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1. Introduction.

Recently there has been a rapid explosion in the availability of weekly data for use

in market modeling. However, this data produces estimates for the duration of the

advertising effect which differ markedly from those obtained from data of a lower

periodicity. In particular, the longer the data interval, the longer the estimated

duration of the advertising effect. This problem is known in the literature as

the data interval bias. These differences in estimated advertising duration can

have an enormous impact both in advertising strategy and, potentially, in the

optimal allocation of elements of the marketing mix. For example, if the duration

of the advertising effect is very short then it may well be appropriate to maintain

a continous, or drip, advertising allocation over time. On the other hand, if the

duration of the advertising effect is “long” then a burst schedule over time may be

appropriate. For the purposes of this paper we will focus on the use of advertising

half-life to measure the duration of the advertising effect. The advertising half-

life is defined as the period by which half of the impact of the advertising on the

response variable (e.g. sales) is felt.

The problem of data interval bias in measuring the duration and impact of

advertising effects has been known for some twenty years and dates from the

paper by Clarke (1976). With the increasing availability of data of a short time

interval, e.g. weekly data, it might be argued that data interval bias is no longer
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a problem for researchers. However, we should note two points in contradiction to

this view. Firstly, not every researcher has access to this high frequency data. In

particular, not all marketing repotage systems operate on the same interval. Thus,

it is crucial to understand how competing or interconnecting systems’ reliance on

different data intervals affects the use of the resultant data. In other words, it

can be important to know about the bias induced by using lower frequency (e.g.

four weekly or monthly) data in measuring the duration and impact of advertising

effects. Secondly, many earlier studies, both published and unpublished, estimated

duration and impacts of advertising from low frequency data. How reliable is

this accumulated empirical evidence? Thus, it is perhaps time to reconsider the

question of data interval bias.

Much work has now been published on the topic of data interval bias both

in the marketing literature (see inter alia Assmus et al. (1984), Bass and Leone

(1983), (1986), Blattberg and Jeuland (1981), Hanssens et al. (1990, Chapter 7),

Russell (1988), Srinivasan and Weir (1988), Vanhonacker (1983), (1984), (1988)

and Weiss et al. (1983)) and in related fields (see inter alia Moriguchi (1970),

Mundlak (1961), Sasieni (1982), Tiao and Wei (1976), Vanhonacker (1987) and

Zellner and Giesel (1970)). In a recent paper Leone (1995) summarizes the results

from this literature as supporting two key results. The first of these is that data

interval bias is real and that researchers need to exercise caution when using
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aggregated data. The second result is that, in certain circumstances, the data

interval bias can be adjusted for and that, if this is done, the duration of the

advertising effect is short (in the context of this paper Leone’s results indicate that

half-lives are in the range of 7 to 12 weeks). Unfortunately, the theoretical work

on data interval bias has assumed that the advertising input (schedule) is a white

noise random process. In practice this is far from the case. Discernible patterns

exist in advertising data, due to the use of burst or drip schedules. Additionally,

advertising and other marketing activity is typically correlated. These facts are

seldom considered. Therefore, in this paper we will consider the question of data

interval bias using a realistic advertising schedule.

The most popular model used both in the literature and in practice to model

the impact of advertising on a response variable, such as sales, is the geometric

distributed lag model. This model is formally equivalent to the model known

as the adstock model (Broadbent (1979)). When using models incorporating

adstock there are three approaches to estimation. First, the Koyck (Koyck (1954))

transformation can be applied and estimation conducted using a least squares

procedure. Second, the lag parameter in adstock (the geometric lag) can be

estimated directly as described in Johnston (1984). Third, as is often the case in

practice, the half-life (and hence the lag parameter) can be estimated indirectly

using a “t-ratio” approach. This last approach has been referred to as “finding
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the highest point on a billiard table” (Corlett (1985, p494)). To our knowledge,

this last estimation technique has not been considered in the literature on the

data interval bias.

In this paper we use computer simulation (Monte Carlo) techniques to investi-

gate the impact of temporal data aggregation on the estimation of the half-life in

adstock models. In particular, we investigate how the results from weekly and four

weekly data compare when the true underlying process that generates the data

is at the daily level. The experiments used are based upon a realistic advertising

schedule and thus should give an indication of the comparative merits of different

estimation procedures and the impact of temporal data aggregation in practice.

The plan of the rest of this paper is as follows. Section 2 describes the adstock

model, details the estimation techniques typically used by applied researchers to

estimate the adstock model and discusses the impact of temporal data aggregation

on the estimation techniques. Section 3 describes the simulation experiments and

the summary measures that we use to evaluate the performance of the estimation

techniques and section 4 discusses the results of our experiments. In section 5 we

attempt to use our results to provide guidance to practitioners on the estimation

of the true, underlying, half life when the model estimation is conducted using

temporally aggregated data. Finally, section 6 contains some concluding remarks.
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2. The Model.

The underlying model for the response variable R in period i is a distributed lag

model in terms of the advertising data, T, of the form:

Ri = α+ β
∑
∞

j=0 λ
jTi−j + ui, i = 1, . . . , n (2.1)

0 < λ < 1. It is often the case that the response process is parameterized to

ensure that the sum of the lagged impacts of the advertising is unity. This is

achieved by using β∗ = β(1 − λ) as the sum of the lagged impacts is 1/(1 − λ).

As Clarke (1976) and Johnston (1984), inter alia, show, this model is consistent

with a range of underlying hypotheses including adaptive expectations and partial

adjustment. Furthermore, and pertinent to this current study, Vakratsas and

Ambler (1995) show that this model is also formally equivalent to the adstock

model of Broadbent (1979). Thus, this functional form embodies a number of

the main hypotheses concerning how advertising affects a response variable. The

questions of the existence of data interval bias and its impact in this model have

been widely studied in the literature cited above. One estimation technique that

has been proposed in that literature that has “good” properties in the presence of

temporal data aggregation is a Direct grid search procedure (Srinivasan and Weir

(1988)). This technique is discussed below.
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Estimation of the model (2.1) can be carried out in a number of ways. In this

paper we consider three estimation techniques: ordinary least squares, Direct (grid

search) and an Indirect method based upon t-ratios. We now briefly describe each

of these estimation techniques - without the complication of temporal aggregation.

The first technique is ordinary least squares (OLS). To use OLS in this model we

first need to transform (2.1) into an appropriate form. The transformation used

is termed the Koyck transform (Koyck (1954)) and is used to form the difference

Ri − λRi−1 which after re-arrangement yields the estimating equation:

Ri = α(1 − λ) + λRi−1 + β(1 − λ)Ti + vi, i = 2, . . . , n. (2.2)

Although other suitable techniques such as Instrumental Variables exist, this equa-

tion can be and often is estimated by OLS.

The Direct estimation technique is described in detail in Johnston (1984, pp

358-360). Again the model (2.1) is transformed. This time the resultant estimat-

ing equation is:

Ri = α + βT ∗

i
+ γλi

+ ei, i = 1, . . . , n (2.3)

where T ∗

i
= Ti + λTi−1 + . . .+ λi−1T1. The model is estimated by grid searching

(2.3) by OLS over values for λ in the interval 0 < λ < 1 and choosing the results
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that minimize the residual sum of squares.

The final estimation procedure is an Indirect one based upon the adstock

formulation of Broadbent (1979). In the adstock formulation in which “first period

counts full” (2.1) is rewritten as:

Ri = α + βAi + ui, i = 1, . . . , n. (2.4)

with the weights in the formula defining Ai adding to one to ensure that in the

long run adstock does not exceed the gross rating point (GRP) input. Estimation

of the adstock model is usually carrried out by the researcher a priori calculating a

range of adstocks from the data on GRPs. These adstocks are typically calculated

using the recursion:

Ai = Ti + λAi−1, i = 1, . . . , n. (2.5)

The adstocks chosen are defined by a list of half-lives (η) that the researcher

believes may be appropriate for the response variable R. The half-life is defined

as the period by which half of the impact of the advertising is felt and is related

to the lag parameter λ since η = ln(0.5)/ ln(λ). Thus, the researcher selects a

range of half-lives, η, and for each value finds the corresponding value of λ. Then

using (2.5) the observations on that adstock are calculated. The results of Leone
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(1995) suggest that when we are interested in the short term effects of advertising,

7 ≤ η ≤ 12 weeks. Consistent with this finding, Broadbent and Fry (1995) suggest

that half-lives in excess of 13 weeks are probably related to the medium/long term

effects of advertising.

To solve the initialization problem (knowledge of A0 and T0) in (2.5) the ad-

stock calculations can be made for not just the n periods required but also for

a number of preceeding periods. If the GRP input is not available for this prior

period then A0 = T0 = T̄ where T̄ is the average GRP level over an appropriate

period. We then estimate (2.4) by OLS. That is, the response variable R is then

regressed against each of these calculated adstocks in turn. The adstock chosen

is the one that yields the highest t-ratio on the associated estimated coefficient

β̂ or the highest R2 for the equation. Intuitively what this estimation procedure

does is to grid search over values of η as opposed to the direct approach that grid

searches over λ. However, in practice the indirect method is easier to implement.

3. Simulation Study.

To evaluate the performance of the estimation techniques above in the presence

of temporal data aggregation we conduct a simulation, or Monte Carlo, study.

Interested readers are referred to Davidson and MacKinnon (1993, Chap. 21) for

further details of Monte Carlo methodology. Briefly, our simulation study consists
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of repeated execution of the following steps:

1. Generate data at the micro-period level (daily) and aggregate it to a macro-

period level (either weekly or four-weekly).

2. Estimate the model (2.1) using the macro-period data. Record estimator

performance.

If the process is repeated sufficiently many times (i.e. the number of replica-

tions, N, is sufficiently large) then the Monte Carlo method will produce accurate

results for the properties of the estimators in finite samples. In our experiments

we use 500 (=N ) replications.

An integral part of a simulation study is the design of the experiment, as

the results are conditional upon the design used. Thus it is important that the

design is representative of the situation researchers might meet in practice. In our

experiments the micro-period (daily) data on Ri is generated from:

Ri = α + βAi + σui, i = 1, . . . , 1456. (3.1)

Ai is an adstock variable with half life η (= 2 days, 4 days, 1, 2, 3, 4, 6, 12

and 24 weeks) and ui is a standard Normal (N(0,1)) variable. The values chosen

for α and β in all experiments were 12 and 0.5. The resultant model has an

implied advertising elasticity of approximately 0.2 for the half-lives considered.
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Adstock is calculated from a daily GRP schedule with “first period counts full”

and weights normalized to sum to one. Three values were chosen for σ (1, 2, and

4 ) corresponding to small, medium and large amounts of “noise” in the underlying

data generating process.

The daily GRP schedule used as input to the adstock calculations was gener-

ated to be representative of the type of schedule that might be used in practice.

The GRP data was generated as follows. We consider consecutive “blocks” of 10

days duration. These are either advertised or not. A block is advertised with

probability 0.2. If a block is advertised then any particular day within the block

may or may not carry advertising. A day carries advertising with a probability of

0.4 and if a day carries advertising then 50 GRPs appear. This produces a sched-

ule with an expected 10 day burst size of 200 GRPs at an average of 20 GRPs a

day. We generated a series of 1456 daily GRPs from this scheme and these were

then assumed as fixed input into the adstock calculations for all experiments. The

actual (or, realised) daily average GRPs for our entire input schedule is 6 GRPs

and plots of this schedule at the weekly level (208 weeks) and four-weekly level

(52 periods) can be found in Figures 1 and 2.

INSERT Figures 1 and 2 about here

Thus prior to step 1 in the experiments we calculated daily adstocks with 2

day, 4 day, 1, 2, 3, 4, 6, 12 and 24 week half lives. In step 1, for each half life in
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turn, consistent with (3.1) we computed 12 + 0.5×Ai and added to that a value

of σ times a random drawing from the standard Normal (N(0,1)) distribution.

This was carried out for each of the 1456 days and yielded a sample of 1456 daily

observations on Ri. These daily observations were then summed over either 7 or

28 day blocks to yield a sample of 208 weekly or 52 four-weekly observations on

R for step 2.

A further question arises in considering the aggregation of the daily GRP

schedule to the macro-period for estimation in step 2. For the OLS and Di-

rect estimation procedures it is sufficient to aggregate the daily GRPs to the

appropriate macro-period level (weekly or four-weekly). However, for the Indirect

method there is a choice to be made concerning the calculation of adstocks for

the macro-period. The Indirect method requires a range of macro-period adstocks

and these could be calculated either using macro-period GRPs as input or by us-

ing micro-period GRPs as input and aggregating these micro-period adstocks to

the macro-period level. The latter method will be more accurate as it takes into

account the variation in the micro-period schedule.

From a practical viewpoint this is saying that although the researcher only has

data on the response variable at the macro-period level s/he may have GRP data

at either the micro or macro period level. To investigate this issue we consider

variants of the Indirect method in our experiments. For the daily to weekly
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aggregation T-Stat(A) uses daily GRP input to the adstock calculations and T-

Stat(B) uses weekly GRP data as input. For the daily to four-weekly aggregation

T-Stat(A) and T-Stat(B) are the same as the days to weeks case but T-Stat(C)

uses four weekly GRP data as input to the adstock calculations.

In step 2 we take our aggregated data and estimate the response model (2.1)

using each of the techniques. We then record how well the techniques have

performed. For each replication we recorded the estimated half-life (η̂). Av-

eraged over all 500 replications this yields the average estimated half-life. We

also recorded deviations of estimated from true parameter values to estimate bias

(E(λ̂ − λ)) and mean square error (E(λ̂ − λ)2) for the lag parameter. The final

measure that we considered was a measure of “nearness”. For each replication,

we recorded which estimator was closest in absolute value to the true value of λ.

Averaged over all 500 replications this yields the proportion of times that each

estimator was nearest to the true value. For space reasons we only report the

results for estimated half-lives and nearness. These results give a clear picture of

estimator performance and are confirmed by the results on bias and mean square

error. However, the other results are available on request.
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4. Results.

Tables 1 and 2 contain the average half-life estimates for the two sets of exper-

iments of daily to weekly and daily to four-weekly aggregation. The entries in

the body of these tables give the average estimated half-life in weeks from the

500 replications of that data generating and estimation process. Tables 3 and 4

contain the measures of nearness. The entries in the body of these tables give the

proportion of times in the 500 replications of the data generating and estimation

process that a given estimator was closest in absolute value to the true parameter

value.

Considering first the case of daily to weekly aggregation. In table 1 we see that

for the Direct and Indirect methods data interval bias is present. Additionally, for

the Indirect method the magnitude of this bias increases the more noise there is in

the underlying micro-period data generating process. Comparing the two methods

we see that T-Stat(A) has negligible data interval bias and that T-Stat(B) and

Direct have comparable levels of bias. These findings make sense. T-Stat(A) uses

daily GRP input into adstock calculations and thus the weekly adstocks created by

the temporal aggregation will be a more accurate representation of the underlying

advertising weight than those in T-Stat(B) that have weekly GRP data as input.

Furthermore, T-Stat(B) and Direct are both “grid search” techniques using the

macro-period data. T-Stat(B) searches over η using adstock variables and Direct
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searches over λ using GRP data. Since η = ln(0.5)/ ln(λ) it is not surprising

that these methods are similar in the results. Table 3 confirms that T-Stat(A) is

systematically better than the other estimation techniques in the daily to weekly

case. However, there is some evidence in the nearness results in table 3 that the

performance of T-Stat(A) deteriorates as the underlying true half-life increases.

Of the two techniques using weekly advertising data in the estimation process

T-Stat(B) appears better.

Tables 2 and 4 relate to the daily to four-weekly aggregation experiments. A

very similar pattern of results emerges from these tables. T-Stat(A) does best,

followed by T-Stat(B) and then there is little to choose between T-Stat(C) and

Direct. Once again these results stem primarily from the level of aggregation used

in the input to the advertising variable used in the estimation. If we have less

aggregated data then it should be used. The nearness results in table 4 suggest

that there is again some evidence of a deterioration of the performance of T-

Stat(A) as the underlying true half-life increases and that of the two techniques

using four-weekly advertising data in the estimation process T-Stat(C) appears

better.

The exception to this pattern for both sets of experiments is the OLS estima-

tion method. For OLS data interval bias exists for the short half-lives but as the

underlying half-life increases the OLS method actually underestimates the under-
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lying true half-life. This contrary result is caused by the simple fact that there is

nothing in the OLS procedure to enforce the constraint that 0 < λ̂ < 1. Indeed as

the underlying half-life increases the OLS procedure produces values of λ̂ that are

negative. Such values average out with λ̂ values that lie in the admissible range

and yield downward bias in the estimated half-life. The two sets of nearness re-

sults in tables 3 and 4 do, however, suggest that there are times when OLS can

get “near” to the true value. These seem to occur in the region of half-life where

the OLS procedure crosses over from overestimating to underestimating the true

half-life. In practice, we are unlikely to know whether we are in this region. In

our opinion, the results seem to strongly support the view that researchers should

not just apply the Koyck transform and use OLS to estimate the response model.

In summary our results clearly show that the Indirect method often used by

practitioners performs well. Data interval bias does exist but is of a relatively

small magnitude. Thus the use of these methods appears to be supported.

5. Application.

The question that we now pose is the following. If we estimate the half life with an

Indirect method using temporally aggregated data as η̂ what do our simulation

results suggest the underlying true half-life is? In an attempt to answer this

question and hence provide further guidelines for the correction of the data interval

15



bias in the Indirect methods we carried out some regression modeling based on

the data in tables 1 and 2. We regressed the true half life upon a constant and

the estimated half-life. For T-Stat(A) in both aggregations the constant proved

insignificant. Note that we did not include the value of σ as a regressor as, in

practice, this would not be known.

Our results were as follows:

Daily to Weekly - T-Stat(A):

̂True =
0.9881 ×Estimated

(420.9)

27 observations, R̄2
= 0.961. T statistics in parentheses.

Daily to Weekly - T-Stat(B):

̂True =
−0.5261
(−12.24)

+
0.9754× Estimated

(225.3)

27 observations, R̄2 = 0.999. T statistics in parentheses.

Daily to Four-Weekly - T-Stat(A):

̂True =
0.9895 ×Estimated

(425.8)

27 observations, R̄2
= 0.999. T statistics in parentheses.

Daily to Four-Weekly - T-Stat(B):

̂True =
−0.3758
(−10.29)

+
0.9789× Estimated

(262.6)

27 observations, R̄2 = 0.999. T statistics in parentheses.
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Daily to Four-Weekly - T-Stat(C):

̂True =
−1.7251
(−9.34)

+
0.9150 ×Estimated

(56.82)

27 observations, R̄2
= 0.992. T statistics in parentheses.

These regressions can be used to answer the question posed above. For ex-

ample, suppose that a researcher using four-weekly data on R and as input to

adstocks estimates using the Indirect method (in this case T-Stat(C)) that the

half-life of advertising is 6 weeks. If we believe that the true generating pro-

cess is at the daily level then we can use the regression above to produce an

estimate for the “true” half-life. In this example the estimate would be 3.7649

(=-1.7251+0.915×6) weeks.

A range of such calculations have been tabulated in table 5 to assist in these

regression based translations. We will consider two examples. If we estimated the

half-life to be 4 weeks using weekly data then the “true” half-life is 3.376 weeks

and the equivalent half-life estimate for this “true” half-life of 3.376 weeks from

4-weekly data would be 5.574 weeks. On the other hand, if we estimated the

half-life to be 4 weeks using 4-weekly data then the “true” half-life is 1.935 weeks

and the equivalent half-life estimate for this “true” half-life of 1.935 weeks from

weekly data would be 2.523 weeks.

Leone (1995) in his paper derives a formula to link the decay parameters in

the micro and macro period models. This formula is based upon the results and
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assumptions used in Bass and Leone (1983). Re-writing the Leone formula in

terms of half-lives we have the micro half-life, η, given in terms of the (measured)

macro half-life, h:

η =
ln(0.5)

ln
(

m×0.51/h

1+(m−1)×0.51/h

) , (5.1)

where m is the number of micro-periods contained in a macro-period (e.g. m = 7

for days to weeks). We note that the Leone formula (5.1) does not take into

account how the macro period model is estimated to measure the half-life and

thus will give different equivalent half-lives to our regression based formulae for

each of the indirect estimation methods. For comparative purposes, however, we

include the Leone equivalent half-life in table 5. We see that (5.1) does indeed

reduce the estimated (measured) half-life, but not as far as our regression based

formulae. The biggest difference between the “True” and the Leone half-life values

occurs in the case of short half-lives estimated from 4-weekly data. In most other

cases the difference is not large.

In practice researchers are still faced with estimating models using data that

is (predominately) either monthly or bi-monthly in periodicity. If the true data

generating process is assumed to be daily then half-life estimates from either of

these temporal aggregated data periods would be subject to the data interval

bias. If we could produce an equivalent half-life estimate (η̃) to correspond to the
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estimate (η̂) obtained from this monthly (or bi-monthly) data we could then use

table 5 to produce our value for the “true” half-life.

Table 1A in Leone (1995) provides some evidence that the average half-life esti-

mated from bi-monthly data is approximately twice that estimated from monthly

date. Thus, as a rule of thumb, we suggest converting bi-monthly based estimates

of half-life to monthly equivalents by multiplying them by 0.5. To convert monthly

based estimates of half-life to 4-weekly equivalents we suggest multipying them

by 0.9231 (=12/13). To illustrate this approach assume that a researcher has an

estimate of half-life of 6 weeks using bi-monthly data. The monthly equivalent

estimate is 3 weeks and the 4-weekly equivalent is 2.769 weeks. Using the re-

gression based methods underlying table 5 (in this case for T-Stat(C)) the “true”

half-life is 0.809 weeks. This value of 0.809 weeks is dramatically different in its

practical implications (e.g. for budget allocation over time a drip schedule may

be suggested) than the original estimate of 6 weeks (e.g. for budget allocation

over time a burst schedule may be suggested)!

6. Conclusions.

Using computer simulation (Monte Carlo) techniques we have investigated the

impact of temporal data aggregation on the estimation of the half-life in adstock

models. In particular, we were interested in the performance of three commonly
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used estimation techniques based upon weekly or four-weekly data when the true

underlying process that generates the data is at the daily level. The estima-

tion techniques considered were ordinary least squares on a suitably transformed

model, Direct (grid searched) estimation of a transformed version of the model and

Indirect estimation using t-ratios. The latter technique having some popularity

amongst practitioners in advertising agencies.

The simulation experiments used were based upon a realistic advertising sched-

ule and thus should give an indication of the comparative merits of different es-

timation procedures and the impact of temporal data aggregation in practice.

We found that OLS is not a suitable estimation procedure for the model dis-

cussed. The Direct and Indirect methods suffered from data interval bias but the

magnitude of this bias was relatively small. These two techniques were of simi-

lar accuracy when the advertising data input was of the macro-period frequency.

However, the indirect method was more accurate if micro or intermediate period

frequency data was used as input.

Additionally we used our simulation results to estimate a simple correction

equation to move from the half-life estimated from temporally aggregated data

to an estimate of the “true” underlying half-life. Given the simplicity of the

Indirect method and these regression results linking estimated to “true” half-lives

we conclude that this method has much to recommend it to practitioners.
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Tables.

Table 1: Half-life Estimates (̂η) - Daily to Weekly Aggregation.

Half-life OLS DIRECT
Weeks σ = 1 σ = 2 σ = 4 σ = 1 σ = 2 σ = 4

0.2857 0.5871 0.5734 0.5275 0.6002 0.5999 0.5992
0.5714 1.0222 0.9663 0.8056 1.0060 1.0055 1.0045

1 1.6267 1.4348 1.0137 1.5407 1.5403 1.5394
2 2.7937 1.9993 1.0388 2.6848 2.6848 2.6825
3 3.5625 2.0891 0.9256 3.7864 3.7863 3.7777
4 3.9883 2.0047 0.8257 4.8706 4.8698 4.8530
6 4.2185 1.7537 0.6915 6.9765 6.9722 6.9368
12 3.8406 1.3472 0.5403 12.8067 12.7479 12.5155
24 3.7598 1.2427 0.5028 24.4364 24.3023 23.8061

Half-life T-Stat(A) T-Stat(B)
Weeks σ = 1 σ = 2 σ = 4 σ = 1 σ = 2 σ = 4

0.2857 0.2857 0.2857 0.2857 0.5714 0.5726 0.5849
0.5714 0.5714 0.5714 0.5714 1.0000 1.0017 1.0060

1 1.0000 1.0020 1.0037 1.5580 1.5389 1.5400
2 2.0046 2.0054 2.0149 2.6580 2.6626 2.6749
3 3.0040 3.0100 3.0309 3.7283 3.7369 3.7589
4 4.0097 4.0149 4.0469 4.7743 4.7823 4.8131
6 6.0129 6.0263 6.0797 6.8006 6.8177 6.8657
12 12.0106 12.0414 12.1826 12.7600 12.7909 12.9403
24 24.0337 24.1894 24.7769 24.7809 24.9423 25.4780
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Table 2: Half-life Estimates (̂η) - Daily to Four-Weekly Aggregation.

Half-life OLS DIRECT
4-Weeks Weeks σ = 1 σ = 2 σ = 4 σ = 1 σ = 2 σ = 4

0.0714 0.2857 1.0714 1.0611 1.0273 1.1746 1.1737 1.1737
0.1429 0.5714 1.5050 1.4858 1.4206 1.7536 1.7530 1.7529
0.2500 1 2.0896 2.0484 1.9089 2.6207 2.6201 2.6193
0.5000 2 3.4301 3.2800 2.8235 4.5364 4.5332 4.5202
0.7500 3 4.8091 4.4406 3.4757 6.1984 6.1909 6.1614
1.0000 4 6.1858 5.4734 3.8850 7.6331 7.6205 7.5788
1.5000 6 8.7472 7.0275 4.2011 9.9790 9.9544 9.8505
3.0000 12 14.2730 9.0249 4.1367 15.3444 15.2708 14.9275
6.0000 24 21.6206 11.0257 4.3273 24.0157 25.8923 25.3793

Half-life T-Stat(A) T-Stat(B)
4-Weeks Weeks σ = 1 σ = 2 σ = 4 σ = 1 σ = 2 σ = 4

0.0714 0.2857 0.2857 0.2857 0.2886 0.5363 0.5171 0.5094
0.1429 0.5714 0.5714 0.5723 0.5746 0.8574 0.8574 0.8583
0.2500 1 1.0006 1.0017 1.0046 1.3543 1.3540 1.3574
0.5000 2 2.0054 2.0031 2.0114 2.4614 2.4626 2.4734
0.7500 3 2.9997 3.0057 3.0223 3.5346 3.5403 3.5574
1.0000 4 3.9983 4.0057 4.0246 4.5840 4.5917 4.6111
1.5000 6 6.0037 6.0011 6.0500 6.6240 6.6294 6.6663
3.0000 12 11.9951 12.0177 12.1503 12.5843 12.5980 12.7317
6.0000 24 24.0157 24.1649 24.7406 24.5549 24.7017 25.2503

Half-life T-Stat(C)
4-Weeks Weeks σ = 1 σ = 2 σ = 4

0.0714 0.2857 1.1566 1.1611 1.1434
0.1429 0.5714 1.7374 1.7426 1.7383
0.2500 1 2.5966 2.5943 2.6037
0.5000 2 4.3760 4.3800 4.3937
0.7500 3 5.8231 5.8274 5.8414
1.0000 4 7.0606 7.0657 7.0871
1.5000 6 9.2349 9.2397 9.2751
3.0000 12 15.2686 15.2834 15.4120
6.0000 24 27.1706 27.3074 27.6834
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Table 3: Nearness of ̂λ - Daily to Weekly Aggregation.

Half-life OLS DIRECT
Weeks σ = 1 σ = 2 σ = 4 σ = 1 σ = 2 σ = 4

0.2857 0 0 0 0 0 0
0.5714 0 0 0.012 0 0 0

1 0 0 0.330 0 0 0
2 0 0.324 0 0 0 0.044
3 0.012 0.002 0 0 0.014 0.066
4 0.282 0 0 0 0.026 0.124
6 0 0 0 0.008 0.094 0.202
12 0 0 0 0.130 0.206 0.270
24 0 0 0 0.240 0.302 0.320

Half-life T-Stat(A) T-Stat(B)
Weeks σ = 1 σ = 2 σ = 4 σ = 1 σ = 2 σ = 4

0.2857 1 1 1 0 0 0
0.5714 1 1 0.988 0 0 0

1 1 1 0.670 0 0 0
2 1 0.674 0.902 0 0.002 0.054
3 0.988 0.978 0.804 0 0.006 0.130
4 0.718 0.908 0.714 0 0.066 0.162
6 0.950 0.774 0.592 0.042 0.132 0.206
12 0.700 0.524 0.412 0.170 0.270 0.318
24 0.446 0.382 0.296 0.314 0.316 0.384
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Table 4: Nearness of ̂λ - Daily to Four-Weekly Aggregation.

Half-life OLS DIRECT
4-Weeks Weeks σ = 1 σ = 2 σ = 4 σ = 1 σ = 2 σ = 4

0.0714 0.2857 0 0 0 0 0 0
0.1429 0.5714 0 0 0 0 0 0
0.2500 1 0 0 0 0 0 0
0.5000 2 0 0 0.032 0 0 0
0.7500 3 0 0 0.196 0 0 0
1.0000 4 0 0.002 0.254 0 0 0
1.5000 6 0 0.134 0.110 0 0 0.018
3.0000 12 0.048 0.084 0 0 0.032 0.156
6.0000 24 0.110 0.002 0 0.152 0.172 0.242

Half-life T-Stat(A) T-Stat(B)
4-Weeks Weeks σ = 1 σ = 2 σ = 4 σ = 1 σ = 2 σ = 4

0.0714 0.2857 1 1 0.976 0 0 0.024
0.1429 0.5714 1 1 0.990 0 0 0.010
0.2500 1 1 1 0.968 0 0 0.032
0.5000 2 1 0.962 0.784 0 0.038 0.184
0.7500 3 0.982 0.862 0.562 0.018 0.138 0.242
1.0000 4 0.944 0.770 0.460 0.056 0.228 0.286
1.5000 6 0.872 0.616 0.500 0.128 0.250 0.344
3.0000 12 0.654 0.510 0.472 0.298 0.342 0.242
6.0000 24 0.430 0.424 0.342 0.276 0.206 0.134

Half-life T-Stat(C)
4-Weeks Weeks σ = 1 σ = 2 σ = 4

0.0714 0.2857 0 0 0
0.1429 0.5714 0 0 0
0.2500 1 0 0 0
0.5000 2 0 0 0
0.7500 3 0 0 0
1.0000 4 0 0 0
1.5000 6 0 0 0.028
3.0000 12 0 0.032 0.130
6.0000 24 0.032 0.196 0.282
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Table 5: Half-life equivalents measured in weeks.

True: Leone: Estimated from:

Weekly 4-Weekly

0.449 0.742 1 2.376

1.425 1.722 2 3.442

2.400 2.716 3 4.508

3.376 3.713 4 5.574

4.351 4.711 5 6.640

5.326 5.710 6 7.706

6.302 6.709 7 8.772

7.277 7.708 8 9.838

8.253 8.707 9 10.904

9.228 9.707 10 11.970

10.203 10.707 11 13.037

11.179 11.706 12 14.103

12.154 12.706 13 15.169

* 0.231 * 1

0.105 0.973 0.647 2

1.020 1.873 1.585 3

1.935 2.822 2.523 4

2.850 3.791 3.461 5

3.765 4.769 4.399 6

4.680 5.754 5.337 7

5.595 6.743 6.275 8

6.510 7.734 7.213 9

7.425 8.727 8.152 10

8.340 9.721 9.090 11

9.255 10.717 10.028 12

10.170 11.712 10.966 13
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Figure 1: Weekly Advertising Schedule
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Figure 2: Four Weekly Advertising Schedule
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