2000). The particular shape of the implied volatility curve

can be linked to features of the underlying stochastic volatility process, most notably

the degree of volatility of volatility and the magnitude (and sign) of the instantaneous

correlation between volatility and returns. The varying shapes observed over the sample

period considered are suggestive of an underlying stochastic volatility model with time-

varying parameters, although we attempt no formal investigation here of that observation.

Certainly, the varying degree of bias, in particular between the high and low volatility

periods, is indicative of a time-varying risk premium that is a positive function of the level

of actual volatility. This empirical feature is consistent with the analysis in Bollerslev et

al. (2006), in which the volatility risk premium is found to be a function of several macro-

finance state variables, including the observed level of volatility itself.

It is the dMF measure which is formally consistent with an underlying stochastic volatil-

ity models for returns and, hence, legitimately affected by any volatility risk premium via

its method of calculation, whereby all available smile information is used. The \ATM
forecast, on the other hand, approximated by an implied volatility at a single point in the

moneyness spectrum, does not formally factor in a risk premium and, as a consequence,

exhibits less bias as a forecast of actual volatility, as attested to by the results in Table

3.28

In summary then, any potential additional forecast accuracy associated with the added

flexibility of the assumptions underlying the dMF forecast appears to be offset by the bias

and noise which beset its calculation in practice. As such, it is of interest to ascertain

whether or not a truncated version of dMF , which retains some of the smile information,

but not all, manages to outperform \ATM . We investigate this in the following section

by reporting SPA test results for three modified versions of dMF .

4.2.4 SPA Tests of Truncated MF Forecasts

In Table 4 we present the SPA p-values associated with the 22-day-ahead forecasts using 5

benchmarks: dMF and\ATM , plus three truncated versions of dMF , denoted by: dMF (1.5),dMF (2.0) and dMF (2.5). The benchmark dMF (1.5), for example, is the estimate of MF

produced from implied volatilities within the moneyness range: 1 + 1.5 ×\ATM/
√
12.

The benchmarks dMF (2.0) and dMF (2.5) are defined correspondingly.29 We produce the

28See also Bates (1996) for early discussion of the robustness of option-implied volatility based on
at-the-money options.
29Jiang and Tian (2005) and Bollerslev, Gibson and Zhou (2006) also use truncation in calculating MF

implied volatilities.
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test results for the full sample period, as well as results for the low-volatility period

identified in Section 4.2.2, the idea here being that the reduced bias and variation in

all MF estimates in this latter period may lead to these benchmarks being given more

support by the SPA test. The results for benchmarks dMF and \ATM are re-produced

under the expanded model set in which dMF (1.5), dMF (2.0) and dMF (2.5) are included as

alternatives. Hence, the results in the columns headed dMF and \ATM in Table 4 differ

slightly from the corresponding results reported in Table 2. In order to reduce the number

of results reported, we focus on only three measures for each series: ALTM, RKERN and

BV.

For the full sample period, the truncation of the smile used to estimate the MF im-

plied volatility does nothing to improve its forecast performance in the case of IBM. ThedMF (1.5) benchmark is given limited support for GE and MSFT (for the ALTM volatility

measure in particular). However, overall, the\ATM forecast remains dominant, even when

the model set is expanded to include the added variants of dMF .30 For the low-volatility

period, as would be anticipated from the results recorded in Table 3, the performance of

both forms of option-implied forecasts (\ATM , plus all variants of dMF ) is more similar,

overall, than is their performance for the full period. However, rather than the perfor-

mance of the MF forecasts improving when assessed over the low volatility period, both

the\ATM and dMF− type forecasts are now rejected as benchmarks in virtually all cases!
Only for a single measure (ALTM for the IBM and MSFT series), is there any support

for an option-implied forecast. Once again, it is the BV measure which has the smallest

p-values overall, with the majority being zero to three decimal places. As was the case

for the earlier results, there is some support indicated for long-memory direct forecasts;

however this observation would need to be formally verified by conducting SPA tests of

long memory benchmarks.

4.2.5 SPA Tests for the S&P500 Index

The small amount of work that has assessed the forecasting performance of the MF implied

volatility has done so without formal account being taken of any alternative forecasting

models; see, for example, Jiang and Tian (2005) and Bollerslev and Zhou (2006). The

analysis has also focussed on the volatility of the S&P500 Index, with the MF implied

volatility being proxied by the VIX in the case of Bollerslev and Zhou. The results

reported in Jiang and Tian, in which the MF method is explicitly compared with the

30Note, that the fact an dMF variant is often the most ‘significant’ alternative according to a pair-wise
‘t test’ is not inconsistent with the fact that this same variant may be rejected as a benchmark by the
SPA test. This result simply highlights one of the dangers of conducting pair-wise comparisons.
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Table 4:

SPA p-values: forecasts based on a 22-day-ahead forecast horizon. Alternative option-implied volatility

forecasts are used as benchmark: \ATM , dMF (1.5), dMF (2.0) and dMF (2.5) and dMF . The SPA
test is based on a mean squared forecast error (MSFE) loss criterion, for variance quantities, with three

alternative measures used the actual volatility: ALTM, RKERN and BV. The measure on which the

SPA test is based is denoted in parentheses for each series listed in the first column of the table. Results

are produced for the full sample and low-volatility periods.

Benchmark: \ATM dMF (1.5) dMF (2.0) dMF (2.5) dMF

Full Sample Period (28 August, 2001 to 30 May, 2006)

IBM (RKERN) 0.208 0.000(ATM) 0.000(MF1.5) 0.000(MF1.5) 0.000(MF2)

IBM (ALTM) 0.844# 0.000(ATM) 0.000(MF1.5) 0.000(MF2) 0.000(MF2)

IBM (BV) 0.000(LMcross) 0.000(ATM) 0.000(MF1.5) 0.000(MF1.5) 0.000(MF1.5)

MSFT (RKERN) 0.649# 0.001(ATM) 0.000(MF1.5) 0.000(ATM) 0.000(ATM)

MSFT (ALTM) 0.753 0.316 0.003(MF1.5) 0.017(MF1.5) 0.017(MF1.5)

MSFT (BV) 0.634# 0.001(ATM) 0.000(MF1.5) 0.000(ATM) 0.000(ATM)

GE (RKERN) 0.945# 0.595 0.004(MF1.5) 0.001(MF2) 0.000(MF2.5)

GE (ALTM) 0.216 1.000 0.088 0.004(MF2) 0.000(MF2.5)

GE (BV) 0.855# 0.023(ATM) 0.000(MF1.5) 0.000(MF2) 0.000(MF1.5)

Low Volatility Period (2 August, 2004 to 30 May, 2006)

IBM (RKERN) 0.028(LMcross) 0.000(ATM) 0.000(MF1.5) 0.000(ATM) 0.000(ATM)

IBM (ALTM) 0.287 0.000(ATM) 0.000(MF1.5) 0.000(ATM) 0.000(ATM)

IBM (BV) 0.000(LMcross) 0.000(ATM) 0.000(MF1.5) 0.000(ATM) 0.000(ATM)

MSFT (RKERN) 0.007(LMcross) 0.005(ATM) 0.001(MF1.5) 0.001(MF1.5) 0.001(MF1.5)

MSFT (ALTM) 0.140 0.163 0.075 0.153 0.147
MSFT (BV) 0.000(LMcross) 0.001(LMcross) 0.001(LMcross) 0.001(LMcross) 0.001(LMcross)

GE (RKERN) 0.009(LMcross) 0.008(LMcross) 0.009(MF1.5) 0.013(MF1.5) 0.009(MF1.5)

GE (ALTM) 0.002(LMcross) 0.003(LMcross) 0.002(LMcross) 0.003(LMcross) 0.002(LMcross)

GE (BV) 0.000(SMcross) 0.000(SMcross) 0.000(SMcross) 0.000(SMcross) 0.000(SMcross)

(ATM): In this case, when a benchmark is rejected, the \ATM forecast is the ‘most significant’

according to the pair-wise ‘t statistics’.

(MF*): In this case, when a benchmark is rejected, the dMF *forecast is the ‘most significant’ according
to the pair-wise ‘t statistics’.

(LM(SM)cross): In this case, when a benchmark is rejected, a long-(short-)memory cross forecast is the

‘most significant’ according to the pair-wise ‘t statistics’.

# indicates that \ATM has the smallest MSFE loss of all models in the choice set.
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BS method, give some support to MF. This result is thus in conflict with our SPA test

results, which cast doubt on the usefulness of the MF method in forecasting the volatility

of individual stocks. It is of interest, therefore, to assess the robustness of our SPA-based

conclusions to the shift from individual equities to the index, in particular given that the

MF formula is designed for the European-style option data associated with the index.

Given that the different forms of noise adjustments that have been used in this paper

have their prime motivation in the case of data on traded assets, rather than observations

on a constructed index, we conduct SPA tests of the S&P500 implied volatility measures

for the case where actual volatility is measured by RV(5) and BV only.31

In Figure 4, Panels (a), (b), (c) and (d), we plot, respectively, RV(5) and dMF , RV(5)

anddBS, dMF and V IX, and dMF (2.5) and V IX, for the 22-day-ahead forecast horizon. As

is evident from Panels (a) and (b), both implied volatility forecasts are very biased, even

more so than was the case with the individual stocks. This is consistent with a substantial

risk premium being factored into the index options. Panel (c) demonstrates the accuracy

with which the V IX reproduces the MF method, with the truncated dMF (2.5) being

virtually indistinguishable from the CBOE measure in Panel (d). SPA-based tests of all

five benchmarks used in the previous section were conducted, in addition to the test for

the V IX benchmark. The tests were conducted over the full and low volatility periods.

The results (not reported here) provide a resounding rejection of all implied volatility

benchmarks, with all p− values (to three decimal places) being equal to zero.

5 Summary and Conclusions

This paper presents the first empirical evaluation of option-implied versus returns-based

volatility forecasts that takes into account all of the important recent developments re-

garding market microstructure noise. The options-based component of the analysis also

accommodates the concept of model-free implied volatility, in an attempt to separate the

forecasting performance of the option market from the issue of misspecification of the

option pricing model. The testing framework properly caters for the existence of multiple

alternative forecasts, as well as the sampling variability in estimated forecast loss, via use

of the superior predictive accuracy test.

The model-free implied volatility performs poorly as a forecast of future volatility,

with this conclusion applying to both individual equities and the S&P500 stock index.

In contrast, volatility extracted from at-the-money options is given strong support as

31In order to retain comparability with the earlier results, we continue to construct the BV measure
with the noise adjustment as per (16).
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Figure 4: S&P500 Volatility (Annualized standard deviation): 29 August, 2001 to 30
May, 2006.
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a superior forecast of individual stock volatility, in particular over a time horizon that

matches the maturity of the options from which the implied volatility has been extracted.

Like the model-free forecast, the at-the-money (Black-Scholes) forecast is rejected as a

benchmark forecast in the case of the index. The qualitative results are, in the main,

robust to the measure used to proxy future volatility. However, there is limited support

for the idea that option prices do factor in jump information, given the slight tendency

for both types of option-implied forecasts to do less well as a forecast of (noise-adjusted)

bi-power variation. This observation requires more detailed investigation, however, before

any definitive conclusions along these lines can be drawn.

The poor relative performance of the model-free implied volatility can be linked to

both the bias and excess variability that it exhibits as a forecast of actual volatility,

with the positive bias, in particular, being consistent with the option market factoring

in a negative price for volatility risk. The at-the-money forecast, on the other hand,

takes no account of the distributional information in the implied volatility patterns that

characterize the option market. In so doing it can be viewed as missing vital information

about the underlying asset price and its future volatility. It would appear, however, that

this deficiency is more than offset by the reduction in forecast bias and variability that

its more restrictive use of option market information entails.

Finally, some limited evidence has been produced that suggests that direct forecasts

of realized volatility measures, based on long memory models, may also serve as useful

forecasts of future volatility. In particular, it may be the case that certain measures used

as the basis for producing forecasts may perform better than others, no matter what

the variable (or measure) being forecast; i.e. that cross-forecasts may out-perform own-

forecasts. An alternative exercise, in which the full range of alternative forecast models are

ranked, rather than a particular benchmark model being assessed, could be implemented

using the model confidence set methodology of Hansen and Lunde (2003). In so doing

we could attempt to answer a different question from that addressed here: which form of

model, or category of model, whether returns- or options-based, provides the best forecast

of volatility?
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