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Abstract
An approach to exponential smoothing that relies on a linear single

source of error state space model is outlined. A maximum likelihood
method for the estimation of associated smoothing parameters is de-
veloped. Commonly used restrictions on the smoothing parameters
are rationalised. Issues surrounding model identi�cation and selection
are also considered.
It is argued that the proposed revised version of exponential smooth-

ing provides a better framework for forecasting than either the Box-
Jenkins or the traditional multi-disturbance state space approaches.
Keywords: time series analysis, prediction, exponential smoothing,

ARIMA models, Kalman �lter, state space models

1 Introduction

Given that exponential smoothing is one of the most widely used methods
of forecasting for inventory control and operations management (Gardner,
1985), and given that suitable adaptations of it are increasingly being used in
�nance applications to measure volatility, one could be forgiven for thinking
that all the details for its proper use would have been resolved since its in-
ception in the 1950s. Traditional implementations of it, however, were based
on heuristics instead of a proper statistical framework. Highly questionable
practices arose as a consequence, particularly in relation to the estimation
of prediction error variances (Johnston and Harrison, 1986; Snyder, Koehler
and Ord, 1999).
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The Bayesian forecasting framework (Harrison and Stevens, 1971) emerged
as an attempt to avoid these pitfalls. Being built on traditional multi-
disturbance state space models (Kalman, 1960; Kalman and Bucy 1961),
it proved to be necessary to use the Kalman �lter in place of exponential
smoothing. Statistical rigor, it seemed, could only be achieved by discarding
exponential smoothing.
A later development (Ord, Koehler and Snyder, 1997), however, revealed

that exponential smoothing could still retain a central place in forecasting.
The multi-disturbance state space model of Bayesian forecasting was replaced
by an innovations state space model (Anderson and Moore, 1979; Snyder,
1985). It was then possible to propose a maximum likelihood approach to
the estimation of seed states and smoothing parameters in place of the old
heuristics. It was also possible to replace the ad hoc approaches for measur-
ing prediction error variances with a logically sound model-based approach.
This development, therefore, provided the missing statistical framework for
exponential smoothing.
Most of the issues surrounding exponential smoothing have since been

resolved (Ord et. al., 1997; Hyndman, Koehler, Snyder and Grose, 2002)
but, some matters of detail still remain to be addressed. First, the likelihood
was seen as a function of the seed state variables, smoothing parameters and
the variance and it was optimised with respect to all these quantities. Unlike
the parameters, however, the seed state variables are random. Moreover,
they are not observable so they cannot be �xed at observed values like the
series values. Their randomness must be made to disappear in some way. The
strategy (Ord et. al., 1997) to resolve this issue was to condition on �xed
but unknown values of the seed variables, resulting in a conditional likelihood
function. Nevertheless, the seed variables are really random and they strictly
induce randomness in the value of conditional likelihood. A more satisfactory
approach, from a theoretical perspective at least, is to average the conditional
likelihood with respect to a distribution of seed state variables to give the
exact likelihood function, something that is deterministic and hence suitable
for optimisation purposes. In other words, there is a need to explore the
possibility of replacing the conditional likelihood with the exact likelihood in
the theory of exponential smoothing. This is one of the main issues addressed
in this paper.
Second, under certain conditions (Ord et. al., 1997; Hyndman, Akram

and Archibald, 2003) for the smoothing parameters, exponential smoothing
discounts the importance of older sample values in associated calculations.
However, these conditions di¤er markedly from much tighter restrictions
(Gardner, 1985) commonly used in practice. It has been found (Hyndman
et. al., 2002) that tighter restrictions can translate into better forecasts, a
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point that supports current practice. The practical restrictions, however,
are somewhat arbitrary. They have never been justi�ed with respect to an
underlying principle. A purpose of this paper is to show that a set of nar-
rower restrictions similar to those used in practice can be derived from �rst
principles.
To set the scene, multiple error structural time series models are intro-

duced in section 2. Single source of error state space models are derived from
them. In the process, the tighter restrictions on the smoothing parameters
are derived. The most general linear form of exponential smoothing is in-
troduced in section 3. Its links with the single source of error models is also
outlined. The exact likelihood function is derived in section 4 and its use in
estimation is outlined. Model selection is considered in section 5.

2 State Space Models

2.1 Multiple Source of Error State SpaceModel (MSOE)

State space models and exponential smoothing are known to be closely linked
(Harrison and Stevens, 1971; Harvey, 1991). A new unorthodox form for the
state space framework that serves the purpose of this paper best is:

Yt = h
0
Xt + Ut (1a)

Xt = T (Xt�1 + Vt) : (1b)

Equation (1a) is the measurement equation. It shows how the observable
series value Yt is related to a random k�vector Xt called the state vector,
and a random variable Ut called the measurement disturbance. The Ut are
normally and independently distributed with mean 0 and a common variance
�2. Each Ut measures temporary unanticipated change, that is stochastic
change that impacts on only the period in which it occurs. The k-vector h
is �xed.
The state vector Xt summarises the history of the process. Its evolution

through time is governed by the �rst-order recurrence relationship (1b) where
T is a �xed k � k matrix called the transition matrix and Vt is a random
k-vector of what are called the system disturbances. The Vt are normally and
independently distributed with mean 0 and variance matrix �2Q where Q is
a symmetric, positive semi-de�nite matrix. The purpose of Vt is to model the
e¤ect of structural change, that is unanticipated change that persists through
time.
The covariance between Vt and Ut is given by �2q where q is a �xed

k-vector. Ut and Vs are independent for all distinct periods s and t. The

3



unorthodox feature of this model is that the prior state vector is amended
by the system disturbance before it is transformed by the transition matrix.
The model (1) is invariant because the vectors h; q and matrices T , Q

are independent of time. In most applications the elements of h, q, T and
Q are a mix of known and unknown quantities. The unknown quantities are
represented by the vector �. A problem is to estimate � from a sample y1,
y2,:::,yn where n is the sample size.
The elements of q and Q are usually unknown. In the quest for parsimony

the following additional assumptions are often made:

1. The elements of Vt are mutually independent; hence the o¤-diagonal
elements of Q are zero.

2. Ut and Vt are independent; hence q = 0.

The e¤ect of these assumptions is to reduce the number of unknown
parameters in Q and q from k2 + k to k.
Time series methods account for the intertemporal dependencies that may

exist between the values of a time series. These independence assumptions
can be imposed on the disturbances without destroying the possibility of
dependencies between series values. In fact, it will be seen in Sections 2.3-2.5
that the independence assumptions can often be imposed on special cases
of the model without loss of generality because the multi-disturbance state
space model, in its most general form, contains many redundant parameters.

2.2 Single Source of Error State Space Models (SSOE)

If Equation (1b) is substituted into Equation (1a) the equation yt = h0bt�1+
h0Vt + Ut is obtained where h0 = h

0
T . The term h0bt�1 is the one-step ahead

prediction of yt. The remainder Et = h0Vt + Ut is the one-step ahead pre-
diction error. Its composition re�ects that fact that prediction errors can
possess two sources of error: the error h0Vt induced by structural change and
the temporary error Ut.
An alternative to the independence assumptions, to achieve a more parsi-

monious representation, is to assume that Ut and Vt are perfectly correlated
with Et. Then Vt = �Et and Ut = �Et where � is a non-negative �xed
k-vector and � is a non-negative scalar. The state space model can then be
rewritten as

Yt = h0Xt�1 + Et (2a)

Xt = T (Xt�1 + �Et) : (2b)
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In e¤ect, the number of parameters is again reduced from k2 + k to k. The
scalar � is ignored because it does not directly appear in this single source
of error speci�cation. At �rst sight it might be thought that this perfect
correlation assumption is likely to be very restrictive. However, the examples
considered in Sections 2.3-2.5 indicate that this need not be the case.
An interesting byproduct of this speci�cation is that Et = h0�Et + �Et,

something that must be true for all non-zero values of Et. It follows that the
parameter vector �, as well as being non-negative, must satisfy the linear
restriction

h0� � 1: (3)

It suggests that the elements of � e¤ectively allocate the prediction error
amongst the unobserved components of the model. Because it relates to a
model formulated in terms of the one-step ahead predictions, the restriction
(3) will be referred to as the prediction condition.
An equivalent variation of the speci�cation of the the single source of

error state space model is

Yt = h0Xt�1 + Et (4a)

Xt = TXt�1 + �Et: (4b)

where � = T�. It is the more traditional form of the single source of error
state space model (Ord et. al., 1997). Equivalent restrictions on the k-vector
� can be derived from the prediction condition on �. If T is non-singular,
the restrictions take the form

T�1� � 0 (5a)

h� � 1: (5b)

In some applications T may be singular, in which case it is simplest to elu-
cidate the restrictions on a case by case basis.
The recurrence relationship

Xt = DXt�1 + �Yt; (6)

where D = T � �h0; may be derived by eliminating the error from (2). The
solution to this relationship is

Xt = D
tX0 +

t�1X
j=0

Dj�Yt�j (7)

It shows that the state vector depends on past values of a series. In the
presence of structural change, it would be expected that the state vector
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is in�uenced less by older series values than more recent ones. Structural
change implies that � should take values that ensure that �Dj ! 0 as
j ! 1. Unless � = 0, the case of no structural change, this condition
holds when the eigenvalues of D lie within the unit circle. This leads to
additional restrictions on the vector �; herein referred to as the structural
change conditions.
The perfect correlation assumption is not necessary to derive the single

source of error model (4) from a multiple source of error model. The Kalman
�lter, for any invariant multiple source of error model, has a steady state that
is suggestive of a single source of error model with the same ouput covariance
structure (Anderson and Moore, 1979). In other words, it is always possible
to �nd an SSOE that is equivalent to a given MSOE. In this more general
context, it is normal to impose the structural change condition instead of the
prediction condition.
The framework (4) is particularly important because it underpins the

most general linear form of exponential smoothing (Ord et. al., 1997), some-
thing that is explored in Section 3 using the new but equivalent model formu-
lation (2). Within this context, it is normally applied with what e¤ectively
amounts to the prediction error condition imposed on �: However, its form
appears to have �rst emerged in Box and Jenkins (1976) where it was proven
to be the �rst-order recurrence relationship representation (eventual forecast
functions) of the ARIMA family of models. When the structural change
condition is imposed instead of the prediction condition, it is actually more
general than the ARIMA class because invertibility excludes the possibility
that � = 0. It encompasses, for example, the classical linear trend line that
is precluded by the invertibility condition. It will be seen in Sections 2.3-2.5
that the prediction condition normally imposes much tighter restrictions on
the vector � than the structural change conditions.
It is interesting to speculate as to why the SSOE model has not played

a more central role in time series analysis. Because they were wedded to
the use of autocorrelation functions and partial autocorrelation functions for
the important issue of model identi�cation, Box and Jenkins saw consider-
able value in the ARIMA form for identi�cation and estimation purposes.
The �rst-order form of their framework was relegated to the limited role
of generating the �nal forecasts. In taking this stance they overlooked an-
other possible approach to identi�cation: the use of unobserved components
in conjunction with the �stylised facts�of time series analysis to model the
intertemporal dependencies in a time series (Harvey, 1991).
The state space model (4) has been also referred to as an innovations

model because of its close link with the steady state of a Kalman �lter applied
to time invariant multi-disturbance state space models (Anderson and Moore,
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1979). Of the in�nite number of possible state space models with a common
output autocovariance function, it is the only one with an input noise process
that corresponds to the innovations from the Kalman �lter in the steady
state. When it is used directly for representing time series without reference
to an equivalent multi-disturbance model (Snyder, 1985), it is referred to as
a single source of error state space model (SSOE).

2.3 Local Level Model

One of the simplest state space models involves a local level At that follows
a random walk over time. The series values are randomly scattered about
the local levels. More speci�cally

Yt = At + Ut (8a)

At = At�1 + Vt: (8b)

The correlation between Ut and Vt is designated by �.
A model with only one primary source of randomness may be derived

from the multi-disturbance model (8) employing a suitable adaptation of
an argument from Harvey and Koopman (2000). First, the reduced form is
obtained by eliminating the unobservable At. The result is the ARIMA(0,1,1)
model

�Yt = Ut � Ut�1 + Vt (9)

with autocovariance function is given by

j =

8<:
2�2u + �

2
v + 2��u�v for j = 0

��2u � ��u�v for j = 1
0 j > 1

: (10)

where j is the autocovariance of lag j. This autocovariance function depends
on the three parameters �u, �v and �, but has only two non-zero values.
Ostensibly, the three parameters cannot be uniquely determined. However,
0 + 21 = �

2
v, so that �v is uniquely determined. Only �u and � cannot be

uniquely determined. It seems sensible to choose a value for �; then a unique
value of �u can be obtained. The most common strategy is to assume that
� = 0 (Harrison and Stevens, 1971; Harvey, 1991). Since any value of � may
be used, however, there is no loss of generality in assuming that � = 1.
Second, Equation (8b) may be substituted into Equation (8a) to give

Yt = At�1 + Vt + Ut

The term At�1 is the one-step ahead prediction, while Et = Vt+Ut is the one-
step ahead prediction error. The prediction error has two components: one
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Figure 1: Simulated time series from a local level model with a0 = 100,
� = 10 and �1 = 0:5.

permanent (Vt) and the other temporary (Ut). The permanent component
might re�ect the e¤ect of new customers or the impact of new suppliers
(competitors) in a market.
Third, perfectly correlated permanent and temporary disturbances also

correlate perfectly with the one-step ahead prediction error Et; in other words
V1t = �Et and Ut = �Et where � and � are non-negative parameters. The
local level model (8) can be rewritten as

Yt = At�1 + Et (11a)

At = At�1 + �Et (11b)

It is the single source of error version of the local level model (Ord, 1997).
The associated prediction condition is

0 � � � 1: (12)

The size of the parameter � is a measure of the impact of structural
change in a time series. When � = 0, successive levels are equal: the case
of no structural change. When � = 1, the model reduces to a random walk,
a case at the other extreme where a time series has no parametric structure
(except the variance parameter).
A time series simulated from a local level model is shown in Figure 1.

Successive values of the series have a tendency to be close to each other,
a phenomena that may be attributed to structural change. This closeness
property arises because the local level equation (11b) transmits the history
of the process through time.
A recurrence relationship corresponding to to the general relationship (6)

is
At = �At�1 + �Yt: (13)
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It describes the evolution of the level over time. Note that � = 1��. Under
the condition (12), the level can be viewed as a weighted average. In tradi-
tional expositions of exponential smoothing (Winters, 1960), the condition
(12) is imposed to permit this interpretation. As has been seen here, there is
a more fundamental reason for this condition. It was derived from structural
considerations, not imposed as an assumption.
The structural change condition requires that ��j ! 0 as j ! 1. This

occurs if �1 < � � 1. The equivalent condition, in terms of �, is

0 � � < 2: (14)

Advocates of the broader condition (14) argue that it provides greater �ex-
ibility. Indeed maximum likelihood estimates of � obtained under this re-
striction often exceed one on typical economic time series. Proponents of the
narrower condition (12), however, argue that the added �exibility is coun-
terproductive. An � in excess of one is seen as evidence of the existence of
patterns in a time series such as a trend that are not covered by a local level
model. It is seen as a signal that the local level model is not appropriate for
the data and will yield inferior forecasts.
There are close links between the local level model and the ARIMA(0,1,1)

model in the Box-Jenkins framework. Another ARIMA(0,1,1) model is ob-
tained by di¤erencing Equation (11a) and eliminating the level variables with
Equation (11b). Condition (14) corresponds to the invertibility condition for
an ARIMA(0,1,1) model.
Given that the tighter condition (12) seems to be more appropriate for a

local level model, it might also be argued that the ARIMA(0,1,1) model pro-
vides more �exibility and is therefore more likely to work better. However,
the same basic criticism applies. The ARIMA(0,1,1) model, and indeed the
entire ARIMA family of models, largely ignore structural considerations. As
all time series emerge from processes or systems, the additional information
conveyed by their structure should not be ignored. The perceived additional
generality of the Box-Jenkins approach is really illusory. The now growing
view (Durbin, 2000) that the Box-Jenkins approach is an inadequate frame-
work for forecasting is reinforced by this argument.

2.4 Local Trend Model

A local level may be supplemented by a time dependent growth rate Bt which
follows a random walk Bt = Bt�1+V2t where V2t is another disturbance. The
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resulting local trend model is

Yt = At + Ut (15a)

At = At�1 +Bt + V1t (15b)

Bt = Bt�1 + V2t (15c)

Unlike the usual local trend model, the current level in (15b) is updated with
the current growth rate. Equation (15c) may be used to eliminate Bt from
Equation (15b) to yield the relationship

At = At�1 +Bt�1 + V1t + V2t: (16)

This model then becomes a special case of the general framework (1).
The equation Yt = At�1 + Bt�1 + V1t + V2t + Ut is obtained when At is

eliminated from Equation (15a). Given that At�1 + Bt�1 is now the one-
step ahead prediction, the prediction error is given by Et = V1t + V2t + Ut.
The prediction error has three components, two of them permanent. As
before, one of the permanent disturbances is associated with the change in
the underlying level. The other is the permanent change in the rate of growth.
It is assumed that the three disturbances are potentially correlated.
The reduced form of this local trend model is the ARIMA(0,2,2) process

�Y 2t = V2t + V1t � V1;t�1 + Ut � 2Ut�2 + Ut�2. It is readily seen that all
autocovariances of �Yt satisfy the condition j = 0 for j > 2. The �rst
three covariances, which are potentially non-zero, depend on the the three
disturbance variances and the three correlation coe¢ cients between the dis-
turbances. Again there is an identi�cation problem. A common resolution is
to assume that the disturbances are contemporaneously uncorrelated. Then
the variances can be uniquely determined. A second, but observationally
equivalent possibility, is to assume that the disturbances are all perfectly
correlated.
Under the perfect correlation assumption, the three disturbances are also

perfectly correlated with the one-step ahead prediction error, so that V1t =
�1Et, V2t = �2Et and Ut = �Et where �2 is a parameter. The resulting single
source of error model is

Yt = At�1 +Bt�1 + Et (17a)

At = At�1 +Bt�1 + (�1 + �2)Et (17b)

Bt = Bt�1 + �2Et (17c)

It can be rewritten as
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Yt = At�1 +Bt�1 + Et (18a)

At = At�1 +Bt�1 + �1Et (18b)

Bt = Bt�1 + �2Et (18c)

where �1 = �1+� and �2 = �2 This is the more traditional form of the local
linear trend model found in Hyndman et. al. (2002). It may be established
that the region for the parameters then becomes �1 � 0, �2 � 0; �1 < 1;and
�2 � �1.
Yet another way of writing the model is

Yt = At�1 +Bt�1 + Et (19)

At = At�1 +Bt�1 + �1Et (20)

Bt = Bt�1 + �
�
2 (At � At�1 �Bt�1) (21)

where ��2 = �2=�1. It is obtained by solving (18b) for Et and substituting
the result into Equation (18c). It is the model underlying the original form
of trend corrected exponential smoothing (Holt, 2002). The above feasible
region for the parameters can be re-expressed as 0 � �1 � 1 and 0 � ��2 � 1,
conditions that have been traditionally advocated (Makridakis, Wheelwright
and Hyndman, 1998) for trend corrected exponential smoothing. A contri-
bution of this paper has been to show that these conditions can be derived
from structural considerations, instead of being imposed by assumption as
has been the tradition.
The invertibility conditions for an ARIMA(0,2,2) process are � � 0, �2 �

0 and 2�1+�2 � 4. This region is larger than the one derived from structural
considerations. It again highlights a problem with the Box-Jenkins approach.

2.5 Local Seasonal Model

An extension involving a seasonal factor Ct is

Yt = At + Ct + Ut (22a)

At = At�1 +Bt + V1t (22b)

Bt = Bt�1 + V2t (22c)

Ct = Ct�m + V3t: (22d)

where m is the number of seasons per year. Substituting Equations (22b)
and (22d) into Equation (22a) yields Yt = At�1 + Bt�1 + Ct�m + Et where
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Et = V1t + V2t + V3t + Ut. Adapting the perfect correlation argument above,
the equivalent single source of error model is

Yt = At�1 +Bt�1 + Ct�m + Et (23a)

At = At�1 +Bt�1 + (�1 + �2)Et (23b)

Bt = Bt�1 + �2Et (23c)

Ct = Ct�m + �3Et (23d)

where �1 � 0, �2 � 0, �3 � 0 and �1 + �2 + �3 � 1. An equivalent
representation is

Yt = At�1 +Bt�1 + Ct�m + Et (24a)

At = At�1 +Bt�1 + �1Et (24b)

Bt = Bt�1 + �2Et (24c)

Ct = Ct�m + �3Et (24d)

where 0 � �2 � �1, �3 � 0 and �1 + �3 � 1. The latter conditions de�ne a
region for the smoothing parameters that is smaller than the region associated
with the invertibility conditions 1(Hyndman et. al., 2003).

3 Exponential Smoothing

3.1 Simple Exponential Smoothing

The single source of error local level model underpins what has traditionally
been called the simple exponential smoothing algorithm. The model treats
Yt as a random variable. It describes the situation before Yt is observed.
After it is observed, Yt becomes a �xed value designated by yt; and certain
calculations become possible. If At�1 is known to be equal to a �xed value
at�1 from preceding calculations, the measurement equation may be used to
calculate a �xed value et = yt� at�1 for the error Et. The level equation can
then be used to obtain the �xed value at = at�1 + �1et for At. If the process
is started with the seed A0 equal to a �xed trial value a0; these steps can
be repeated for successive values of a time series. The resulting algorithm
corresponds to classical simple exponential smoothing (Brown, 1959). The
at form what have traditionally been called the smoothed series, but this
terminology is inconsistent with modern usage of the term smoothed. The

1My thanks to Muhammad Akram for producing plots that con�rm this relationship.
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typical at depends on a sub-sample y1, y2,..., yt rather than the entire sample
y1, y2,..., yn through the relationship

at = �
ta0 + �1

t�1X
j=0

�jyt�j: (25)

where � = 1��1 is the so-called discount factor. Thus, the at are more akin
to a �ltered series. For future reference, it should be noted that at is a linear
function of the seed a0.

3.2 General Exponential Smoothing

Similar arguments can be applied to the local trend model to give trend
corrected exponential smoothing (Holt, 2004). The Winters additive method
(Winters, 1960) can also be obtained from the local seasonal model. The
details of these approaches is not covered here because they are special cases
of the general form of exponential smoothing.
The general exponential smoothing algorithm is based on the the general

linear single source of error model (4). It begins in typical period t with
a �xed value xt�1 for the random state vector Xt�1 obtained from earlier
calculations. The one-step ahead prediction is obtained with byt = h0xt�1.
On observing the �xed value yt for Yt the �xed value et = yt�byt for the error
Et is computed. The �xed value xt = Txt�1 + �et is then calculated for the
state vector Xt. This process, which is seeded with a �xed trial value x0 for
the seed state vector X0; is repeated for each successive observation in the
sample. The resulting sequence of byt values is the smoothed series.
4 Estimation

A challenge is to �nd appropriate values for the seed vector X0 and the
parameters � and �2. Then estimates of subsequent state vectors may be
generated recursively with the transition equation. Once the �nal state vector
is obtained it may be used to generate predictions.

4.1 Estimation of the Seeds

4.1.1 Heuristic Approaches

Traditionally, a variety of heuristics (Gardner, 1985) have been used to esti-
mate the seed state vector. Examples include:
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� Local level model: the seed level is approximated by a simple average
of the �rst few series values.

� Local trend model: a trend line in �tted using the principle of least-
squares to the �rst �ve observations in a time series; the seed level is
set to the intercept and the seed growth rate is set to the trend rate of
growth.

� Seasonal model: a linear trend with seasonal dummy variables is �tted
to the few years of observations from a time series; the seed level and
seed rate are set as for the local trend; the seed seasonal e¤ects are set
to the seasonal averages from the approximating model.

The heuristic methods implicitly assume that structural change has been
fairly limited over the short stretch of data to which they are applied. As such
they usually provide plausible estimates of the local structure in this short
time span. An approach that does not need this approximation is possible
and will now be considered. It will be based on the assumption that � has a
known value, possibly an assigned trial value.

4.1.2 Simple Exponential Smoothing

The seed value a0 in Equation (25) is unknown. A seemingly futile tactic
is to let a0 = 0. The typical pattern that emerges for the errors is shown
in Figure 2. It is obtained by applying simple exponential smoothing to the
time series in Figure 1. The errors are quite large initially but quickly settle
to a stable state with a zero mean. The initial positive bias in the errors
re�ects the e¤ect of the poor trial value of 0 for the seed level. However, the
bias disappears quickly.
Suppose the errors, based on a zero seed value, are designated by e�t :

From the theory in the Appendix for the general linear case of exponential
smoothing, it can be shown that

e�t = �
t�1a0 + et (26)

The �rst term on the right hand side of Equation (26) is the bias term. It
is this that leads to the initial distortion depicted in the errors in Figure 2.
It depends on the seed state but its size decreases with increases in t when
j�j < 1. By assumption the et are drawn from identical and independent
normal distributions. Equation (26) can therefore be viewed as a simple
homogeneous regression. The formula for the least-squares estimate of the
seed level is
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Figure 2: Plot of errors from simple exponential smoothing with a0 = 0 and
�1 = 0:5.

ba0 = nX
t=1

�t�1e�t�
nX
t=1

�2(t�1):

Although seeding simple exponential smoothing with a zero level seemed ini-
tially to be counterproductive, this tactic can now be seen as a convenient
steppingstone to getting a statistically sound estimate of the seed. Once ob-
tained, it is then possible to calculate the unbiased one-step ahead prediction
errors with the formula et = e�t ��t�1ba0. An equivalent tactic is to undertake
a second pass of the data with simple exponential smoothing seeded with ba0
rather than 0 for the unbiased one-step ahead prediction errors.
It may be thought that the least-squares estimate of the seed level is more

accurate than its heuristic counterpart. The latter, however, also gives quite
plausible results in a wide range of circumstances. The reason for preferring
the least-squares approach is that it provides a more general framework.
It works for the special case �1 = 0. Then e�t = yt and the least-squares

estimate reduces to the classical simple average ba0 = nX
t=1

yt�n. In other

words, exponentially weighted averages and simple averages are properly
reconciled under the least squares approach. The heuristic approaches are
based on the assumption that 0 < �1 � 1 and that any adverse e¤ects are
washed out as the method convergence to a stable state. However, when �1
is small, convergence is slow. And when �1 = 0, there is no convergence,
in which case any adverse e¤ects from a heuristic approach persist. The
advantage of the proposed approach is that it works reliably over the entire
interval 0 � �1 � 1.
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4.1.3 General Exponential Smoothing

Mimicking the logic used for simple exponential smoothing, the algorithm
begins with x0 = 0. The resulting errors, designated by e�t are again biased.
It is shown in the Appendix that the bias in these errors is linearly dependent
on the true seed state x0. Thus, the biased errors can be written as a linear
function of the true seed state vector and the unbiased errors

e�t = Zx0 + et: (27)

The matrix Z, which depends on the smoothing parameter vector �; is de-
rived in the Appendix.
Again the principle of least-squares may be applied to give the estimate

of the seed vector

bx0 = (Z 0Z)�1 Z 0e�t . (28)

Then the unbiased errors may be calculated with et = e�t�Zx0 or by applying
the general form of exponential smoothing for a second pass of the data with
X0 = bx0. In the �rst approach the �smoothed�series values may be recovered
with byt = yt � et. In the second approach these values are generated as part
of the second pass of the exponential smoothing algorithm.

4.2 Estimation of Parameters

Estimation of the smoothing parameter vector � and the variance �2 provide
a further challenge. Simple heuristics (Gardner, 1985) were often used in
early implementations of exponential smoothing to avoid the computational
overheads of nonlinear optimisers. As computers became more powerful,
however, it became feasible to adopt Winters�earlier suggestion of selecting
those values that minimise the sum of squared errors. The evidence (Fildes,
Hibon, Makridakis and Meade, 1998) suggests that optimisation leads to
better forecasts. The standard deviation is then typically estimated with

b� =
vuut nX

t=1

e2t
n
: (29)

or a variation b� = 1:25� where � is the mean deviation (Brown, 1959).
The conditional likelihood function (Ord et. al., 1997) can be used in

place of the sum of squared errors criterion to yield the same estimates for
both the seed vector X0 and the smoothing parameter vector �. It is based
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on the distribution of Y j�; x0 where Y is a random vector formed from n se-
ries values Y1; Y2; :::; Yn. The random seed vector X0 is set to a �xed but un-
known value x0; hence the use of the term conditional. Given that exponential
smoothing transforms the original series autocorrelated series Y to the uncor-
related error series E and that this transformation has a unit Jacobian, it fol-
lows that Y j�; x0 has the same distribution as E, namely a multivariate nor-
mal distribution with mean of zero and variance matrix �2I. In other words,
the conditional likelihood is given by L (�; x0) = 1

(2��2)n=2
exp

�
�
Pn
t=1 e

2
t

2�2

�
:

Likelihood, strictly speaking, should be based on the distribution of Y j�,
not the distribution of Y j�; x0 because X0 is not observable. Some approach
must be adopted to eliminate the dependence of the joint distribution of
Y;X0j� on X0. One possibility is to eliminate the state variables Xt from
the SSOE. A lag operator L may be introduced and used to write Equation
(4b) as Xt = TLXt + �Et. This solution Xt = (1� TL)�1Et can be used to
eliminate Xt�1 from the measurement equation (4a) to give

Yt = h (1� TL)�1 �Et�1 + Et (30)

This is a reduced form of the SSOE because it does not reference the state
variables. It is the integrated reduced form because it represents the series
in its original form.
It would now appear to be a simple matter to derive the exact likelihood.

The reduced form is expanded to give the moving average representation

Yt =

1X
j=1

h (TL)j Et�j + Et (31)

Yt is clearly normally distributed with a zero mean. However, in most most
business and economic applications, time series are non-stationary, in which
case the transition matrix T has unit roots and the variance of Yt is arbitrarily
large. This is certainly true for time series represented by the local level, local
trend or local seasonal models. The distribution of Yt is then not properly
de�ned for the purpose of forming the likelihood function.
The essential problem is that that the series is not stationary. However,

there usually exists a linear transformation that does not depend on the
unknown parameters � and which may be applied to the data to derive an
equivalent non-stationary series. The exact likelihood of the original non-
stationary series is then de�ned as the likelihood of the transformed series.
More speci�cally, any matrix inverse can be rewritten in terms of its adjoint
and determinant. Hence

(1� TL)�1 = (1� TL)y = j1� TLj (32)
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where (1� TL)y designates the adjoint and j1� TLj designates the deter-
minant of the matrix 1 � TL. The determinant is a polynomial function of
the lag operator L of degree k. It can be written as the product j1� TLj =
	(L) � (L; �) where 	(L) and � (L; �) are polynomial functions of the lag
operator L, the latter depending on the parameter vector �. When some or
all of the state variables are non-stationary the polynomial formed from the
determinant j1� TLj has unit roots. Some of the unit roots can be seasonal
unit roots. As unit roots are independent of �, 	(L) is formed from the unit
root components of j1� TLj.
The reduced form (30) can be rewritten as:

	(L) � (L; �)Yt = �(L; �) et (33)

where �(L; �) = h0 (1� TL)y L�+	(L) � (L; �) is a polynomial function of
degree k. Equation (33) is also a reduced form because it contains no state
variables. The right hand side of Equation (33) is stationary, so that its
left hand side is also stationary. It follows that Zt = 	(L)Yt is a stationary
series. 	(L) is the means by which the original series Y is transformed to the
�equivalent�stationary series Z. As it only has unit roots, this transformation
process is undertaken with a succession of di¤erencing operations, some of
which may be seasonal di¤erencing operations.
If there are d non-stationary states, 	(L) is a polynomial of order d, and

so Z is smaller than Y , its length being n� d; the initial d observations are
lost in the transformation process. It is not possible to reconstruct Y from
Z, so some information is lost by the transformation. Nevertheless, the exact
likelihood of the original non-stationary state space model is de�ned as the
likelihood of the reduced form model governing the stationary series Z.
This transformation process is �ne provided that all the values of a time

series have been observed. When there are missing values the reduction to
stationary reduced form is not possible. Another, equivalent approach is
needed to de�ne the exact likelihood.
Conditional probability theory implies that associated density functions

are related by

p
�
yj�; �2

�
= p

�
yjx0; �; �2

�
p
�
x0j�; �2

�
=p
�
x0jy; �; �2

�
: (34)

When all the states are non-stationary, X0j� has a non-informative distrib-
ution and so p (yj�; �2) _ p (yjx0; �; �2) =p (x0jy; �; �2). Furthermore, from
the theory of least-squares, x0jy; �; �2 � N

�
0; �2 (Z 0Z)�1

�
: Thus, the exact

likelihood function is given by

L (�) = jZ 0Zj�1=2

(2��2)(n�k)=2
exp

�
�
Pn

t=1 e
2
t

2�2

�
: (35)
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The errors for this likelihood are calculated using the usual exponential
smoothing recursions. When an observation is missing in period t, the usual
error is replaced by et = 0. Relevant information about the past is carried
forward through the period with the missing value by the state variables.
Thus calculations in the presence of missing values is possible with exponen-
tial smoothing.
The determinant jZ 0Z jdepends on the smoothing parameter vector �

so that estimates based on this exact likelihood di¤er from those obtained
by minimising the traditional sum of squared errors. The �ndings of Kang
(1975) and Davidson (1981) relating to an MA(1) process carry over to this
context for the case of simple exponential smoothing. They indicate that in
small samples, the di¤erences between both estimates can be quite marked
when the true value of a is small. Moreover, exact maximum likelihood
estimates display less bias than least-squares estimates.
A feature of the exact likelihood is that it involves the degrees of freedom

n�k instead of the sample size n: This gives a hint as to why exact likelihood
estimates are less biased. The maximum exact likelihood estimator of the
variance is b�2 = Pn

t=1 e
2
t

n� k : (36)

Division by the degrees of freedom n�k rather than the sample size n means
that this estimate is less biased than the estimate 29. This point is reinforced
by examining the exact likelihood in the special case of a local level model. It
is easily seen for this case that Z 0Z =

Pn
t=1 �

2(j�1): For a random walk with
� = 1, the least-squares approach yields ba0 = y1 so that e1 = 0. Furthermore,
Z 0Z = n so that

L
�
1; �2

�
=

n�1=2

(2��2)(n�1)=2
exp

�
�
Pn

t=2 e
2
t

2�2

�
:

Ignoring the factor of proportionality n�1=2, this is the usual likelihood for a
random walk. The exact maximum likelihood estimate of �2 becomes b�2 =Pn

t=2 e
2
t

n�1 . In contrast, the conditional likelihood yields the biased estimatorb�2 = Pn
t=2 e

2
t

n
. A divisor of n makes little sense when there are only n � 1

terms in the sum.

5 Model Selection

The choice between the various forms of exponential smoothing for forecast-
ing from a particular set of data has been undertaken traditionally with
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approaches such as prediction validation that make no direct recourse to a
statistical framework. Now that exponential smoothing has been provided
with such a framework, the choice between method can be recast as a model
selection problem. It opens up many traditional possibilities from time se-
ries analysis, that are new in the context of exponential smoothing, for the
problem of choice.
One approach to model selection is to seek the model with the smallest

estimated standard deviation b�. However, it is now widely recognised that
good �t does not necessarily translate into good forecasts. An approach like
this has a tendency to favour model complexity and projections form such
models can be rather strange.
Forecast validation, where the end of a sample is reserved to evaluate the

forecasting capacity of a model, is a way of circumventing the over-�tting
problem. It has worked well in practice but whether it is the best way of
model selection is open to question. Not using the �nal part of the sample
for �tting means that the estimation error, by necessity, is larger than if the
whole sample had have been used.
Likelihood might seem to be another possibility for choosing between

models. The conditional likelihood is equivalent to the use of the estimates
of � and so su¤ers from the same problem of over�tting. The exact likelihood
cannot be used for a more subtle reason. More speci�cally, the factor of
proportionality that was side-stepped in the above derivation of the exact
likelihood has a term ��d=2 where � is an arbitrarily large number and d is
the number of non-stationary state variables (Ansley and Kohn, 1985). The
exact likelihood of models with di¤erent values of d are non-comparable.
The Akaike information criterion (Akaike, 1973) has become a common

way of adjusting the likelihood to avoid over-�tting. It is tempting to cal-
culate it with the exact likelihood but this does not work because of the
comparability problem. It does, however, appear to work with the condi-
tional likelihood - see Hyndman et. al. (2002) for details. The AIC has
the advantage over prediction validation that estimation is undertaken with
the entire sample. A recent comparative study (Billah, King, Snyder and
Koehler) suggests that it is the better model selection criterion .
It would be wrong to conclude from this that the conditional likelihood

should be used in preference to exact likelihood with exponential smoothing.
The estimators obtained with the exact likelihood are less biased. So it seems
that exponential smoothing should utilise both types of likelihoods: the exact
likelihood for estimation, and the conditional likelihood for model selection
in conjunction with the AIC.
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6 Conclusions

Two things were done in this paper. First, the prediction restrictions on the
smoothing parameters were derived from �rst principles; restrictions that are
tighter than those associated with the traditional invertibility principle. In
the process, some restrictions commonly used in practice were properly ratio-
nalised for the �rst time. A new restriction was derived for seasonal exponen-
tial smoothing. Second, the exact likelihood for the exponential smoothing
models was derived for the �rst time. It was argued that it and its con-
ditional counterpart can both play a useful role in exponential smoothing,
one for estimation and the other for model selection based on the Akaike
information criterion.
More generally, it has been shown that the framework espoused in this

paper and its antecedents (Ord et. al., 1997; Hyndman et. al., 2002) has
important implications for the future direction of time series analysis and
forecasting. Time series analysis has been dominated by the Box-Jenkins
approach but the �ndings of this paper con�rms that the latter has inherent
weaknesses that can only be avoided by a structural approach. Moreover,
it has been shown that a structural approach need not be cast in terms
of the common multi-disturbance state space framework that depends on
the Kalman �lter for the evaluation of the associated likelihood function.
The equally general single source of error state space approach can be used
instead, something that allows the relatively complex Kalman �lter to be
replaced with exponential smoothing. This paper therefore provides further
tantalising support for the growing view that the central roles of Box-Jenkins
analysis and the Kalman �lter in time series analysis are questionable and
that they should be replaced by the the enhanced version of exponential
smoothing outlined in this paper.

A Seed State Vector Estimates

The purpose of this section is to outline the theory for obtaining least squares
estimates of the seed state vector. The basic strategy is to convert the general
single source of error state space model (4) into an equivalent regression.
Equation (7) has the general form

Xt = PtX0 +Qt (37)

where Pt is a matrix and Qt is a vector. Equations for recursively computing
Pt and Qt are obtained by substituting Equation (37) into Equation (6) to
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give

Pt = DPt�1 (38a)

Qt = DQt�1 + �Yt (38b)

Substituting t = 0 into Equation 37 suggests that P0 = I and Q0 = 0. It
follows that

Pt = Dt (39a)

Qt = TQt�1 + � (Yt �Qt�1) : (39b)

The Equation (39b) corresponds to the rule used in the general linear form
of exponential smoothing. It is seeded with Q0 = 0, so justifying the step in
the body of the paper where exponential smoothing is applied with a zero
seed vector.
Equation (37) may be substituted into the measurement Equation (4) to

give Yt = h0P t�1X0 + h
0Qt�1 + Et. A rearrangement of the terms results in

the regression
Y �t = z

0
tX0 + Et: (40)

where Y �t = Yt � h0Qt�1 and zt = h0P t�1. This justi�es the regression (27)
where the the Y �t correspond to the biased one-step ahead prediction errors.
The Equation (40) has stochastic regressors. The theory in Duncan and

Horn (1972) applies so that the least squares estimates are best, unbiased
linear predictors using these terms in the sense that they de�ne them. Be-
cause of the linear relationships involved, the �ltered values byt are best, linear
unbiased predictors of the series values yt.
When D has eigenvalues all lying within the unit circle, it acts as a

discount matrix in the sense that Dt ! 0. Then zt ! 0, the implication
being that the bias term z0tX0 disappears from (40), thereby ensuring that
the biased error series converges to the unbiased errors. Whether or not this
condition is satis�ed depends on the values adopted by �.
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