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Abstract: Kernel density estimation is an important technique for understanding the distri-

butional properties of data. Some investigations have found that the estimation of a global

bandwidth can be heavily affected by observations in the tail. We propose to categorize

data into low- and high-density regions, to which we assign two different bandwidths called

the low-density adaptive bandwidths. We derive the posterior of the bandwidth parameters

through the Kullback-Leibler information. A Bayesian sampling algorithm is presented to es-

timate the bandwidths. Monte Carlo simulations are conducted to examine the performance

of the proposed Bayesian sampling algorithm in comparison with the performance of the

normal reference rule and a Bayesian sampling algorithm for estimating a global bandwidth.

According to Kullback-Leibler information, the kernel density estimator with low-density

adaptive bandwidths estimated through the proposed Bayesian sampling algorithm outper-

forms the density estimators with bandwidth estimated through the two competitors. We

apply the low-density adaptive kernel density estimator to the estimation of the bivariate

density of daily stock-index returns observed from the U.S. and Australian stock markets.

The derived conditional distribution of the Australian stock-index return for a given daily

return in the U.S. market enables market analysts to understand how the former market is

associated with the latter.
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1 Introduction

Kernel density estimation is an important technique for understanding the distributional

properties of data. It has been an accepted fact that the performance of a kernel density

estimator is mainly determined by the choice of bandwidth, and only in a minor way by the

choice of kernel (see for example, Izenman, 1991; Scott, 1992; Wand and Jones, 1995). In the

current literature of kernel density estimation, people often choose to use a global bandwidth

due to its simplicity. As a consequence, there have been large amount of investigations on the

issue of global bandwidth selection (Jones, Marron and Sheather, 1996; Scott, 1992, among

others). Abramson (1982a,b) proposed using variable bandwidths (or equivalently, adaptive

bandwidths), where the resulting density estimator is a mixture of identical but individually

scaled kernels being respectively centered at observations. Even though the importance of

using adaptive bandwidths has been justified both theoretically and empirically, there has

been a lack of attention on data-driven methods for estimating adaptive bandwidths for

multivariate data. This paper aims to remedy this problem from a Bayesian perspective.

Let X = (X1, · · · , Xd)
> denote a d-dimensional random vector with its density function

f(x) defined on Rd. Let {x1, · · · ,xn} be a random sample drawn from f(x). The kernel

density estimator of f(x) with a global bandwidth is given by (Wand & Jones, 1995)

f̂H(x) =
1

n

n∑
i=1

KH(x− xi) =
1

n|H|1/2
n∑

i=1

K(H−1/2(x− xi)), (1)

where KH(x) = |H|−1/2K(H−1/2x), K(·) is a multivariate kernel, and H is a symmetric and

positive definite d× d matrix known as the bandwidth matrix.

The main issue of kernel density estimation is how we can choose an optimal bandwidth

under a certain criterion. A majority of investigations has been focused on the selection

of global bandwidth. When data are observed from multivariate normal density, where all

variables are independent, and the diagonal bandwidth matrix H = diagonal(h1, h2, · · · , hd)

is used, Scott(1992) showed that the bandwidths that minimize the asymptotic mean inte-

grated squared error (AMISE) is

hi = σi

{
4

(d+ 2)n

}1/(d+4)

, (2)

for i = 1, 2, · · · , d, and σi is the standard deviation of the ith variate. This bandwidth selector

is called the normal reference rule (NRR) or rule-of-thumb in literature. Although in most
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interesting cases the data are non-normal and variables are correlated, the NRR is often used

due to its practicality. Sain, Baggerly and Scott (1994) presented a biased cross-validation

bandwidth selector in multivariate setting using a diagonal bandwidth matrix, while Duong

and Hazelton (2005) provided a cross-validation full bandwidth selector. Wand and Jones

(1994) presented a plug-in selector for full bandwidth matrix but their technique sometime

fails to produce finite bandwidths. This problem was solved by Duong and Hazelton (2003)

who provided an alternative approach that always produces a finite bandwidth for bivariate

density estimation.

Bayesian approaches to the estimation of bandwidth in kernel density estimation have

been recently investigated. Basically, bandwidths are treated as parameters, and the likeli-

hood of observations for given parameters can be approximated by the product of the leave-

one-out kernel density estimator computed at all observations. Brewer (2000) presented a

Bayesian sampling procedure for estimating variable bandwidths in univariate kernel density

estimation. The study showed that the Bayesian method produced better performance than

the so-called binning method proposed by Sain and Scott (1996). Kulasekera and Padgett

(2006) discussed Bayes estimation of a global bandwidth for kernel density estimation based

on univariate censored data using an asymmetric kernel. de Lima and Atuncarb (2010) de-

rived a closed form of Bayes estimate of a global bandwidth matrix for multivariate kernel

density estimation. Their method is an extension to Bayes estimation of bandwidth proposed

by Gangopadhyay and Cheung (2002) for univariate kernel density estimation. Zhang, King

and Hyndman (2006) derived the posterior density of bandwidth matrix through Kullback-

Leibler information criterion and presented a Makov chain Monte Carlo (MCMC) simulation

algorithm for estimating a global bandwidth matrix for multivariate kernel density estima-

tion.

When a global bandwidth (matrix) is used for kernel density estimation, these bandwidth

estimation methods perform well for many unimodal densities. However, they often produces

unsatisfactory results for complex or irregular densities. For example, when the underlying

true density has heavy tails, the estimation of a global bandwidth is heavily affected by

extreme observations. Sain and Scott (1996) presented a classical example showing why

the use of a global bandwidth is inappropriate in some situations. In a bimodal mixture

of Gaussian densities, where two modes have an equal height but different variations, an

optimal global bandwidth will under-smooth the mode with a large variation and over-
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smooth the mode with a small variation. Hence, it is necessary to let the bandwidth vary

across different observations. A relatively small bandwidth is needed for observations that

are densely distributed, and a large bandwidth is required for observations that are sparsely

distributed.

Some investigations have found that the estimation of a global bandwidth can be heavily

affected by observations in tail areas. In an example presented by Jones (1990), the estimated

density values of observations located in the tail area of a long-tailed density were lower

than the true density values when a global bandwidth and Gaussian kernel are used. Hall

(1987) argued that the estimation of a global bandwidth for data observed from a long-tailed

distribution may mislead Kullback-Leibler information. In addition, several studies showed

that using a global bandwidth in kernel density estimation tends to over smooth the modes

(Wand and Jones, 1995; Sain, 2002). In terms of multivariate kernel density estimation, the

distribution of observations becomes more and more sparse in the tail area of the underly

true density as the dimension of data increases. Therefore, a large bandwidth is needed to

smooth out large variations in the tail area. However, if a global bandwidth is used, large

bandwidth will smooth out some important features of the modes.

Breiman, Meisel and Purcell (1977) and Abramson (1982b) proposed using different band-

widths called adaptive bandwidths, to scale different observations in the kernel density esti-

mator. Such an adaptive bandwidth density estimator is given by Terrell and Scott (1992)

f̂S(x) =
1

n

n∑
i=1

KH(xi)(x− xi) =
1

n

n∑
i=1

1

|H(xi)|1/2K
(
H(xi)

−1/2(x− xi)
)
, (3)

where H(xi) is the bandwidth matrix for the sample data point xi. This density estimator

is also called the sample-point estimator because the bandwidths are specific to the sample

points or equivalently observations. Another type adaptive bandwidth density estimator is

the balloon estimator, which allows the bandwidths to change with the estimation points.

However, the balloon estimator does not integrate to one (see for example, Terrell and Scott,

1992; Sain and Scott, 1996; Sain, 2002).

The sample-point density estimator has the advantage over the balloon density estima-

tor in that the former always integrates to one. The sample-point estimator is actually a

complete-adaptive estimator because it assigns different bandwidths to different data points.

However, it is very difficult to estimate or choose bandwidths for a complete-adaptive density

4



estimator based on multivariate data. One way to reduce the difficulty level involved in such

a density estimator is to apply the sample-point estimator to grouped or binned data (see

for example, Sain and Scott, 1996; Sain, 2002). Such a density estimator is given as

f̂S(x) =
1

n

m∑
j=1

njKH(tj)(x− tj) =
1

n

m∑
j=1

nj

|H(tj)|1/2K
(
H(tj)

−1/2(x− tj)
)
, (4)

wherem is the number of bins, nj is the number of observations in the jth bin, tj is the center

of the jth bin, and H(tj) is the bandwidth for the jth bin, for j = 1, 2, · · · ,m. Sain and

Scott (1996) conducted Monte Carlo simulations and showed that the binned sample-point

estimator outperforms the density estimator with a global bandwidth.

The binned sample-point estimator has provided important insights in reducing the com-

putation difficulty in multivariate adaptive kernel density estimation. The complete-adaptive

density estimator assigns n different bandwidth matrices to n observations. If a diagonal

bandwidth matrix is employed, the number of bandwidths will be n × d for d-dimensional

data. However, the binned density estimator divides the observations into different bins ac-

cording to their mutual distance, and then assigns a different bandwidth matrix to each bin

of observations. Sain (2002) suggested using m bandwidths for a sample of n observations.

However, the number of bandwidths for binned sample-point density estimator grows expo-

nentially with the dimension. For example, when there are 10 bins in each dimension, the

number of bandwidths to be estimated is 102 for bivariate data, and 103 for trivariate data.

It means that the number of bandwidths can quickly exceed the number of observations as

the dimension increases.

A major concern on the binned density estimation is how we can estimate the bandwidths.

Even though the likelihood cross-validation method can be used, it is likely to encounter

computing difficulties due to the large number of bandwidths. Zhang et al. (2006) proposed

a Bayesian approach to bandwidth estimation for multivariate kernel density estimation. In

a similar way to what they have done, we treat the bandwidths as parameters and obtain

the posterior density of the parameters, in which the likelihood of data for given bandwidth

parameters is obtained through Kullback-Leibler information.

Another concern on the binned density estimation is that the number of bandwidths to be

estimated is large. We propose to divide the observations into two regions, namely the low-

density region (LDR) and high-density region (HDR), and assign two different bandwidth

matrices for the two regions. In this way, the number of bandwidths to be estimated is
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obviously reduced. When the underlying true density has unimodal, the low-density region

is actually the tail area. Intuitively, the low-density region should receive larger bandwidths

than the high-density region. We call this type of kernel density estimator the tail-adaptive

density estimator. We propose to derive the posterior of bandwidth parameters, from which

we use Markov chain Monte Carlo (MCMC) sampling algorithms to sample these parameters.

Therefore, the bandwidth parameters can be estimated.

The idea of distinguishing observations in low- and high-density regions has already been

used in statistical inference based on kernel density estimation. Hartigan (1975, 1987) defined

clusters of observations as regions of high density values. Hyndman (1996) presented an

algorithm for computing and graphing data in the high-density. Mason and Polonik (2009)

presented a comprehensive review of applications related to the issue of low- and high-density

regions. Samworth and Wand (2010) presented an univariate bandwidth selection method for

data in high-density regions. In this paper, we adopt the concept of grouping data into low-

and high-density regions, in which we propose to assign two different bandwidth matrices

for kernel density estimation.

We conduct Monte Carlo simulation studies to examine the performance of kernel density

estimator with different choices of bandwidth, and Kullback-Leibler information is used as a

criterion for such comparisons. In this Monte Carlo simulation study, we consider the issue of

bandwidth estimation for univariate, bivariate and 5-dimensional density estimation. These

densities are designed to have irregular shapes such as multimodal, skewness or fat-tailed.

To demonstrate the performance of our proposed specification, we could examine the perfor-

mance of the following competing methods for bandwidth estimation, namely the Bayesian

approach to the estimation of a global bandwidth and NRR, as well as any sensible method

to choose bandwidths for the binned density estimator. However, we will not consider the

binned density estimator because it is highly computing extensive to choose bandwidths for

high dimensional data. The simulation results show that the density estimator with different

bandwidths assigned to the LDR and HDR often performs better than its competitors.

We illustrate the use of our proposed tail-adaptive density estimator by applying it to the

estimation of bivariate density of two asset returns, which are the continuously compounded

daily returns of the Australian Ordinary index (AOI) and S&P500 index, respectively. As

the density of financial asset returns often exhibits a higher peak and heavier tails than

the normal density, the proposed tail-adaptive kernel density estimator seems more relevant
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for estimating asset return density than its counterpart with a global bandwidth. Such an

investigation is important because most market analysts believe the U.S. stock market takes

a leading role on all the other stock markets worldwide during the current global financial

crisis. For example, market analysts might be interested in the probability that the AOI

goes down if the S&P500 index went down overnight. With the estimated density of the

bivariate index returns, we can compute similar probability values, which are of interests to

market analysts.

The rest of this paper is organized as follows. In Section 2, we derive the posterior of

bandwidth parameters and present an MCMC sampling algorithm to estimate bandwidths.

Section 3 presents a Monte Carlo simulation study to examine the performance of the pro-

posed tail-adaptive density estimator in comparison with its competitors, where various

samples are generated from known univariate and bivariate densities. In Section 4, we carry

out a simulation study with different samples of five-dimensional data. An application of

the tail-adaptive kernel density estimator is presented in Section 5. Section 6 concludes the

paper.

2 Bayesian estimation of bandwidths

2.1 Likelihood cross-validation

Kullback-Leibler information, which is a measure of the discrepancy between a density esti-

mator and its true density, is defined as

dKL

(
f(x), f̂H(x)

)
=

∫

Rd

log

{
f(x)

f̂H(x)

}
f(x)dx

=

∫

Rd

log{f(x)}f(x)dx−
∫

Rd

log{f̂H(x)}f(x)dx. (5)

As dKL(f(x), f̂H(x)) is nonnegative, an optimal bandwidth could be derived by minimizing

dKL(f(x), f̂H(x)) with respect to H (see for example, Duin, 1976). Such a minimization is

equivalent to the maximization of
∫
Rd log{f̂H(x)}f(x)dx with respect to H. The sample

measure of the second term of (5) is Härdle (1991)

Ê log
{
f̂H(x)

}
=

1

n

n∑
i=1

log f̂H(xi) =
1

n

n∑
i=1

log

{
1

n

n∑
j=1

KH(xi − xj)

}
. (6)
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It has been shown that directly maximizing (6) with respect to H may encounter converging

difficulties. Härdle (1991) suggested leaving the ith observation out of the sample when we

compute the kernel estimator of f(xi). The resulting estimator is

f̂H,i(xi) =
1

n− 1

n∑
j=1
j 6=i

|H|−1/2K
(
H−1/2(xi − xj)

)
, (7)

which is known as the leave-one-out estimator of f(xi), for i = 1, 2, · · · , n. The well-known

likelihood cross-validation method for choosing bandwidths is to maximize

CV(H) =
1

n

n∑
i=1

log f̂H,i(xi), (8)

with respect to H. Therefore, the optimal bandwidth denoted as ĤKL, is

ĤKL = argmax
H

CV(H). (9)

The name, likelihood, comes with the fact that n×CV(H) is an approximate log likelihood

of {x1,x2, · · · ,xn} for given bandwidth parameters.

When a global bandwidth matrix is used for kernel density estimation, it is generally

possible to derive an optimal bandwidth under the likelihood cross-validation rule. How-

ever, the difficulty level of solving the maximization problem increases dramatically as the

dimension of data increases. When complete-adaptive bandwidth matrices are used for ker-

nel density estimation, it is impossible to derive optimal bandwidth matrices via likelihood

cross-validation because the number of bandwidth parameters to be estimated will be multi-

ples of the sample size. Even in the simple situation of univariate kernel density estimation,

the number of bandwidth parameters is the same as the sample size.

Zhang et al. (2006) presented a Bayesian sampling approach to bandwidth estimation for

multivariate kernel density estimation with a global bandwidth matrix, where bandwidths

were treated as parameters, and the posterior of bandwidth parameters could be derived. In

the situation of using complete-adaptive bandwidth matrices for kernel density estimation, it

is technically possible to extend the above sampling algorithms to the situation of complete-

adaptive multivariate kernel density estimation. However, it is really an extremely heavy

burden to implement the sampling algorithm because the number of bandwidth parameters

is n× d for diagonal bandwidth matrices n× d× (d+ 1)/2 for full bandwidth matrices.
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The bandwidth matrix can be either a full matrix known as the full bandwidth matrix,

or a diagonal matrix. Choosing a full bandwidth matrix provides useful theoretical features.

However, implementation of such algorithm is often very difficult in practice, especially when

complete-adaptive bandwidth matrices are used for kernel density estimation. The numer-

ical result obtained by Sain (2002) shows that the estimated density using full bandwidth

matrix is not smooth in low-density regions. Wand and Jones (1993) argued that the use

of a diagonal bandwidth matrix is often appropriate because each variate receives different

amount of smoothness. Zhang et al. (2006) indicated that when the variates are correlated,

the effect of using a complete-bandwidth matrix can be achieved by applying a diagonal

bandwidth matrix to pre-sphered data. In this paper, we use a diagonal bandwidth matrix

in multivariate kernel density estimation and let h = (h1, h2, . . . , hd)
> denote the vector of

the square roots of the diagonal elements of the bandwidth matrix. Note that h is also

known as the bandwidth vector.

2.2 Posterior of bandwidth parameters

As the density of xi is unknown, we cannot obtain the exact likelihood of {x1,x2, . . . ,xn}
for given bandwidth parameters. However, Zhang et al. (2006) showed that the density

of xi can be approximated by its kernel estimator based on the sample without the ith

observation. Such an estimator is called the leave-one-out density estimator given by

f̂h,i(xi) =
1

n− 1

n∑
j=1
j 6=i

K ((xi − xj)./h) ./h, (10)

for i = 1, 2, · · · , n, where the operator “./” represents division by elements. The likelihood

of {x1,x2, . . . ,xn} for given h is

`0(x1,x2, . . . ,xn|h) =
n∏

i=1

f̂h,i(xi). (11)

Assume that the prior of each element of h is

p(hk) ∝ 1

1 + h2
k

, (12)

which is proportional to the Cauchy density, for k = 1, 2, · · · , d. According to Bayes theorem,

the posterior of h for given {x1,x2, . . . ,xn} is

π(h|x1,x2, · · · ,xn) ∝
{

n∏
i=1

f̂h,i(xi)

}
×

{
d∏

k=1

1

1 + h2
k

}
. (13)
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Zhang et al. (2006) presented an MCMC sampling algorithm to sample h from its posterior.

2.3 Tail-adaptive kernel density estimator

The concept of grouping observations into low- and high-density regions has been discussed

in many statistical problems. Härtigan (1975, p205) defined a cluster as a high-density region

that is separated from other high-density regions by low-density regions. In this paper, we

are particularly interested in grouping observations into the low-density region, inside which

every observation has a density value less than or equal to the density of every observation

outside the region. In a different situation, Hyndman (1996) presented a definition for highest

density region, and we follow his definition to define the LDR as follows.

Let α be a threshold value that determines the proportion of the low-density region

relative to the whole sample space. Let L(fα) denote a subset of the sample space, so that

the (100× α)% low-density region is shown as

L(fα) = {x : f(x) ≤ fα},

where fα is the largest constant such that Pr{x ∈ L(fα)} ≤ α.

Let

Ij =

{
1 if xj ∈ L(fα)
0 otherwise

,

for j = 1, 2, · · · , n. Let h(1) denote the bandwidth vector assigned to observations inside

L(fα), and h(0) the bandwidth vector assigned to observations outside L(fα). The kernel

density estimator is

f̂h(1),h(0)(x) =
1

n

n∑
j=1

{
IjK

(
(x− xj)./h

(1)
)
./h(1)

+ (1− Ij)K
(
(x− xj)./h

(0)
)
./h(0)

}
, (14)

and its leave-one-out estimator is

f̂h(1),h(0),i(xi) =
1

n− 1

n∑
j=1
j 6=i

{
IjK

(
(xi − xj)./h

(1)
)
./h(1)

+ (1− Ij)K
(
(xi − xj)./h

(0)
)
./h(0)

}
,
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for i = 1, 2, · · · , n. As the bandwidth vector assigned for observations inside the low-density

region is different from that assigned for observations outside this region, we call (14) the

low-density adaptive kernel density estimator. As the low-density region becomes the tail

area when the underlying density is unimodal, we also call (14) the tail-adaptive estimator

for simplicity.

The tail-adaptive density estimator allows for assigning two different bandwidth matrices

to observations inside the low- and high-density region. Note that the value of α can be

chosen as either 5% or 10%. Then L(fα) can be interpreted as the subset that contains the

data in the tails of the density. Even though f(x) is unknown, fα can be approximated

through the kernel density estimator of f(x) using a global bandwidth.

Given h(1) and h(0), the approximate likelihood is

`(x1,x2, . . . ,xn|h(1),h(0)) =
n∏

i=1

f̂h(1),h(0),i(xi). (15)

Assume that the prior of each bandwidth is

p(h
(l)
k ) ∝ 1

1 + h
(l)
k × h

(l)
k

,

for k = 1, 2, · · · , d, and l = 0 and 1. The posterior of h(1) and h(0) for given {x1,x2, . . . ,xn}
is

π(h(1),h(0)|x1,x2, · · · ,xn) ∝
{

n∏
i=1

f̂h(1),h(0),i(xi)

}
×

{
d∏

k=1

p(h
(1)
k )× p(h

(0)
k )

}
. (16)

The posterior given by (16) is of non-standard form, and we cannot derive an analytical

expression as the estimate of {h(1),h(0)}. However, we can use the random-walk Metropolis-

Hastings algorithm to sample {h(1),h(0)} from (16). The sampling procedure is as follows.

1) Obtain an initial kernel density estimator with bandwidths chosen through NRR; and

derive the low- and high-density regions for a given probability value α.

2) Assign initial values to h(1) and h(0), which are respectively, the bandwidth matrices

given to observations within the low- and high-density regions specified in Step 1).

3) Let h̃ denote the vector of all elements of {h(1),h(0)}. Apply the random-walk Metropolis-

Hastings algorithm to the update of h̃ with the acceptance probability computed

through the posterior given by (16).

11



4) Derive the low- and high-density regions according the density estimator with the

bandwidth matrices updated in Step 3).

5) Repeat Steps 3) and 4) until the simulated chain of h̃ achieves reasonable mixing

performance.

During the above iterations, we usually discard the draws during the burn-in period,

and record the draws of h̃ thereafter. Let {h̃(1), h̃(2), · · · , h̃(M)} denote the recorded draws.

The posterior mean (or ergodic average) denoted as
∑M

i=1 h̃(i)/M , is an estimate of h̃. Once

the bandwidth matrices are estimated, the analytical form of the kernel density estimator is

obtained.

3 A Monte Carlo simulation study

To investigate the performance of the proposed tail-adaptive kernel density estimator, we

approximate Kullback-Leibler information between the density estimator and its correspond-

ing true density via Monte Carlo simulation. Kullback-Leibler information defined in (5)

is a measure of discrepancy between the true density and its estimator. To approximate

Kullback-Leibler information, we draw a large number of random vectors {x1,x2, . . . ,xN}
from true density f(x) and compute

d̂KL

(
f(x), f̂(x)

)
=

1

N

N∑
i=1

log
(
f(xi)/f̂(xi)

)
, (17)

where f̂(·) denote a density estimator of f(·). The performance of a bandwidth estimate is

examined through the performance of the resulting kernel density estimator. A bandwidth

estimation method is better than its competitor if Kullback-Leibler information resulted

from the former is less than that resulted from the latter.

3.1 True densities

We conduct Monte Carlo simulation by simulating samples from six target densities labeled

A, B, C, D, E and F, which are denoted as A1 to F1 for univariate densities, and A2 to F2

for bivariate densities. Figure 1 provides the density plot for univariate densities and Figure
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2 shows the contour plot for bivariate densities. These densities are of irregular shapes.

Density A and B are normal densities with bimodality. Density E and F are Student t

densities with heavy-tail features. Density C and G are skew-normal and skew-t densities,

respectively. There specifications are explained as follows.

Density A is a mixture of two equally weighted normal densities with bimodality:

fA (x|µ1,Σ1, µ2,Σ2) =
1

2
φ (x|µ1,Σ1) +

1

2
φ (x|µ2,Σ2) ,

where φ(x|µ,Σ) denotes a multivariate normal density with mean µ and variance-covariance

matrix Σ. The univariate true density is fA1(x) = 1/2φ(x|2, 1) + 1/2φ(x| − 1.5, 1), while

the bivariate bivariate true density has the following mean vectors and variance-covariance

matrices.

µ1 =

(−1.5
−1.5

)
, Σ1 =

(
1 0.3
0.3 1

)
, µ2 =

(
2
2

)
, Σ2 =

(
1 −0.9

−0.9 1

)
.

Note that this bivariate density was used by Zhang et al. (2006).

Density B is a mixture of two normal densities with different weights but an equal height

at the modes:

fB (x|µ1,Σ1, µ2,Σ2) =
3

4
φ (x|µ1,Σ1) +

1

4
φ (x|µ2,Σ2) .

The univariate density is fB1(x) = 3/4φ(x|−1.5, 1)+1/4φ(x|−1.5, 1/9), which was discussed

by Sain and Scott (1996). The bivariate density is the same mixture with mean vectors and

variance-covariance matrices given as follows.

µ1 =

(−1.5
−1.5

)
, Σ1 =

(
1 1/2
1/2 1

)
, µ2 =

(
1.5
1.5

)
, Σ2 =

(
1/3 1/6
1/6 1/3

)
.

Density C is a mixture of two skew-normal densities:

fC (x|µ1, γ1, µ2, γ2,Σ) =0.5× 2φ(x|µ1,Σ)Φ
(
γ>
1 (x− µ1)

)

+0.5× 2φ(x|µ2,Σ)Φ
(
γ>
2 (x− µ2)

)

where Φ(·) is the cumulative density function of a multivariate standard normal distribution,

and γ1, γ2 ∈ Rd are the shape parameters determining the skewness. This distribution was

proposed by Azzalini and Valle (1996) and the conventional normal density can be obtained

when γ1 = γ2 = 0. The univariate density fC1 has the following parameter values: µ1 = −0.5,

µ2 = 0, α1 = −9 and α2 = 9. The bivariate density has the following parameters values:

µ1 =

(−0.5
−0.5

)
, α1 =

(−9
−9

)
, µ2 =

(
0
0

)
, α2 =

(
9
9

)
, Σ =

(
1 0.3
0.3 1

)
.
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Density D is a Student t distribution denoted as td (x|µ,Σ, ν):

fD (x|µ,Σ, ν) = Γ((ν + d)/2)

(νπ)d/2Γ(ν/2)|Σ|1/2
[
1 +

1

ν
(x− µ)′Σ−1(x− µ)

]−(d+ν)/2

, (18)

which has the location parameter µ, dispersion matrix Σ and degrees-of-freedom ν = 5. The

parameter vector of the univariate density fD1(x) is (0, 1, 5)
>, while bivariate density fD2(x)

has the following parameters:

µ =

(
0
0

)
, Σ =

(
1 0.5
0.5 1

)
.

Density E is a mixture of two Student t densities with degrees of freedom ν = 5:

fE (x|µ1, µ2,Σ, ν) = 0.5 td (x|µ1,Σ1, ν) + 0.5 td (x|µ2,Σ2, ν) .

The univariate density fE1(x) = 0.5 t1(x| − 2, 1, 5) + 0.5 t1(2, 1, 5), and the bivariate density

fE2(x) = 0.5 t2(x|µ1,Σ1, 5) + 0.5 t2(µ2,Σ2, 5), where

µ1 =

(−2
0

)
, Σ1 =

(
1 −0.5

−0.5 1

)
, µ2 =

(
2
0

)
, Σ2 =

(
1 0.5
0.5 1

)
.

Density F is a skew-t density proposed by Azzalini and Capitanio (2003):

fF (x|µ,Σ, α, ν) = 2 td(x|µ,Σ, ν)Td(x̃|ν + d), (19)

where

x̃ = γ>ω−1(x− µ)

(
ν + d

(x− µ)>Σ−1(x− µ) + ν

)1/2

,

ω is a diagonal matrix with diagonal elements the same as those of Σ, and Td(·|ν + d) is the

cumulative density of the Student t distribution with ν + d degrees of freedom. The density

given by (19) is able to capture heavy tailed property with ν = 5 and moderately skewness.

The univariate density fF1(x) has parameters µ = 0, α = −2 and Σ = 1. The bivariate

density fF2(x) has the following parameters:

µ =

(
0
0

)
, γ =

(−2
0

)
, Σ =

(
1 0
0 1

)
.

The density graph of each of the six univariate densities is presented in Figure 1, while the

contour plot of each of the six bivariate densities is given in Figure 2. We can find that these

densities exhibit a variety of different distributional properties.
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3.2 Accuracy of our Bayesian bandwidth estimation

We generated samples of sizes n = 200, 500, 1000 from each of the six univariate densities,

as well as samples of sizes n = 500, 1000, 2000 from each of the six bivariate densities. The

kernel function for estimating univariate densities was chosen to be the univariate standard

Gaussian density known as the Gaussian kernel, and the product of univariate Gaussian

kernels was used as the kernel function for estimating multivariate densities. The bandwidth

matrix in estimating multivariate densities was chosen to be a diagonal matrix.

First, we estimated the diagonal bandwidth matrices for our proposed tail-adaptive kernel

density estimator with α = 0.05 and 0.1. Second, we consider the kernel density estimator

with a global bandwidth (matrix), which was estimated through two existing selection or

estimation methods, namely the NRR discussed by Scott (1992) and the Bayesian sampling

technique presented by Zhang et al. (2006).

In terms of our proposed tail-adaptive density estimator used for each generated sample,

we applied the random-walk Metropolis-Hastings algorithm to the update of all bandwidths

in the univariate situation (or all components of the bandwidth matrices in the bivariate

situation) with the acceptance probability calculated through (13). There are 3,000 iterations

during the burn-in period, and the recorded period contains 10,000 iterations. We computed

the batch-mean standard deviation discussed by Roberts (1996) and the simulation inefficient

factor (SIF) discussed by Kim, Shepherd and Chib (1998) to monitor the mixing performance

(or loosely speaking, the convergence performance). Both indicators are explained in details

in Zhang et al. (2006). As the simulated chain is a Markov chain, the SIF value can be

roughly interpreted as the number of draws needed so as to produce independent draws.

Therefore, a small SIF value usually indicate good mixing performance. In addition, a plot

of the sample path of each parameter, together with its autocorrelation function (ACF) and

histogram graphs is also presented for visual inspection of the mixing performance.

Consider a sample generated from fF2(x) with the probability of the low-density region

α = 0.05 and sample size n = 1000. Figure 3 presents graphs of the sample path, its ACF

and histogram of each bandwidth. Table 1 presents a summary of the MCMC results, in

which we found that the SIF values are very small, and the batch-mean standard deviations

are respectively, much smaller than their counterparts of overall standard deviations. These
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indicators show that the mixing performance of the proposed sampling algorithm applied to

the tail-adaptive kernel density estimator is very good and acceptable.

The estimates of bandwidths are also sensible. Note that fF2 is a fat-tailed density with

left skewness in one dimension and a certain degree of symmetry in the other dimension

(see Figure 2). We found that the tail-adaptive density estimator clearly captures the fat-

tailed feature of the true density. For example, the estimates of both components of h(1) for

observations inside the low-density region are respectively, much larger than the estimates

of both components of h(0) for observations outside this region.

In order to examine the performance of the proposed tail-adaptive density estimator with

different bandwidth matrices assigned to the low- and high-density regions, we also derived

global bandwidths (or bandwidth matrices for the bivariate situation) through the NRR and

the Bayesian sampling method. However, we do not report the estimated bandwidths, but

the resulting Kullback-Leibler information.

We generated N=100,000 random numbers (or vectors for the bivariate situation) from

the true density and calculated the estimated Kullback-Leibler information defined by (17).

For the six univariate densities, Table 2 presents the estimated Kullback-Leibler information

between the true density and each density estimator resulted from each bandwidth estima-

tion method. Among all six densities considered, the tail-adaptive density estimator with

bandwidths estimated through Bayesian sampling and low-density probability 0.05 clearly

performs better than the global-bandwidth estimator with bandwidth selected through NRR;

and the former clearly performs better than the global-bandwidth estimator with bandwidth

estimated through Bayesian sampling except Density A1. When the Bayesian estimation of

a global bandwidth performs worse than the NRR of a global bandwidth for Densities D1

to F1, our proposed Bayesian estimation of tail-adaptive bandwidths outperforms the NRR.

Table 2 also shows that there is no obvious difference between different choices of α, which

is the probability of the low-density region.

The estimated Kullback-Leibler information for bivariate densities is given in Table 3.

Among all six densities considered, the tail-adaptive density estimator obviously performs

better than global-bandwidth density estimator with bandwidth matrix estimated through

either the NRR or Bayesian sampling. Note that Bayesian estimation of a global bandwidth

matrix performs slightly worse than NRR in the case of fF2 with sample size 500, our

16



proposed Bayesian estimation of tail-adaptive bandwidth performs clearly better than the

two competitors. The results also indicate that the performance of the tail-adaptive density

estimator is not very sensitive to different values of the probability of low-density region.

4 Tail-adaptive density estimation for high dimensions

Our proposed Bayesian sampling algorithm for estimating bandwidths (or bandwidth matri-

ces in multivariate situations) in tail-adaptive kernel density estimation is applicable to data

of any dimension. In this section, we aim to examine the performance of the tail-adaptive es-

timator with bandwidth matrices estimated through Bayesian sampling in comparison with

its two competitors, namely the NRR and Bayesian estimation of a global bandwidth matrix

proposed by Zhang et al. (2006).

4.1 True densities

We consider four target densities labeled G, H, I and J. Density G is a mixture of two

multivariate normal densities:

fG (x|µ1, µ2,Σ1,Σ2) =
1

2
φ (x|µ1,Σ1) +

1

2
φ (x|µ2,Σ2) ,

with location parameter vectors specified as µ1 = (−1.5,−1.5,−1.5,−1.5,−1.5)> and µ2 =

(2, 2, 2, 2, 2)> and both variance-covariance matrices of the form

Σ =
1

1− ρ2




1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ
ρ4 ρ3 ρ2 ρ 1




, (20)

where ρ = 0.3 for Σ1 and ρ = −0.9 for Σ2.

Density H is a multivariate skew-normal densities:

fH (x|µ,Σ, α) = 2φ (x|µ,Σ)Φ (
γ>(x− µ)

)
,

where Σ is defined by (20) with ρ = 0.9, µ = (−0.5,−0.5,−0.5,−0.5,−0.5)>, Φ(·) is the stan-
dard normal cumulative density, and the skewness parameter vector γ = (−9,−9,−9,−9,−9)>.
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Density I is a mixture of two multivariate Student t densities:

fI (x|µ1, µ2,Σ1,Σ2, ν) = 0.5 td (x|µ1,Σ1, ν) + 0.5 td (x|µ2,Σ2, ν) ,

where µ1 = (−2, 0,−2, 0,−2)>, µ2 = (2, 0, 2, 0, 2)>, ν = 5, and both Σ1 and Σ1 are defined

by (20) with ρ = −0.5 and ρ = 0.5, respectively.

Density J is a multivariate skew-t densities:

fJ (x|µ,Σ, α, ν) = 2td (x|µ,Σ, ν)Td (x̃|ν + d) ,

where µ = 0, ν = 5, Σ is a d × d identity matrix, and x̃ is defined by (19) with γ =

(2, 0, 2, 0, 2)>.

4.2 Accuracy of our Bayesian bandwidth estimation

We generated samples of sizes n = 500, 1000, 2000 from each of the five-dimensional densities.

Table 4 presents the estimated Kullback-Leibler information between the true density and its

estimator resulted from each of the three bandwidth estimation methods. We found that our

proposed Bayesian estimation of the tail-adaptive bandwidth matrix obviously outperforms

the NRR for choosing a global bandwidth matrix in kernel density estimation. Moreover, we

found that the former clearly performs better than Bayesian estimation of a global bandwidth

matrix. These findings are consistent with what we found in the bivariate situation.

For all sample sizes of each density considered, we found that the tail-adaptive kernel

density estimator with α = 0.1 slightly outperforms the same estimator with α = 0.05.

However, we would be reluctant to make a decision as to whether the former performs better

than the latter because such a difference resulted from the two different probability values

is marginal.

5 An application of the tail-adaptive density estimator

In this section, we apply the proposed tail-adaptive kernel density estimator to the estimation

of bivariate density of stock-index returns. We obtained the daily closing index values of the

S&P500 index in the U.S. stock market and the All Ordinaries Index (AOI) in the Australian
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stock market, where the sample period is from the 2nd January 2006 to the 16th September

2010 excluding non-trading days. In the finance literature, most researchers believe that the

density of financial asset returns has a higher peak and heavy tails than the normal density.

If a global bandwidth is used for kernel density estimator, the use of a global bandwidth

is likely to over-smooth the density due to the existence of observations in the tail areas.

The use of complete-adaptive bandwidths may not be attractive in application due to the

large number of bandwidth parameters. Therefore, we wish to apply the tail-adaptive kernel

density estimator to the estimation of bivariate-return density.

Let xt denote the closing index at date t. The daily continuously compounded returns in

percentage form was computed as (ln xt − lnxt−1)× 100. The sample size is n = 1155. The

sample period is an important period because it contained some extremely volatile observa-

tions caused by the current global financial crisis. Table 5 presents some basic descriptive

statistics. We found that both return series have mean values around zero, a certain degree

of negative skewness and excessive kurtosis. As shown in the scatter plot of the bivariate

observations given in Figure 4, the daily returns of both indices are correlated with the

Pearson correlation coefficient 0.6171. We can visually identify many extreme return values

in Figure 4, which indicates that the joint density of the bivariate index returns has very

heavy tails during the sample period.

We used our Bayesian sampling algorithm to estimate bandwidths matrices for the tail-

adaptive kernel density estimator of the bivariate index returns, where the probability of

low-density region was chosen to be 5%. We also applied the Bayesian sampling algorithm

proposed by Zhang et al. (2006) and NRR to the estimation of global bandwidth matrix for

the kernel estimation of the bivariate return density.

There were 3,000 iterations in burn-in period and 10,000 iterations in the recorded period

for both sampling algorithms. Table 6 presents a summary of the results, where the batch-

mean standard deviation and SIF measures indicate very good mixing performance of both

samplers. Moreover, we calculated the log marginal likelihood of Newton and Raftery (1994)

for each of the two density estimators so as to decide which is favored against the other. The

log marginal likelihood for our tail-adaptive kernel density estimator is -1657.14, which is

obviously larger than -1719.64, the log marginal likelihood for the global-bandwidth kernel

density estimator. Thus, we have found strong evidence supporting our tail-adaptive density

estimator against the global-bandwidth density estimator.
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With the estimated tail-adaptive bandwidth matrices given in the 3rd column of Table 6,

we calculated the tail-adaptive density estimator of the bivariate index returns, whose density

surface and contour graph presented in the 1st row of Figure 5. Moreover, the 2nd row of

Figure 5 presents the same set of graphs produced by the global bandwidth matrix estimated

via the Bayesian sampling algorithm of Zhang et al. (2006). The last row of Figure 5

presents the same set of graphs produced by the global bandwidth matrix estimated via

NRR. Both the density surface and the contour produced via the tail-adaptive estimator is

obviously different from those produced via each global-bandwidth density estimator. Both

the density surface of contour plot of the tail-adaptive density estimator show that this

estimator captures richer dynamics than the other two density estimators.

Let xt denote the S&P500 index return and yt the AOI return. We used the bandwidth

matrices estimated through our tail-adaptive density estimator to estimate the conditional

density of AOI return given that the S&P500 return equals a certain value. Such a conditional

density is expressed as

f(y|xt = x) =
f(y, x)

fx(x)
,

where f(y, x) is the joint density of (yt, xt), and fx(x) is the marginal density of xt. Accord-

ing to Holmes, Gray and Isbell Jr (2010) and Polak, Zhang and King (2010), bandwidths

estimated through a joint density can also be used for the purpose to compute conditional

density. As market analysts are often concerned with the left tail of the density of stock-index

returns, we computed the conditional density of AOI returns given that the S&P500 return

is at each of the quantiles of 10%, 7.5% 5%, 2.5%, 1% and 0.5%, which are corresponding

to percentage return values of -0.73, -0.89, -1.13, -1.52, -2.24 and -2.74, respectively. The

graph of each conditional density is presented in the 1st columns of Figure 6 and Figure 7,

from which we can visually understand the distributional properties of the AOI return given

that the U.S. stock market finished daily trading with the S&P500 index return at a certain

value.

With the tail-adaptive bandwidth matrices estimated via our Bayesian sampling algo-

rithm, we are able to estimate the conditional probability of the form

Pr{yt ≤ y|xt ≤ x} =
Pr{yt ≤ y, xt ≤ x}

Pr{xt ≤ x} . (21)

Such a calculation can be done simply by replacing the Gaussian kernel with its cumulative

density function. The interpretation of (21) is also clear and meaningful to market analysts.
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Given that the U.S. stock market went down beyond x%, the probability that the Australian

stock market would drop beyond y% is approximated through (21). We found that Pr{yt ≤
0|xt ≤ 0} = 0.67. It means that when the U.S. stock market finished daily trading with a

negative return, there was a 67% chance that the Australian stock market would also drop.

Given that such a chance is more than 50%, we could say that the Australian stock market

followed the U.S. stock market during the global financial crisis.

With the tail-adaptive kernel density estimator estimated through our Bayesian sampling

algorithm, we are able to estimate the conditional cumulative density function (CDF) of yt

for given xt = x:

F (y|xt = x) = Pr{yt ≤ y|xt = x} =

∫ y

−∞

f(z, x)

fx(x)
dz. (22)

The conditional CDF was estimated in the same way as we estimated f(y|xt = x) with the

Gaussian kernel function for yt replaced with the Gaussian CDF function. The interpretation

of (22) is clear and meaningful to market analysts. Given that the U.S. stock market finished

daily trading with the S&P500 index return being at x%, the probability that the Australian

stock market drops beyond the same daily return level is indicated by (22).

We used the above-mentioned quantiles of the S&P500 return and derived the conditional

CDF values as follows.

Pr{yt ≤ −0.73|xt = −0.74} = 0.27,

Pr{yt ≤ −0.89|xt = −0.89} = 0.22,

Pr{yt ≤ −1.13|xt = −1.13} = 0.24,

Pr{yt ≤ −1.52|xt = −1.52} = 0.05,

Pr{yt ≤ −2.24|xt = −2.24} = 0.12,

Pr{yt ≤ −2.74|xt = −2.74} = 0.11. (23)

The interpretation of these values is clear. Even though the Australian stock market followed

the U.S. stock market during the global financial crisis, the probability that the Australian

market had a larger drop than the U.S. market was at most 27%.

Each graph in the 2nd columns of Figures 6 and 7 plots the curve of the conditional

CDF function of yt given that xt takes each of the above six values. With these graphs, we

are able to approximate different probability values implied by (22) for different values of y.
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Thus, this type of graphs is helpful for us to understand how the Australian stock market

followed the U.S. stock market during the current global financial crisis.

6 Conclusion

This paper proposes a kernel density estimator with tail-adaptive bandwidths, which are

assigned to the low- and high-density regions, respectively. We have derived the posterior

of bandwidth parameters based on Kullback-Leibler information and presented an MCMC

sampling algorithm to estimate bandwidths. The Monte Carlo simulation study shows that

the kernel density estimator with tail-adaptive bandwidths estimated through our proposed

Bayesian sampling algorithm outperforms its competitor, the kernel density estimator with

a global bandwidth estimated through either the normal reference rule discussed in Scott

(1992) or the Bayesian sampling algorithm proposed by Zhang et al. (2006). The simulation

result also shows that the improvement made by the tail-adaptive kernel density estimator

is especially obvious when the underlying density is fat-tailed. Even though the probability

of the low-density region α has to be chosen before we carry out the sampling procedure, we

have found that performance the low-density adaptive kernel estimator is not sensitive to the

changes of such probability values. Therefore, it is the users’ choice on what the probability

of the low-density region should be. Future study could include such a probability value as

an additional parameter to be estimated through the sampling procedure.

We applied the tail-adaptive kernel density estimator to the estimation of bivariate den-

sity of the paired daily returns of the Australian Ordinary index and S&P500 index during

the period of global financial crisis. The tail-adaptive density estimator captures richer dy-

namics in the tail area than the density estimator with a global bandwidth estimated through

the normal reference rule and a Bayesian sampling algorithm. With the tail-adaptive band-

widths estimated through our proposed Bayesian sampling algorithm, we have derived the

estimated conditional density and distribution of the Australian index return given that the

U.S. market finished daily trading with different return values. We have found that during

the global financial crisis, even though the Australian stock market followed the U.S. stock

market, there was no more than 27% chance that the former market had a larger drop than

the latter. The graphs of the conditional density and distribution enable market analysts to

approximate various probability values conditional on the behavior of the U.S. stock market.
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Table 1: A summary of MCMC results obtained based on a sample generated from density F2

Bandwidths Mean Standard Batch-mean SIF Acceptance
deviation standard deviation rate

LDR adaptive h
(1)
1 1.1121 0.3184 0.0157 24.32 0.28

α = 0.05 h
(1)
2 1.6432 0.3816 0.0164 18.57

h
(0)
1 0.2505 0.0469 0.0019 17.13

h
(0)
2 0.4196 0.0675 0.0018 7.35

Table 2: Estimated Kullback-Leibler information for univariate densities

Kullback-Leibler information

Global-bandwidth Tail-adaptive bandwidths

Density n NRR Bayesian α = 0.05 α = 0.10

fA1 200 0.0374 0.0238 0.0311 0.0388
500 0.0127 0.0070 0.0070 0.0069
1000 0.0091 0.0033 0.0031 0.0032

fB1 200 0.1137 0.0506 0.0399 0.0371
500 0.0545 0.0134 0.0157 0.0181
1000 0.0368 0.0136 0.0126 0.0105

fC1 200 0.2094 0.0837 0.0738 0.0781
500 0.0688 0.0567 0.0332 0.0349
1000 0.0478 0.0246 0.0161 0.0142

fD1 200 0.0322 0.0602 0.0280 0.0340
500 0.0170 0.0457 0.0210 0.0230
1000 0.0118 0.0285 0.0139 0.0152

fE1 200 0.0974 0.1019 0.0445 0.0377
500 0.0491 0.0536 0.0336 0.0273
1000 0.0283 0.0256 0.0117 0.0123

fF1 200 0.0670 0.0695 0.0364 0.0401
500 0.0578 0.0798 0.0282 0.0355
1000 0.0143 0.0153 0.0091 0.0102
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Table 3: Estimated Kullback-Leibler information for bivariate densities

Kullback-Leibler information

Global-bandwidth Tail-adaptive bandwidth

Density n NRR Bayesian α = 0.05 α = 0.10

fA2 500 0.2878 0.0858 0.0772 0.0748
1000 0.2382 0.0617 0.0498 0.0467
2000 0.1981 0.0402 0.0339 0.0338

fB2 500 0.1201 0.0499 0.0444 0.0442
1000 0.0826 0.0349 0.0332 0.0337
2000 0.0653 0.0256 0.0219 0.0217

fC2 500 0.1126 0.0930 0.0783 0.0768
1000 0.0924 0.0689 0.0559 0.0558
2000 0.0900 0.0648 0.0497 0.0498

fD2 500 0.1171 0.0946 0.0464 0.0449
1000 0.0809 0.0769 0.0286 0.0312
2000 0.0590 0.0565 0.0242 0.0270

fE2 500 0.1436 0.1072 0.0623 0.0530
1000 0.1038 0.1088 0.0328 0.0397
2000 0.0782 0.0666 0.0262 0.0282

fF2 500 0.1169 0.1641 0.0520 0.0545
1000 0.0781 0.0657 0.0261 0.0306
2000 0.0708 0.0637 0.0237 0.0242
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Table 4: Estimated Kullback-Leibler information for 5-dimensional densities

Kullback-Leibler information

Global-bandwidth Tail-adaptive bandwidth

Density n NRR Bayesian α = 0.05 α = 0.10

fG 500 0.8923 0.4280 0.4026 0.4004
1000 0.7705 0.3093 0.2848 0.2825
2000 0.6933 0.2489 0.2343 0.2300

fH 500 0.4559 0.3438 0.3212 0.3179
1000 0.4041 0.2892 0.2613 0.2582
2000 0.3355 0.2226 0.2033 0.1987

fI 500 0.5943 0.5674 0.3446 0.3187
1000 0.4994 0.4814 0.2891 0.2666
2000 0.4395 0.4255 0.2274 0.2072

fJ 500 0.6107 0.5755 0.3226 0.3033
1000 0.5969 0.4415 0.2538 0.2284
2000 0.5050 0.3937 0.1971 0.1773

Table 5: Some descriptive statistics of the daily continuously compounded returns of the S&P500
index and AOI

Series n Mean Standard Skewness Kurtosis Correlation
deviation

S&P500 1155 -0.0058 0.7034 -0.2197 11.1613 0.6171
AOI 1155 0.0015 0.5779 -0.3955 6.4593

Table 6: A summary of MCMC results obtained through our proposed Bayesian sampling algo-
rithm to the tail-adaptive kernel density estimator of the S&P500 and AOI returns

Bandwidths Mean Standard Batch-mean SIF Acceptance log marginal
deviation standard deviation rate likelihood

NRR h1 0.2171
h2 0.1783

Bayesian global h1 0.1795 0.0113 0.0003 5.63 0.21 -1719.64
bandwidth h2 0.2485 0.0121 0.0003 5.89

Tail-adaptive h
(1)
1 0.5533 0.2217 0.0139 39.30 0.27 -1657.14

bandwidth h
(1)
2 0.1221 0.0161 0.0006 15.39

with α = 0.05 h
(0)
1 0.5552 0.1140 0.0051 19.97

h
(0)
2 0.1547 0.0174 0.0006 13.55
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Figure 1: Density graphs of target univariate densities.
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Figure 2: Contour graphs of target bivariate densities.
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Figure 3: Plots of posterior draws obtained through our proposed sampling algorithm for tail-
adaptive bandwidths in kernel density estimation with α=0.05: (a) h

(1)
1 ; (b) h
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Figure 4: A scatter plot of daily continuously compounded daily returns of S&P500 and AOI in
percentage form during the period from the 2nd January 2006 to 16th September 2010
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Figure 5: Surface graphs and contour plots of the three density estimators produced by (a) tail-
adaptive bandwidths with α = 5%; (b) Bayesian global bandwidth; and (c) NRR bandwidth. In
each surface graph, the x-axis represents index return in percentage, and the y-axis represents
density. In each contours plot, both axises represent index return in percentage.
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Figure 6: Each graph in the left column represents the conditional density given that the S&P500
return is at the chosen value. Each graph in right column represents the conditional CDF com-
puted through (22) at different y values for a given x value marked by the vertical line, while the
horizontal line marks the y value that is the same as the chosen x value.
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Figure 7: Each graph in the left column represents the conditional density given that the S&P500
return is at the chosen value. Each graph in right column represents the conditional CDF com-
puted through (22) at different y values for a given x value marked by the vertical line, while the
horizontal line marks the y value that is the same as the chosen x value.
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