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Abstract: 
This paper develops a new non-linear model to analyse the business cycle by 

exploiting the relationship between the asymmetrical behaviour of the cycle and 

leading indicators. The model proposed is an innovations form of the structural 

model underlying simple exponential smoothing that is augmented by a latent 

Markov switching process. Furthermore, the probabilities that drive the Markov 

process vary with the growth of the leading indicator. The proposed model is used 

to analyse the Australian business cycle using the gross domestic product as a 

proxy and the industrial materials prices index as the exogenous leading indicator 

influencing the transition probabilities. Model parameters are estimated using a 

Gibbs sampling algorithm and subsequently used for forecasting purposes. 
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1. Introduction 
Business cycles are loosely defined as recurrent sequences of alternating 

expansion and contraction in economic activity, which is identified by the 

movement of different variables such as employment, retail sales, industrial 

production and others. Some variables are much more sensitive to the movement 

of business cycles than are others. Some tend to move early (leading indicators) 

and some tend to move late (lagging indicators) while others are roughly 

coincident indicators. An example of the coincident indicators is the gross 

national product (GNP) and the gross domestic product (GDP), which are often 

used as proxies of the business cycle to analyse the situation of the economic 

activity (Hamilton, 1989; Luginbuhl and De Vos, 1999). Simple deterministic 

models, such as the popular Bry-Boschan (1971) procedure that defines a 

recession to occur when there are two consecutive declines in GDP, lacks 

predictive ability because of the delayed announcement of the recession. This 

delay is due to the gap in time between the supposedly beginning of the recession 

and the publication of the data. 

 

The same delay happens with the National Bureau of Economics Research 

(NBER) announcement in the United States. Recently, in November 2001 the 

NBER announced that a recession had begun in March 2001. This late 

announcement, eight months after the selected date, is not uncommon because the 

committee responsible for the dating of business cycles need to validate the 

actions of some indicators by the actions of other indicators. In this paper, we are 

assessing the potential usefulness of the leading indicators in forecasting the 

business cycle. 

 

This paper develops a new non-linear model to analyse the business cycle. During 

the last two decades, there has been conformity among most of the researchers 

that non-linear time series modelling would improve forecasts and produce a 

richer notion of business cycle dynamics than linear time series models 
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(Teräsvirta and Anderson, 1992; Beaudry and Koop, 1993; Potter, 1995; …). This 

is due to the inability of the linear models to capture the expansionary and 

recessionary phases in the business cycle that display asymmetric behaviour in the 

sense that the arrival of a recession is prompt, while the recovery from a recession 

is prolonged. Additionally, often two cycles appear to have neither the same 

amplitude nor the same duration. As such, non-linear models are used in 

preference to linear models to characterise this distinction. In this paper we 

propose a new family of models based on the innovations form of the structural 

time series model that is augmented by a latent binary switching variable. 

 

The characterisation of an economic time series using linear structural models is 

based on a traditional decomposition of the observed series into level, growth, 

seasonal and random components (Harvey, 1984). These unobserved components 

are assumed to evolve dynamically according to a linear relationship, traditionally 

made stochastic by the inclusion of an additive error term that is uncorrelated with 

the observation error. Statistical analysis of linear structural models requires 

writing them in state space form and using the Kalman filter to estimate them. 

Another equally general state space framework involves only a single source of 

error (Snyder, 1985; Ord, Koehler and Snyder, 1997). Called the innovations form 

by Aoki (1987), the calculation of the likelihood function for this model is made 

easier by using exponential smoothing methods rather than the Kalman filter. It 

also has a more direct equivalence relationship to the popular autoregressive 

integrated moving average (ARIMA) models than does the traditional linear 

structural model (Shami and Snyder, 1998). Linear state space models in both the 

traditional form (Harvey, 1985; Watson, 1986; and Clark, 1987) and the 

innovations form (Aoki, 1988 and 1993) have been used to characterise economic 

time series. Notably, Harvey (1985) used the linear structural model on US GNP 

data to analyse the business cycle. 

 

The switching initiative was introduced in economic analysis by Hamilton (1989) 

to define changes between fast and slow growth regimes in the economy. He 
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proposed a new univariate model and applied it to characterise the US business 

cycle using US GNP data. His model uses a simple autoregressive structure to 

characterise the evolution of the observed series whose conditional mean is 

determined by a latent, binary Markov switching variable that takes a value of 

unity during expansionary periods and a value of zero during recessions. Hamilton 

also provided an algorithm for estimating the probability of a recession at each 

time period based on a maximum likelihood approach. Since that time, several 

other authors have investigated modifications to the model specification (Lam, 

1990; Hansen, 1992; Kim, 1994), computation of the recession probabilities 

(Albert and Chib, 1993) and the application of the models to various other data 

sources (Cecchetti et al, 1990; Hamilton and Lin, 1996). 

 

However, the stability of Hamilton model using the likelihood approach is a 

matter of concern. Boldin (1996) observed a breakdown of the Hamilton model 

for data, which includes the end of World War II and the Korean War. While, 

Kim and Nelson (1999) found that Hamilton’s model fails to provide reasonable 

inferences on the probabilities of a recession or a boom when Hamilton’s original 

data set is extended until 1992. To correct for this, they added a dummy variable 

from 1983 to account for a structural break in the growth rate. This idea is in line 

with our proposed model, which allows for "structural breaks" at each time 

through a change in the level. Others like Krolzig (2001) and Luginbuhl and De 

Vos (1999) found structural breaks in the growth rate. 

 

The proposed model, which we will call the switching structural model (SSM), is 

described as a non-linear structural model that includes an unobserved level 

component and an unobserved switching drift component. The level is estimated 

by simple exponential smoothing where at a certain time t, it is expressed as a 

weighted sum of the observed data at time t and the level at time t-1. The drift is 

represented by a variable that switches between two values that represent the 

expected rates of growth during an expansion and a recession. These values 
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evolve according to a Markov chain of order one with constant transition 

probabilities. 

 

The SSM proves to be satisfactory in estimating the business cycle by modelling a 

coincident indicator; still, the predicted values depend on the regime state at the 

end of the observation period and the estimated common values of the transition 

probabilities. One of the primary aims of this paper is to develop an improved 

forecasting model by exploiting the characteristic of a leading indicator. Thus, we 

extend the SSM by relaxing the assumption of constant transition probabilities. 

We introduce the switching structural model with varying transition probabilities 

(SSMVP) that relates to a leading economic indicator. One of the potential uses of 

these indicators is that the persistence of an expansion or a recession depends on 

both the state of the system at one period earlier and the leading indicator which 

has the ability to provide a direct measure of the expectations of the economic 

agents. Also, it helps in improving the forecast and predictive accuracy around the 

turning points. What is probably of greater interest is as these variables vary 

across time, the persistence of business cycle phases will vary and thus affect the 

expected duration of how long an expansion or a recession will last. 

 

Hamilton (1990) noted that one of the reasons for the instability of his model 

might be owed to the computational difficulty of maximising numerically an often 

ill behaved likelihood surface with respect to a large number of unknown 

parameters. As such, we provide a new approach to conduct a Bayesian analysis 

of the proposed models. The Gibbs sampling (Gelfand and Smith, 1990) based 

algorithm builds on the work of Forbes, Snyder and Shami (2000), who 

demonstrate the use of Monte Carlo composition to compute Bayesian posterior 

parameter and forecasting distributions for the linear structural model based on 

the innovations form. Others, notably Albert and Chib (1993), Kim and Nelson 

(1999) and Luginbuhl and De Vos (1999) have used Bayesian methods on various 

traditional switching models. 
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The plan of the paper is as follows. We detail the proposed non-linear model in 

section 2 and demonstrate properties of the model. A Bayesian estimation 

algorithm based on a Gibbs sampler scheme is presented in section 3. In section 4, 

the new proposed model will be used to analyse the Australian business cycle. As 

there is no authority in Australia similar to the NBER in the USA to use as a 

benchmark or a point of reference, the recession and expansion dates are 

calculated using the Bry-Boschan procedure, which will be used for the purpose 

of comparing models. A good candidate for coincident indicator is the gross non-

farm domestic product, which is used as a proxy for the business cycle, whilst the 

industrial materials price is used as the leading indicator. The paper concludes 

with section 5. 

 

2. The Model 
The SSM is represented as follows 

y l g et t t� � �
� �1 1 t

t

       (1) 

l l g et t t� � �
� �1 1 �        (2) 

g st t� ��1 � 0

�1

t g

,        (3) 

prob s s pt t( | )� � �
�

1 11 ,      (4) 

prob s s qt t( | )� � �
�

0 01 ,      (5) 

where yt is the observed value, lt represents the unobserved level at time t, gt is the 

unobserved growth at time t, et’s are independent and normally distributed 

disturbances with mean 0 and variance �2, � is the level smoothing parameter, p 

and q are the transition probabilities, st is the unobserved state of the system (or 

economy) at time t, assumed to follow a Markov model of order 1, that is 

P s S Y P s st t t t t( | , ) ( | )
�

�1 ,      (6) 

where  and Y y . The parameters  

together define the two levels of growth. During an expansion, s

S s s st t�
�

0 1, , ,�b g

g

y yt �
�

1 2, , ,�b

� � �1 0

� �1 0 and 

t = 1 and the 

growth rate is given by , whereas during a recession, st � t = 0 and the 
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growth rate is given by . As we require ‘expansion’ to have a higher 

growth rate than ‘recession’, we impose the constraint . 

gt � � 0

pt) �1

�1 0�

qt) �1

� 0

 

By relaxing the conditions (4) and (5), the SSMVP model is represented by the 

equations (1), (2), (3) and 

prob s s H zt t t( | ( '� � �
�

1 1 )1� ,     (4’) 

prob s s H zt t t( | ( '� � �
�

0 0 � ,    (5’) )0

where zt is a m-vector of known values, �1  and  are m-vectors of hyper 

parameters used to describe the transition probabilities pt and qt through the 

function H. Note here that if zt in (4’) and (5’) is constant, all the transition 

probabilities pt and qt are equal respectively to fixed values p and q, hence the 

SSMVP will collapse to the SSM. 

 

As this is essentially a simple latent variable model, the function H may be chosen 

as any known cumulative density function (cdf), which has the desirable 

consequence of forcing the computed transition probabilities to lie between zero 

and one. In this paper, H is chosen as the standard Gaussian cdf, with the results 

that the latent switching state probabilities are linked to the leading indicator using 

a probit model. Filardo and Gordon (1998) used this type of cdf, while the other 

cdf used in the literature is the logistic cdf (Filardo, 1994; Diebold et al, 1994). 

 

The vector parameter  to estimate is composed of three blocks of parameters. 

The first is 

�

�1 , that is constituted from the smoothing parameter �, the variance of 

the errors �2 and the initial value of the state vector l0. The second is � 2  that is 

constituted from the two switching components �1 and �0, and the third is �3 , that 

is constituted from the transition probabilities p and q in the SSM and the hyper 

parameters �1  and � 0  in the SSMVP. Partitioning the parameter set into these 

three blocks is convenient because conditional on �3 , the same algorithm is used 

to estimate �1  and � 2  in the SSM and SSMVP. Moreover, �1  is associated with 
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the linear structural model corresponding to exponential smoothing with a 

constant growth term and estimated in Forbes, Snyder and Shami (2000). 

 

The likelihood function for the SSM model can be constructed from consideration 

of the joint probability distribution of the observed data and unobserved state 

variables. The joint probability of the observed data, Y y , and the 

unobserved state vector, 

y yn n�
�

1 2, , ,�b g
S s s sn� �

�
1 0 1 1, , ,�b n� g

�f

�| g

t�1

, given � has the form 

f Y S f y s f s f y Y S f s Sn n t t t
t

n

t t, | | , | | , , | ,
� � �

�

� �

� �1 1 0 0 1 1
2

1 2� � � �a f a f a f a f a . (7) 

The likelihood function of the parameters, , is calculated for any 

particular value of  by averaging (7) over all possible 2

L Y p Yn n�|b g b�

�
n values of . Sn�1

 

We will show how to compute the Bayesian posterior probability distribution in 

the next section utilising the special structure of the model. From the 

measurement equation in (1) and conditional on � ,  and Y , the distribution 

of y

St�1 t�1

t is normal with mean  and variance . Let �l gt� �1 �
2

�� �1

gt�1g
. By 

substituting the value of the noise term, , from the 

measurement equation (1) into the level transition equation (2) yields 

e yt t lt �
�1b� �

 l l gt t t� � �
� �

yt� � �1 1 .       (8) 

Back solving to time t = 1, and substituting into (1) we obtain 

y l g yt
t j

t j
j

t
j

t j
j

t

t� � � �
� �

�

�

�

�

�

�

� �� � ��
1

0
1

1

1

1

1

e

0�

t

,    (9) 

where . Note (9) can be conveniently rearranged as g s0 1 0� ��

~ ~y x l et t� �0 ,        (10) 

where 

~y y g yt t
j

t j
j

t
j

t j
j

t

� � �
�

�

�

�

�

�

�

� �� ��
1

1

1

1

1

 and  ~xt
t

�
�

�
1 .  (11) 

Therefore,  can be computed in (7) using  f y Y St t t| , ,
� �1 1 �b g
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f y Y S y x lt t t t t| , , exp ~ ~
� �

�

� �
RST

UVW�1 1
1

2 0
21

2
� �

�
b g b g

2

.   (12) 

Note here that for given values of Sn�1,� and� , the linear regression estimates 

from (10) are 

� ~l t

t

n
t

t
t

n

0
2

0

1 1
1

1

�

F
HG
I
KJ

�

�

�

�

�

� �� � y

j

,      (13) 

�Vl
t

t

n

0

2 2

0

1 1

�

L
NM
O
QP�

�

�

�� � ,       (14) 

and  .      (15) SSE y lt
t

t

n

� �
�

�

� ~ ��
1

0

2

1
e

 

3. A Bayesian Analysis 
Taking the likelihood function, as discussed in Section 2, and the joint prior 

distribution , we can construct the posterior distribution for the unknown 

parameters contained in ��using Bayes’ theorem 

P �b g

P Y
L Y P

P Yn
n

n

�
� �

|
|b g b g bb g�

g

�3

�3

� 2

3

.      (16) 

However, direct Bayesian inference about � in the SSM and consequently in the 

SSMVP is not available analytically. Hence, we use an MCMC technique (Gibbs 

sampling) that utilises the previously suggested partitioning of the parameter �. 

Sampling Method 

The Gibbs procedure uses sampling from the following distributions 

P Y Sn n� �1 1 2| , , ,
�

b g  
P Y Sn n� �2 1 1| , , ,

�
b g  

P Y Sn n� �3 1 1| , , ,
�

b g  
P S Yn n�1 1 2| , , ,� � �b g . 
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If �3

P Y

 is known, the procedure to find the conditional distributions 

,  and  is the same in 

the SSM and the SSMVP. In the case of the SSM we refer the reader to Shami and 

Forbes (2000) where the Gibbs procedure to estimate � and S

Sn n� �1 1 2| , , ,
�

b g�3 P Y Sn n� �2 1 1| , , ,
�

b g�3 3P S Yn n�1 1 2| , , ,� � �b g

n-1 is detailed. The 

aim here is to extend this procedure to accommodate the estimation of the hyper 

parameters �1  and � 0 .  

 

Prior Distributions 

To complete a Bayesian analysis, a joint prior distribution for the unknown 

parameters must be specified. As parameters will be sampled in blocks, we 

specify the general form of the joint prior distribution by 

 .      (17) P P P P� � � �b g b g b g b g� 1 2 3

�

2

 

We follow Forbes, Snyder and Shami (2000) by imposing 

P P l P� � � �1 0
2 2b g c h b g� �

�, , ,     (18) 

for ,  and �� � � �l0 �
2 0� 0 � �� . The limits of �  are derived by writing 

the SSM as an ARIMA model. By taking the first difference of the level in (2) and 

substituting the result into the first difference of (1), we obtain an ARIMA(0,1,1) 

with drift. The moving average coefficient is equal to � �1. The invertibility 

condition of the ARIMA process leads us to impose that the absolute value of 

� �1 should be less than one, which translates into the constraint 0 2� �� . As 

the algorithm we detail is not sensitive to the choice of , we leave the 

notation general at this stage. In our example, we choose a uniform distribution. 

P �b g

 

The marginal priors for � 2  and �3  are chosen to simplify the Gibbs sampling 

algorithm. We select flat prior distributions for � 2  and �3 , with zero mean and 

diagonal covariance matrices with large values. However, to account for the 

restriction imposed on the parameters �1 and �0, we choose 
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 ,        (19) P I�
�2 1

b g �
�0

so that observations at times corresponding to an expansion have a higher growth 

rate than those corresponding to a recession. 

 

Conditional Distribution of �3  

In this section, as we are really only interested in the conditional distribution 

, we will present the extension to the SSM procedure which 

will cover the estimation of 

P Y Sn n� �3 1 1| , , ,
�

b � 2g
�1  and � 0 , and state the results concerning the other 

parameters (for more details, see Shami and Forbes; 2000). We will define the 

transition probabilities in terms of conditional latent probit variables ut and use a 

modified version of Albert and Chib (1993). 

 

Equations (4’) and (5’) can be described using the latent variable ut, 

       (20) 
( | ) ~ ( ' , )
( | ) ~ ( ' , ),
u s N z
u s N z

t t t

t t t

�

�

�

�

RST
1

1 0

1 1
0 1

�

�

1

with  
s u
s u

t t

t t

� �

� �

RST
1 0
0 0
 if 
 if ,

where zt is the leading indicator series. Note here that the values of st and st-1 

impact on the distribution of u S Yt n n| , ,� . 

 

Given � �( ) , the prior probability function of the hyper parameter , 

the joint posterior density of the unobservable 

� � �� 1 0b g
�  and U u , given 

the switching state vector S

u un n
�,�b g� 1 2, ,

n-1, is given by 

P U S

I u I s I u I s I s u z

I u I s I u I s I s u z

n n

t t t t t t t
t

n

t t t t t t t

( , | )

( ) {[ ( ) ( ) ( ) ( )] ( ) ( ' )

[ ( ) ( ) ( ) ( )] ( ) ( ' )},

�

� � � �

� �

�

�

�

�

� � � � � � � �

� � � � � � � �

�

1

1 1
1

1 0

0 1 0 0 1

0 1 0 0 0

    

                     

 

          (21) 
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where  and  are the indicator functions that are equal to one if I z( � 0) )I z( � 0

z � 0  and z � 0  respectively, and zero otherwise, and �  is the standard normal 

pdf. This joint distribution (21) is complicated in the sense it is difficult to 

normalise and sample from directly. However, the computation of the marginal 

posterior distribution of �  conditional on Un and the marginal posterior 

distribution of Un conditional on �  are of standard form. Assuming a priori 

independence of �1  and � 0 , so that the prior � �( )  can be described by the 

product of � �( 1)  and � �( )0 , from (21) the posterior distribution of �  given Un is 

given by 

P U S I s u z

P U S I s u z

n n t t t
t

n

n n t i t
t

n

( | , ) ( ) ( ) ( ' )

( | , ) ( ) ( ) ( '

� � � �

� � � �

1 1 1 1
1

0 1 0 1
1

1

0

� �

�

� �

�

� � �

� � �

R
S
||

T
||

�

� )

�

�

1

0

.   (22) 

 

The full conditional posterior density of �1  given Un and Sn-1 is the usual posterior 

density for the regression parameter in the normal linear model U Z e1 1 1� � 1� . 

Here U1 is the l-vector of the latent variables ut's corresponding to st-1=1, Z1 is the 

matching (l,m) given values, l < n and e1 is distributed . Using standard 

linear model results, since the prior distribution of 

N Il l( , )0

�1  is diffuse, then 

 �1 1| ,S Un� n

1

 is distributed ,    (23) N Z Zm( � , ( ' ) )�1 1 1
1�

where . In the case where � ( ' ) '�1 1 1
1

1�
�Z Z Z U �1  is assigned the proper conjugate 

 prior, then the posterior distribution of N ( ��10 B, � )1
1�

�1  given U is given by 

Nm( B~ , ~ )1 1
1�

� , where ~ � 'Z Z1 1 1� �B B 1  and ~ ~ ( � � ' )� �
1

1 1 1 1B B Z U1 1
�

0� � . 

 

Similarly, the full conditional posterior density of � 0  given Un and Sn-1 is given 

by the Gaussian distribution 

N Z Zm( � , ( ' ) )� 0 0 0
1� ,       (24) 
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where . In this case, U� ( ' ) '� 0 0 0
1

0�
�Z Z Z U0 0 is the j-vector of the latent variables 

ut's corresponding to st-1=0, Z0 is the matching (j,m) given values, j = n-l. 

 

Also, from (21), the posterior distribution of Un conditional on �  has a simple 

form. The ut's are independent and distributed from one of four truncated normal 

distributions p u St n( | , )
�1 � , according to the values of st and st-1. 

( | , )u St n�1 �  follows  N z It( ' , )�1 1 �
�0  if st = 1 and st-1 = 1, 

N z It( ' , )�1 1 �
�0  if st = 0 and st-1 = 1, 

N z It( ' , )� 0 1 �
�0  if st = 1 and st-1 = 0, 

N z It( ' , )� 0 1 �
�0  if st = 0 and st-1 = 0.   (25) 

 

Once the parameter �  is generated, the two vectors of transition probabilities are 

evaluated. Let pt and qt be the probabilities of staying in expansion and in 

recession at time t respectively. pt is given by 

p p s s p u st t t t t� � � � � �
� �

( | ) ( |1 1 01 1 )1

)

 

p p u z zt t t t� � � �( ' '� �1 1  

p p e zt t t� � �( ' )�1  

p z zt t� � � �1 1� �( ' ) ( 't 1)� � ,     (26) 

where cdfn is the cumulative distribution function of the standard normal 

distribution. Similarly, qt is given by 

q z zt t t� � � �� �( ' ) ( ' )� �0 1 0

0

.     (27) 

 

Generation Procedure 

To begin the generation, initial values of  and S� �1, n-1 are needed. Given that 

we dispose of b burn-in samples once convergence is obtained, the initial 

switching states are generated arbitrarily. Thus we take the simplest case where 

the switching states are generated from fixed transition probabilities p and q. To 

ensure that switching between the states occurs at least once, we require at least 
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one st be equal to one and at least one st be equal to zero. Next, a value for �  is 

computed using the least square estimate ( . In this case, ' ) 'Z Z Z S�1 �1  is equal to 

 and ( ' ) 'Z Z Z L1 1
1

1 1� � 0 0� , where 1L is the unit vector. Thereafter, the generation 

from the conditional distributions proceeds as follows: 

� �1 1| ,Y Sn n� 2 3,

p Sn n� �| , ,
�

SSE n( )/� �

1 2
1 2

�

2

0

1, ,Y Sn n�

l Yn n, ,
�

l0

�

� �2 1| ,Y Sn n�

��

1 3,

� �
2, ,

( ' )�W W 1

v1 2, , ,�b

s� �
� �1 1�

� �

w1 2, ,

��

t t�1 1,

�
�( ' )W W 1 2

v yt t� �

w

� �3 1| ,Y Sn n� 1 2,

Sn ,
�1 1�

� 1,Z Sn n�

 

�� �,  

1. Y t

t

n

�

�

�

�

�

F
HG
I
KJ�

2

0

1
1

2

b g , where 0 2� �  and SSE 

given by (15). 

2.  ~ Inverted Gamma with mean SSE/(n-3) and variance 

2SSE
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algorithm of forward filtering and backward sampling (for full details 

of the algorithm, see Shami and Forbes; 2000) 

 

Computing Posterior Marginal Switching Probabilities 

Once the Gibbs sampler algorithm has converged and b burn-in values discarded, 

a sample of size r from the posterior distribution is available and estimates of 

numerous features of the posterior are available. Forbes, Snyder and Shami (2000) 

detail how to obtain forecast distributions for the linear model, and those 

calculations can be directly extended for the SSM and SSMVP models. 

 

Of particular interest is the posterior marginal switching probabilities , 

which can be computed using Rao-Blackwellised estimators (Gelfand and Smith, 

1990) as follows 

P s Yt n|b g

 P s Y
r

P s Yt n t n
k

k

r

� � �

�

�1 1 1
1

| ( |b g b g
�, )

) )

,     (28) 

where  is the (t+1)P s Yt n
k( | ,�1 �
b g th element of the vector  and 

�

P S Yn n
k( | ,

�

�1 1 �
b g

(k) is the sampled parameter value for k = 1, 2, ..., r. 

 

4. Application to Australian GDP 
In this section the Australian business cycle will be analysed by modelling a 

component of the GDP as the coincident indicator and the industrial materials 

prices (IMP) as the leading indicator. Other leading components such as 

“overtime worked” and “number of housing approvals” (see Boehm and Moore, 

1984 or Layton, 1997 for the components of an Australian leading index) are used 

in this model and showed no difference in the results obtained from using the 

IMP. The observations yt are taken as the natural logarithm of quarterly real non-

farm GDP in 1998-1999 prices multiplied by 100 for the period 1969/1 to 2000/4. 

The indicators zt are the growth rates of the quarterly IMP for the same period as 
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the GDP but in 1995 prices. The GDP data is obtained from the “National 

Accounts” and the IMP data is obtained from the “OECD main economic 

indicator”, the two accounts can be found in the DX software database. Figure 1 

shows the quarterly data of non-farm GDP (left scale in 103) and the IMP (right 

scale). 
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Figure 1: GDP and IMP observed data 

For the estimation of the model we used the data from 1969/2 to 1998/4. We lost 

one quarter at the beginning of the data for use of the leading indicator and we left 

the last eight values for comparison purpose with the predicted values. The first 

2000 iterations from the Gibbs sampling were burn-in values, to ensure that 

approximate convergence was obtained. An additional 3000 iterations were saved 

and used to draw inferences on the parameters and the switching states. To 

comment on the results obtained from our model, we will use the Bry-Boschan 

algorithm to find the peak and trough dates. It is a simple algorithm consisting of 

smoothing the data in a sequence of steps in the aim of distinguishing between 

real and spurious peaks and troughs. One condition is that the movement from a 

peak to a trough or from a trough to a peak cannot be shorter than two quarters. 

Another condition ensures that a complete cycle (peak to peak or trough to 

trough) must be at least five quarters long. The peaks and troughs dates from Bry-

Boschan algorithm are given in Figure 2 (GDP growth) and Table1. 

Peaks 2/75 2/77 2/82 4/85 2/90 

Troughs 4/75 4/77 1/83 2/86 2/91 
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Table 1: Bry-Boschan dates 
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Figure 2: Bry-Boschan 

The estimated posterior means from the SSMVP and the SSM are shown in Table 

2 below along with the standard errors of the corresponding marginal posterior 

distributions. 

 SSMVP SSM 

 Estimate SE Estimate SE 

�  0.937 0.128 0.990 0.129 

�
2
 0.769 0.172 0.865 0.178 

l0 1088.2 0.992 1088.3 0.996 

�1  1.103 0.448 1.14 0.557 

� 0  -0.003 0.385 0.278 0.518 

p   0.644 0.280 

q   0.516 0.260 

�10  3.532 5.162   

�11  -2.490 5.100   

� 00  3.806 9.182   

� 01  -3.700 9.042   

Table 2: Parameter estimates and their standard errors 
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The smoothing parameter value of 0.94 (0.99 in SSM) is close to one. The 

equivalent ARIMA(0,1,1) of the SSMVP (SSM) collapses to a near random walk 

with a switching drift. This is in line with previous studies suggesting the 

nonstationarity of GDP time series and the need to detrend the data before 

analysing it. While the growth during the expansion period (1.10 in SSMVP and 

1.14 in SSM) is close to the observed average growth, the growth during the 

recessionary period  (-0.003 in SSMVP and 0.28 in SSM) is statistically 

insignificant. However, this insignificance does not change the nature of the 

switching behaviour of the series and this may be due to two effects. The first is 

the composition of the data, which has a few quarters of recession (13, see Table 

1) divided into five periods out of 129 quarters. The second is the dynamic 

structure of the model that captures the change in the behaviour of the series. 

While the hyper parameters 

� 0

�1  and � 0  also show insignificance in their values, 

the data concerned are still better estimated and predicted by incorporating the 

leading indicator. 

 

Figure 3 shows the observations yt (dark colour) and the estimated state vectors, 

which represent the levels lt-1 (light colour). Notice that the level lt closely follows 

the observed data series, which is a main feature of a structural model. 
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Figure 3: Observations and levels 
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Figure 4: Marginal posterior distribution of the forecasts up to 8 horizons 

Once the model is estimated, the parameters are used to forecast for 2 years ahead 

or 8 quarters up to the fourth quarter 2000. Rao-Blackwellised estimates are used 

to compute the mean and variance of the predictive values. The forecast 

distributions for all horizons are illustrated in Figure 4. These show how both the 

mean and the variance increase when the horizon increases. These distributions, 

which are a mixture of Gaussian distributions, appear symmetric. A similar figure 

is obtained for the SSM. 

 

 Data Mean Std L 95% L 90% U 90% U 95% 
Q1-1999 1189.18 1188.75 0.78 1186.88 1187.17 1190.13 1190.41 

Q2-1999 1189.42 1189.64 1.52 1187.06 1187.46 1191.61 1192.01 

Q3-1999 1190.76 1190.52 2.29 1187.38 1187.87 1192.96 1193.45 

Q4-1999 1192.03 1191.37 3.07 1187.76 1188.32 1194.21 1194.77 

Q1-2000 1193.00 1192.21 3.87 1188.18 1188.81 1195.40 1196.03 

Q2-2000 1194.41 1193.01 4.69 1188.61 1189.30 1196.53 1197.21 

Q3-2000 1194.76 1193.81 5.54 1189.07 1189.82 1197.62 1198.37 

Q4-2000 1194.26 1194.60 6.43 1189.54 1190.34 1198.69 1199.49 

Table 3 - Observations and estimates 

Table 3 shows these predictions (Mean) along with the standard error of the 

corresponding posterior distributions (Std), 90% HPD intervals (L90% and 
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U90%) and 95% HPD intervals (L95% and U95%) where HPD means highest 

posterior density. They are also illustrated in Figure 5 with the 90% HPDs. 
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Figure 5: Observations, estimates and 90% interval estimates 

A main feature of the SSMVP model is to capture the ups and downs in the series, 

and consequently show the expansion (st=1) and recession (st=0) phases of the 

business cycle by estimating the switching states. 
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Figure 6: P(st=0|Yt-1) - SSM 
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Figure 7: P(st=0|Yt-1) - SSMVP 

The two switching structural models prove very sensitive to the data. They 

capture every up and down in the movement of the GDP series considered here, 

which gives sometimes false alarms about the business cycle phases. However, if 

Bry-Boschan conditions are considered (at least two consecutive quarters of low 

growth to define a recession), the false signals showing only one quarter of low 

growth will be ignored as seen in Figure 6 (SSM) and Figure 7 (SSMVP) where 

the marginal filtered probability of being in low growth state, P(st=0|Yn) is 

presented with the dates of peak and troughs according to Bry-Boschan algorithm 

in vertical lines. 

 

The signs of changing growths are similar in the two switching models, though it 

is more persistent in the SSMVP than the SSM. Comparing the results in Figures 

6 and 7, when recessionary behaviour is captured by the models, we see that 

P(st=0|Yt-1) has a higher value in the SSMVP than in the SSM and hence is closer 

to one, and when expansionary behaviour is present, P(st=0|Yt-1) has a lower value 

in the SSMVP than in the SSM and hence is closer to zero. 

 

Another way to compare different models is to evaluate the probability estimates. 

This can be done by many procedures. Here the two well-known measures that are 

described in Diebold and Rudebush (1989) are used. The first is the quadratic 

probability score (QPS) defined by Brier (1950) and given by the following 
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 QPS
N

p pe t o t
t

N

� �

�

�
1 2 2

1

( , ,       (29) ) ,

where pe,t is the estimated value of the probability at time t and po,t is the observed 

value. The observed data used are the dates calculated by Bry-Boschan algorithm 

as contraction and expansion periods (see Figure 6). Like the usual mean squared 

error measure, the QPS provides a similar measure: a lower QPS implies that the 

prediction is more accurate. The other common measure is the log probability 

score (LPS), which is defined by 

 LPS
N

p p p po t e t o t e t
t

N

� � � � �

�

�
1 1 1

1

[ ln ( ) ln(, , , , )]

2 �

.   (30) 

Like QPS, a lower LPS implies that the prediction is more accurate. However, 

LPS penalises large mistakes more heavily than QPS, and while QPS is bounded 

by 0 and 2 ( 0 ), LPS has no upper bound (� �QPS 0 � �LPS ). Table 5 shows 

that the SSMVP outclasses the SSM in both the QPS and LPS measures. 

 

 SSMVP SSM 

QPS 0.1315 0.2867 

LPS 0.2488 0.4687 

Table 4: Probability Scores 

 

5. Conclusion 
In this paper, the switching structural model (SSM) is presented and extended to 

include varying probabilities dependent on economic indicator (SSMVP). The 

Gibbs sampler used in Shami and Forbes (2000) to estimate the SSM is modified 

to accommodate the extension proposed using data augmentation methods. The 

two models were applied on quarterly Australian nonfarm GDP data by defining 

the expansion and recession phases of the business cycle as the two switching 

states. The extension is proved to be fruitful in that the inclusion of the economic 
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indicator has helped to better estimate the probabilities of the two phases in the 

SSMVP than the SSM. 

 

Also, by including the leading indicator into the structure of the SSMVP, the 

predictive power of the model is exploited whereas the Bry-Boschan procedure 

cannot be used for predicting the business cycle and the SSM is limited in its 

prediction ability. Such findings lead us to conclude that the SSMVP should be 

included in the family of business cycle models and that improved results can be 

obtained by using appropriate coincident and indicator indices instead of single 

indicators such the GDP and the IMP. 

 

6. References 
Albert, J. H. and Chib, S. (1993) Bayes inference via Gibbs sampling of 

autoregressive time series subject to Markov mean and variance shifts, Journal of 

Business and Economic Statistics, 11, 1-15. 

Aoki, M. (1987) State Space Modelling of Time Series, (Ed.) Springer-Verlag, 

Berlin. 

Aoki, M. (1988) On alternative state space representations of time series models, 

Journal of Economic Dynamics and Control, 12, 595-607. 

Aoki, M. (1993) Interactions of real GNP business cycles in a three country time 

series model, Journal of Forecasting, 12, 331-344. 

Beaudry, P. and Koop, G. (1993) Do recessions permanently change output?, 

Journal of Monetary Economics, 31, 149-163. 

Boehm, E. A. and Moore, G. H. (1984) New economic indicators for Australia, 

1949-84, The Australian Economic Review, 4-1984, 34-56. 

Boldin, M. D. (1996) A check on the robustness of Hamilton's Markov switching 

model approach to the economic analysis of the business cycle, Studies in 

Nonlinear Dynamics and Econometrics, 1, 35-46. 

23 



Non-linear Modelling of the Business Cycle 

            

Bry, G. and Boschan, C. (1971) Cyclical Analysis of Time Series: Selected 

Procedures and Computer Programs, (Ed.) National Bureau of Economic 

Research, New York. 

Cecchetti, S. G., Lam, P. and Mark, N. C. (1990) Mean reversion in equilibrium 

asset prices, The American Economic Review, 80, 398-418. 

Clark, P. K. (1987) The cyclical component of U.S. economic activity, Quarterly 

Journal of Economics, 102, 797-814. 

Diebold, F. X., Lee, J. H. and Weinbach, G. C. (1994) Regime switching with 

time varying transition probabilities, in Nonstationary Time-series Analysis and 

Cointegration, (Ed.) C. Hargreaves, Oxford University Press, Oxford, pp.283-302. 

Filardo, A. J. (1994) Business cycle phases and their transitional dynamics, 

Journal of Business and Economic Statistics, 12, 299-308. 

Filardo, A. J. and Gordon, S. F. (1998) Business cycle durations, Journal of 

Econometrics, 85, 99-123. 

Forbes,, C. S., Snyder, R. D and Shami, R. G. (2000) Bayesian exponential 

smoothing, Working paper 7/00, Department of Econometrics and Business 

Statistics, Monash University. 

Gelfand, A. E. and Smith, A. F. M. (1990) Sampling based approaches to 

calculating marginal densities, Journal of the American Statistical Association, 

85, 398-409. 

Hamilton, J. D. (1989) A new approach to the economic analysis of nonstationary 

time series and the business cycle, Econometrica, 57, 357-384. 

Hamilton, J. D. (1990) Analysis of time series subject to changes in regime, 

Journal of Econometrics, 45, 39-70. 

Hamilton, J. D. and Lin, G. (1996) Stock market volatility and the business cycle, 

Journal of Applied Econometrics, 11, 573-593. 

Hansen, B. E. (1992) The likelihood ratio test under nonstandard conditions: 

Testing the Markov switching model of GNP, Journal of Applied Econometrics, 

7, S61-S82. 

Harvey, A. C. (1984) A unified view of statistical forecasting procedures, Journal 

of Forecasting, 3, 245-75. 

24 



Non-linear Modelling of the Business Cycle 

            

Harvey, A. C. (1985) Trends and cycles in macroeconomic time series, Journal of 

Business and Economic Statistics, 3, 216-227. 

Kim, C.-J. (1994) Dynamic linear models with Markov switching, Journal of 

Econometrics, 60, 1-22. 

Kim, C.-J. and Nelson, C. (1998) Business cycle turning points, a new coincident 

index, and tests of duration dependence based on a dynamic factor model with 

regime switching, The Review of Economics and Statistics, 80, 188-201. 

Krolzig, H-M. (2001) Business cycle measurement in the presence of structural 

change: International evidence, International Journal of Forecasting, 17, 349-

368. 

Lam, P-S. (1990) The Hamilton model with a general autoregressive component, 

Journal of Monetary Economics, 26, 409-432. 

Layton, A. P. (1997) A new approach to dating and predicting Australian business 

cycle phase changes, Applied Economics, 29, 861-868. 

Luginbuhl, R. and De Vos, A. (1999) Bayesian analysis of an unobserved 

component time series model of GDP with Markov switching and time varying 

growths, Journal of Business and Economic Statistics, 17, 456-465. 

Ord, J. K., Koehler, A. B. and Snyder, R. D. (1997) Estimation and prediction for 

a class of dynamic nonlinear statistical models, Journal of the American 

Statistical Association, 92, 1621-29. 

Potter, S. M. (1995) A nonlinear approach to US GNP, Journal of Applied 

Econometrics, 10, 109-125. 

Shami, R. G. and Forbes, C. S. (2000) A structural time series model with Markov 

switching, Working paper 10/00, Department of Econometrics and Business 

Statistics, Monash University. 

Shami, R. G. and Snyder, R. D. (1998) Exponential smoothing methods of 

forecasting and general ARMA time series representations, Working paper 3/98, 

Department of Econometrics and Business Statistics, Monash University. 

Snyder, R. D. (1985) Recursive estimation of dynamic linear models, The Journal 

of the Royal Statistical Society - Series B, 47, 272-76. 

25 



Non-linear Modelling of the Business Cycle 

            

26 

Terasvirta, T. and Anderson, H. M. (1992) Characterizing nonlinearities in 

business cycles using smooth transition autoregressive models, Journal of Applied 

Econometrics, 73, S119-S136. 

Watson, M. W. (1986) Univariate detrending methods with stochastic trends, 

Journal of Monetary Economics, 18, 49-75. 


	Non-linear Modelling of the Australian Business Cycle using a Leading Indicator
	Abstract:
	1. Introduction
	2. The Model
	3. A Bayesian Analysis
	Sampling Method
	Prior Distributions
	Conditional Distribution of
	Generation Procedure
	Computing Posterior Marginal Switching Probabilities

	4. Application to Australian GDP
	5. Conclusion
	6. References

	wp5cover.pdf
	ISSN 1440-771X
	0 7326 1096 6


