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Abstract

In this paper we will investigate the consequences of applying the sieve bootstrap

under regularity conditions that are sufficiently general to encompass both fractionally

integrated and non-invertible processes. The sieve bootstrap is obtained by approximat-

ing the data generating process by an autoregression whose order h increases with the

sample size T . The sieve bootstrap may be particularly useful in the analysis of frac-

tionally integrated processes since the statistics of interest can often be non-pivotal with

distributions that depend on the fractional index d. The validity of the sieve bootstrap

is established and it is shown that when the sieve bootstrap is used to approximate the

distribution of a general class of statistics admitting an Edgeworth expansion then the

error rate achieved is of order O(T β+d−1), for any β > 0. Practical implementation of the

sieve bootstrap is considered and the results are illustrated using a canonical example.
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1 Introduction

It is well known that, under a variety of conditions that hold in many econometric ap-

plications, improvements in the accuracy of first order large sample approximations can

be obtained using bootstrap techniques. Such improvements require that the bootstrap

re-sampling be conducted in such a way as to capture the essential features of the data gen-

erating process and in the context of time series analysis there are two basic methods that

can be employed, the block bootstrap (Künsch, 1989) and the sieve bootstrap (Bühlmann,

1997). Both techniques are second order accurate, but the errors made by the bootstrap

converge to zero more slowly than those of the bootstrap based on data drawn from a simple

random sample. The error in the coverage probability of a one sided confidence interval

is O(T−3/4) for the block bootstrap, for example, compared to the O(T−1) rate achieved

with simple random samples, where here, as in what follows, T is used to denote sample

size. The relatively poor performance of the block bootstrap has lead to the search for other

ways to implement the bootstrap with dependent data and to the development of adapta-

tions designed to increase the asymptotic refinement of the block bootstrap, see the recent

contributions of Horowitz (2003) and Andrews (2004) and the references contained therein,

for example. Choi and Hall (2000) have shown, however, that when the sieve bootstrap is

applied to a linear process then the error in the coverage probability of a one sided confidence

interval is O(T β−1), for any β > 0, which is only slightly larger than O(T−1). Choi and Hall

concur with the conclusion of Bühlmann and they argue that for linear time series the sieve

bootstrap has substantial advantages and superior performance over blocking methods.

The sieve bootstrap is obtained by approximating the data generating process by an

autoregression of order h where h increases with the sample size. The bootstrap samples

are then drawn from the autoregressive approximation. Details are presented below. Heuris-

tically speaking, it is clear that the order of the autoregression must be allowed to go to

infinity in order to achieve full generality and results on the properties of autoregressive

models when h → ∞ as T → ∞, such that h/T → 0, have been available for some time,

see Hannan and Deistler (1988, Section 7.4) for example. However, such results are usually

predicated on the presumption that the process admits an infinite autoregressive represen-

tation with coefficients that tend to zero at an appropriate rate, conditions that are not met

by (i) fractionally integrated and (ii) non-invertible processes. One of the contributions of

this paper is to show that, subject to appropriate adaptation, results on the properties of the

sieve bootstrap can be extended to allow for both fractionally integrated and non-invertible

processes.

Fractional processes were introduced by Granger and Joyeux (1980) and were indepen-

dently described in Hosking (1980). The class of fractionally integrated processes can be

characterized by the specification

y(t) =
∑

j≥0

k(j)ε(t− j) = k(z)ε(t) =
κ(z)

(1 − z)d
ε(t) (1.1)

wherein ε(t) denotes a white noise process and, as will be done henceforth in expressions
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of this type, the indeterminate z in k(z) =
∑

j≥0 k(j)z
j is interpreted as the lag operator,

that is zε(t) = ε(t − 1). For any b > −1 the operator (1 − z)b is defined via the binomial

expansion

(1 − z)b = 1 − bz +
b(b− 1)z

2!
−
b(b− 1)(b− 2)z3

3!
+ · · · ,

which yields the result that

1

(1 − z)d
=

∞
∑

j=0

Γ(j + d)zj

Γ(j + 1)Γ(d)
,

where the gamma function Γ(x) =
∫∞
0 tx−1e−tdt for x ≥ 0 and the relation Γ(x+1) = xΓ(x)

defines Γ(x) for x < 0. Hence

k(j) =

j
∑

r=0

κ(j − r)Γ(r + d)

Γ(r + 1)Γ(d)
j = 1, 2, . . .

where κ(z) =
∑

j≥0 κ(j)z
j . If κ(z) is such that

∑

j≥0 |κ(j)| < ∞, κ(z) might be the trans-

fer function of a stable and invertible autoregressive moving-average (ARMA) process for

example, then using Sterling’s approximation it can be shown that

k(j) ∼
κ(1)

Γ(d)
jd−1 as j → ∞ . (1.2)

From (1.2) it follows that
∑

j≥0 |k(j)|
2 <∞ if |d| < 0.5 and y(t) is well-defined as the limit

in mean square of a covariance-stationary process with spectral density

f(ω) =
σ2|k(eıω)|2

2π
=

σ2|κ(eıω)|2

2π|1 − eıω|2d
.

Using the result that |1 − eıω|2d = |2 sin(ω/2)|2d and sin(ω/2) ∼ ω/2 as ω → 0 it can be

shown that the spectral density obeys the inverse power law f(ω) ∼ σ2|κ(1)|2/2πω2d as

ω approaches zero. Similarly, the autocovariance function declines at a hyperbolic rate,

γ(τ) ∼ Cτ2d−1, C 6= 0, as τ → ∞, and not at an exponential rate as it would for a stable

and invertible ARMA process. Throughout the paper C will stand for a universal, though

not the same, constant. For a more detailed examination of the properties outlined above

see Beran (1994).

Many empirical time series exhibit dynamic behaviour typical of a fractional process, and

Beran (1992, 1994) and Baillie (1996) provide a brief history of the application of fractional

models and a review of various statistical procedures for analyzing such processes. The use of

fractional models depends, of course, on the practitioner being able to conduct appropriate

inference and the inferential procedures currently available are, for the most part, based on

first-order asymptotic theory. A natural alternative to using large-sample asymptotics to

analyse the properties of different statistical procedures is application the bootstrap, and

the bootstrap may be particularly useful in the analysis of fractionally integrated processes

since the statistics of interest can often be non-pivotal with distributions that depend on d.

Examination of non-invertible processes is motivated by the observation that, although

it might be argued that processes observed in the real world are unlikely to exhibit spectral
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zeroes, lack of invertibility might be induced by the actions of the practitioner, by over-

differencing for example. The consequences of such over-differencing for the subsequent

analysis of any techniques applied to the observed time series would then be of interest.

The paper proceeds as follows. The sieve bootstrap is described in the following section.

In Section 3 results from the theory of stochastic processes that provide a rationale for a

consideration of the sieve bootstrap in more general settings than are currently considered are

reviewed. This section also outlines the estimation techniques to be used. These two sections

provide the background, establish notation and present the basic assumptions. Section 4 lists

some of the fundamental results that justify the sieve bootstrap and establishes a convergence

rate of O(T β+d−1) for any β > 0 for a general class of statistics that admit an Edgeworth

expansion. Some additional practical issues are discussed in Section 5, where an illustration

of the performance of the sieve bootstrap is also presented. Proofs and technical lemmas are

assembled together in Section 6.

2 The Sieve Bootstrap

Consider a statistic ST = (s1T , . . . , smT )′ where siT = si(y(1), . . . , y(T )) and each si(·) for

i = 1, . . . ,m is a suitably smooth function of the time series values y(1), . . . , y(T ). Let

FST
(s) be the distribution function of ST under the probability law P{y(1),...,y(T )} of the data

generating mechanism. Bootstrap procedures are designed to construct an approximation

to FST
(s) by approximating P{y(1),...,y(T )} and for the sieve bootstrap the approximation is

constructed in the following manner.

Let YT = {y(1), . . . , y(T )} denote a realization of a stochastic process. From YT es-

timate the parameters of the hth order autoregressive approximation using the Levinson

(1947)-Durbin (1960) algorithm, denoted by φ̄h = (φ̄h(1) · · · φ̄h(h)) and σ̄2
h, and evaluate the

residuals

ǭh(t) =
h
∑

j=0

φ̄h(j)y(t− j) , t = 1, . . . , T .

From ǭh(t), t = 1, . . . , T , construct the standardized residuals ǫ̃h(t) = (ǭh(t)− ǭh)/sǭh
where

ǭh = T−1
∑T

t=1 ǭh(t) and s2ǭh
= T−1

∑T
t=1(ǭh(t) − ǭh)2.

Denote by Uǫ̃h,T (e) the distribution function of the probability distribution that puts

probability mass 1/T at each ǫ̃h(t), t = 1, . . . , T , and let ǫ+h (t), t = 1, . . . , T , denote a simple

random sample of i.i.d. values drawn from

Uǭh,T (e) = T−1
T
∑

t=1

1{ǫ̃h(t) ≤ e} .

Define the bootstrap realization Y∗
T = {y∗(1), . . . , y∗(T )} where y∗(t) is the autoregressive

process defined by
h
∑

j=0

φ̄h(j)y∗(t− j) = ǫ∗h(t)

where ǫ∗h(t) = σ̄hǫ
+
h (t). Now define S∗

T as for ST but with the observed realization YT
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replaced by Y∗
T , so that S∗

T = (s∗1T , . . . , s
∗
mT )′ where s∗iT = si(y

∗(1), . . . , y∗(T )).

Construct B independent bootstrap realizations Y∗
T,b and calculate S∗

T,b for b = 1, . . . , B.

Approximate FST
(s) by the empirical distribution function

F̄S∗

T
,B(s) = B−1

B
∑

b=1

1{S∗
T,b ≤ s} .

The idea behind the sieve bootstrap is that the distribution of S∗
T under P{y∗(1),...,y∗(T )}

should mimic that of ST under P{y(1),...,y(T )} and therefore we can expect FS∗

T
(s) to approxi-

mate FST
(s) reasonably well provided P{y∗(1),...,y∗(T )} is in some sense close to P{y(1),...,y(T )}.

The analytical determination of FS∗

T
(s) is generally intractable, but by simulating a large

number of independent bootstrap realizations we can approximate FS∗

T
(s) by F̄S∗

T
,B(s). By

the Glivenko-Cantelli Theorem F̄S∗

T
,B(s) converges to FS∗

T
(s) a.s. uniformly in s as B → ∞.

Thus, we can approximate FS∗

T
(s) arbitrarily closely by taking the number of bootstrap real-

izations sufficiently large and we can anticipate that F̄S∗

T
,B(s) will also approximate FST

(s)

closely provided FS∗

T
(s) is sufficiently near to FST

(s).

3 Rationale

Let y(t) for t ∈ Z denote a linearly regular, covariance-stationary process with Wold repre-

sentation,

y(t) =
∞
∑

j=0

k(j)ε(t− j) (3.1)

where ε(t), t ∈ Z, is a zero mean white noise process with variance σ2 and the impulse

response coefficients satisfy the conditions k(0) = 1 and
∑

j≥0 k(j)
2 <∞.

Assumption 1 Let Et denote the σ-algebra of events determined by ε(s), s ≤ t. It will be

supposed throughout the paper that ε(t) is ergodic and that

E
[

ε(t) | Et−1

]

= 0 and E
[

ε(t)2 | Et−1

]

= σ2 . (3.2)

Furthermore, E
[

ε(t)4] <∞.

Assumption 1 imposes a classical martingale difference structure on the innovations ε(t).

The significance of this assumption here is that it implies that the minimum mean squared

error predictor of y(t) given Et−1, ȳ〈t|t−1,...∞〉 say, is the linear predictor, Hannan and Deistler

(1988, Theorem 1.4.2).

Since by assumption y(t) is a regular process then we know from a famous result due to

Szegö (1939) and Kolmorgorov (1941) that it is not possible to determine y(t+ 1) precisely

from its own history up to time t and

σ2 = 2π exp{
1

2π

∫ π

−π
log

{

σ2|k(eıω)|2

2π

}

dω} > 0 . (3.3)

where σ2 = E[(y(t) − ȳ〈t|t−1,...∞〉)
2]. The transfer function k(z) has no zeroes inside the

unit circle and |k(eıω)|2 > 0 almost everywhere (a.e.) where |k(eıω)|2 = limρ↑1 |k(ρeıω)|2, the
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radial limit of k(z) on the boundary of the unit circle |z| = 1. In the context of autoregressive

modelling and the sieve bootstrap it is common practice to strengthen the condition, k(z) 6=

0, |z| < 1, by adding the restriction that k(z) has no zeroes on the unit circle, and to assume

that a condition such as
∑

j≥0 |k(j)| < ∞, or
∑

j≥0 j|k(j)|
2 < ∞, holds, see inter alia

Bühlmann (1997, Section 3.1). It is not necessary for k(z) to be invertible, however, in order

for there to be an autoregression that yields an appropriate approximation to the process,

and note that the impulse response coefficients of k(z) in (1.1) will not satisfy the above

summability conditions if d > 0 and the process exhibits long memory, a case commonly

encountered.

3.1 Autoregressive Approximation

Consider the best linear predictor of y(t) based on y(t−j), j = 1, . . . , h. Let γ(τ) = γ(−τ) =

E[y(t)y(t + τ)] = σ2
∑

r≥0 k(r)k(τ + r), τ = 0, 1, . . ., denote the autocovariance function of

the process y(t). The coefficients of the minimum mean squared predictor of y(t) based only

on the finite past y(t− 1), . . . , y(t− h), denoted φh(j), j = 0, . . . , h, are obtained by solving

the Yule-Walker equations

h
∑

j=0

φh(j)γ(j − k) = δ0kσ
2
h , k = 0, 1, . . . , h, (3.4)

where δ0k is Kronecker’s delta, φh(0) = 1 and

σ2
h = E

[

ǫh(t)2
]

(3.5)

is the minimising value of the prediction error variance associated with the prediction error

ǫh(t) =
h
∑

j=0

φh(j)y(t− j) . (3.6)

Rewriting the Yule-Walker equations in matrix-vector notation yields Γhφh = −γh where

Γh = [γ(i − j)]i,j=1,...,h, φh = (φh(1), . . . , φh(h))′ and γh = (γ(1), . . . , γ(h))′. Note that

regularity of y(t) implies that Γh is nonsingular for all h and it follows that φh is unique and

φh(z) =
∑h

j=0 φh(j)zj 6= 0, |z| ≤ 1. Solving (3.4) using the Levinson (1947)-Durbin (1960)

algorithm

φh(j) = φh−1(j) + φh(h)φh−1(h− j), φh(0) = 1, j = 1, . . . , h− 1

φh(h) =
h−1
∑

j=0

φh−1(j)γ(h− j)/σ2
h−1

σ2
h = σ2

h−1(1 − φh(h)2) (3.7)

initiated at φ0(0) = 1 and σ2
0 = γ(0), and using the relationship σ2

h = det(Γh+1)/det(Γh),

which leads to the conclusion that |φh(h)| < 1 for all h, we can see that σ2
h is monotonically

decreasing in h. Basic Hilbert space arguments can also be used to show that limh→∞ σ2
h =

σ2.
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Thus, for h sufficiently large it seems reasonable to suppose that the optimal predictor

ȳ〈t|t−1,...,t−h〉 = φh(1)y(t− 1)+ · · ·+φh(h)y(t−h) determined from the autoregressive model

in (3.6) will form a good approximation to the best predictor ȳ〈t|t−1,...∞〉 and hence that ǫh(t)

will be close to ε(t). We can therefore think of an infinite autoregression as arising, not by

inverting k(z), but as the limit of the autoregressive approximations obtained as h → ∞.

Indeed, Wold (1938) first derived (3.1) by fitting autoregressions of ever increasing order.

From the preceding discussion it is apparent that it is the regularity of y(t) that is im-

portant in the context of autoregressive modelling rather than invertibility. This observation

gives rise to the following:

Assumption 2 The series y(t) is a linearly regular, covariance-stationary process with Wold

representation y(t) =
∑

j≥0 k(j)ε(t− j) where k(z) = κ(z)/(1− z)d for |d| < 0.5 and κ(z) is

a causal transfer function with impulse response coefficients satisfying
∑

j≥0 |κ(j)| <∞.

3.2 Data Modelling

The sieve bootstrap is obtained by approximating the data generating process by an autore-

gression of order h and then resampling from the autoregressive approximation where the

parameters of the AR(h) approximation are determined by fitting autoregressive models to

the data. More explicitly, given a realisation of T observations y(t), t = 1, . . . , T , set

cT (r) = cT (−r) = T−1
T
∑

t=r+1

y(t− r)y(t) , r = 0, 1, . . . , T − 1 , (3.8)

the sample autocovariance function. Substituting cT (r) for γ(r) in the Yule-Walker equations

3.4 and solving for φh(j), j = 1, . . . , h and σh yields estimates of the parameters in the AR(h)

model. Noting the correspondence with the method of moments we denote the Yule-Walker

estimator and its associated estimates by the use of an over-bar. This estimator has the

advantage that it can be readily calculated via the Levinson-Durbin recursions, and being

based on Toeplitz calculations the operator φ̄h(z), like φh(z), will be stable.

In order to implement the sieve bootstrap the order of the autoregressive approximation

must be prescribed. Following Bühlmann (1997) we suppose that h is chosen using Akaike’s

information criterion, Akaike (1969), that is, the order of the model to be employed is

obtained by minimizing the model selection criterion

AICT (h) = log(σ̄2
h) + 2h/T

over the range h = 0, 1, . . . ,MT where MT = [c(log T )a], the integer part of c(log T )a for

some a ≥ 1 and c > 0. Bühlmann (1997) justifies the use of AIC by reference to the predic-

tive optimality property of AIC due to Shibata (1980). The regularity conditions imposed by

Shibata op. cit. are too restrictive to be applicable here. Nevertheless, a similar justification

for consideration of AIC can be given and Poskitt (2004) shows that if y(t) is a covariance-

stationary process that satisfies Assumptions 1 and 2, and hAIC
T = argmin0,1,...,MT

AICT (h)

where limT→∞ (MT /λmin(ΓMT
)) (log T/T )1−2d′ = 0, then the AR(hAIC

T ) model is asymptot-

ically efficient in the sense that if it is used to predict a future value of the same process then
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the mean squared prediction error achieves an asymptotic lower bound.

Poskitt (2004)’s result extends the predictive optimality property of AIC to fractional and

non-invertible processes and thereby provides the theoretical background to the fundamental

step of selecting h in application of the sieve bootstrap to such processes. It is based in part

on the following theorem.

Theorem 3.1 If y(t) is a stationary process that satisfies Assumption 1 and Assumption 2

then uniformly in h ≤ HT

h
∑

j=1

|φ̄h(j) − φh(j)|2 = O

{

(

h

λmin(Γ
2
h)

)(

log T

T

)1−2d′
}

.

where HT = o{(T/ log T )
1

2
−d′} where d′ = max{0, d}

Theorem 3.1 establishes the consistency of the coefficient estimates of the AR(h) model to

those of the AR(h) approximation to the process and indicates that the parameter estimation

errors converge to zero at a rate that is dependent on d. The relevance of this observation

stems from the fact that the convergence rate of the sieve bootstrap itself depends upon

the convergence rate of these estimates. It is also apparent that the presence of spectral

zeroes has an important impact via it’s influence on the proximity of λmin(Γh) to zero.

To investigate this impact in further detail it is necessary to give explicit structure to the

spectral zeroes of the process. This is done by extending Assumption 2.

Assumption 3 There exists a set of frequencies θj ∈ (0, π) and numbers νj > 0, j =

1, . . . , n, such that |k(ω)|2 ∼ |2 sin(ω/2)|−2d|µj(ω)|2|ω − θj |
2νj as ω → θj, where µj(ω) is of

bounded variation on (0, π) and slowly varying at θj, for each j = 1, . . . , n.

By appropriate choice of n and the θj and νj the factors |µj(ω)|2|ω − θj |
2νj can be thought

of as modeling spectral zeroes or troughs.

4 Some Asymptotic Theory

The following Lipschitz-type condition determines the degree of smoothness that the statistic

ST must satisfy in order for the results presented here to hold.

Assumption 4 Let Y be a Borel set in R
T . Then for all YT ,Y

∗
T ∈ Y there exists a family

of Borel measurable functions Bt : R
2 → [0,∞), satisfying

lim sup
T→∞

1

T

T
∑

t=1

E[Bt(yt, y
∗
t )

2] <∞ ,

for which

‖ST − S∗
T ‖

2 ≤
1

T

T
∑

t=1

Bt(yt, y
∗
t )|yt − y∗t | .

Assumption 4 can be verified directly in some cases. For the standard deviation sy, where

s2y = T−1
∑T

t=1(yt − ȳ)2, ȳ = T−1
∑T

t=1 yt, the bound |sy − sy∗ |2 ≤ (1/T )
∑T

t=1 |yt − y∗t |
2
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follows from the triangular inequality, for example. More generally, Assumption 4 can be

ensured by imposing suitable sufficient conditions on the elements of ST . Thus, if

siT = gi

(

(T −m)−1
T
∑

t=1

fi,t(yt, yt−1, . . . , yt−m)

)

(4.1)

where, for all i = 1, . . . ,m, the function gi : R → R is differentiable on R and fi,t : R
m+1 → R

has continuous partial derivatives for each t, then ST will be differentiable on Y and Lips-

chitzian. Functions of linear statistics of the type given in 4.1 include the sample autoco-

variances, autocorrelations and partial-autocorrelations.

Theorem 4.1 Let η(FX , FY ) denote Mallow’s measure of the distance between two probabil-

ity distributions FX and FY , defined as inf{E‖X − Y ‖2}
1

2 where the infimum is taken over

all square integrable random variables X and Y in R
m with marginal distributions FX and

FY . Then

η(FS∗

T
, FST

) = O

{

(

h5

λmin(Γ
2
h)

)

1

2

(

log T

T

)
1

2
−d′
}

under Assumptions 1, 2 and 4, and

η(FS∗

T
, FST

) = o

{

(

T β

T 1−2d′

)

1

2

}

for any β > 0 under Assumptions 1 through 4 inclusive.

See Bickel and Freedman (1981, Section 8) for a discussion of the properties of η(FX , FY ).

Since η(F̄S∗

T
,B, FS∗

T
) = o(1) (Bickel and Freedman, 1981, Lemma 8.4) it follows from the

triangular inequality, η(F̄S∗

T
,B, FST

) ≤ η(F̄S∗

T
,B, FS∗

T
) + η(FS∗

T
, FST

), and Theorem 4.1 that

η(F̄S∗

T
,B, FST

) = o(1). This implies that F̄S∗

T
,B converges in probability to FST

and validates

the sieve bootstrap under the scenarios being considered here.

The topology induced by Mallows metric is relatively weak, however, and the convergence

rate given in Theorem 4.1 is no better than that achieved using known central limit properties

of fractional processes, as described in Hosking (1996) for example. In order to obtain

better convergence rates let us suppose that FST
(s) is absolutely continuous with respect to

Lebesgue measure, differentiable for all s, and that the following assumption is satisfied.

Assumption 5 Let ψT (θ) = E[exp(ıθ′ST )] denote the characteristic function of ST where

θ = (θ1, . . . , θm)′ and let ∂j logψT (θ)/∂θj denote the vector of jth order partial derivatives

corresponding to ∂j logψT (θ)/∂θj1
1 · · · ∂θjm

m for all non-negative integers j1, . . . , jm satisfying
∑m

l=1 jl = j. Then firstly, for any δ > 0 the conditions

∫

‖θ‖>δ
√

T
|ψT (θ)|2dθ = o(T 2−r) and

∫

‖θ‖>δ
√

T
|
∂sψT (θ)

∂θs
l

|2dθ = O(T 1−r), l = 1, . . . ,m,

hold where s = [m/2] + 1 and r ≥ 3, and secondly, ∂q logψT (θ)/∂θq exists for all θ in

a neighbourhood of the origin and lim‖θ‖→0 T
−1∂q logψT (θ)/∂θq exists as T → ∞ for all
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q = 1, . . . , q′ = max{s, r + 1}.

Here E denotes the expectation taken with respect P, the probability measure induced by

P{y(1),...,y(T )}. Assumption 5 summarizes Assumptions 1 and 2 of Taniguchi (1984), which

in turn are related to the conditions imposed by Durbin (1980) in order to validate the

Edgeworth expansion in dependent data settings.

Let VT = E [(ST − E[ST ])(ST − E[ST ])′] = O(T ) and set ZT = V
− 1

2

T (ST − E[ST ]).

Assumption 5 ensures the validity of the formal Edgeworth expansion

P(ZT ≤ z) = G(z) +
r
∑

j=3

T 1−j/2πj(z,Kr)g(z) + o(T 1−r/2) (4.2)

uniformly in z, where G(z) denotes the distribution function of a Gaussian N(0, Im) random

vector, g(z) the corresponding density, and πj(z,Kr) is a polynomial function of degree j

in z whose coefficients are polynomials in the elements of the cumulants Kr = (k′
1, . . . ,k

′
r)

′,

kr = ı−r∂r logψT (0)/∂θr. See Theorem 1 of Taniguchi (1984).

Similarly, if E∗ is used to denote the expectation taken with respect to the probabil-

ity measure P∗ induced by P{y∗(1),...,y∗(T )} and Z∗
T = V

∗− 1

2

T (S∗
T − E∗[S∗

T ]) where V∗
T =

E∗ [(S∗
T − E∗[S∗

T ])(S∗
T − E∗[S∗

T ])′], then

P∗(Z∗
T ≤ z) = G(z) +

r
∑

j=3

T 1−j/2πj(z,K
∗
r)g(z) + o(T 1−r/2) (4.3)

where K∗
r = (k∗′

1 , . . . ,k
∗′
r )′, k∗

r = ı−r{∂r logψ∗
T (0)/∂θr}, ψ∗

T (θ) = E∗[exp(ıθ′S∗
T )].

Note that P∗ depends on YT and the elements of K∗
r, which are constants relative to P∗,

are random variables relative to P. A comparison of (4.2) and (4.3) for r ≥ 3 now indicates

that

sup
z

|P∗(Z∗
T ≤ z) − P(ZT ≤ z)| = T− 1

2O(‖K∗
r − Kr‖) + o(T− 1

2 ) . (4.4)

Expression (4.4) forms the background to the following theorem since, as is shown below,

under the regularity conditions of the theorem ‖K∗
r − Kr‖ = O(T− 1

2
(1−2d′)+β).

Theorem 4.2 Suppose that the statistic ST satisfies Assumption 4 and Assumption 5 with

r ≥ 3 when calculated from any process y(t) that satisfies Assumptions 1, 2 and 3. Then

sup
z

|P∗(Z∗
T ≤ z) − P(ZT ≤ z)| = O(T−(1−d′)+β)

for all β > 0.

Theorem 4.2 indicates the refinements that are possible using the sieve bootstrap. As-

sumption 5 is a relatively high level condition, however, that will need to be verified on a

case by case basis. If an Edgeworth expansion of the form implicit in Assumption 5 can be

established independently, or if (4.2) and (4.3) are known to obtain a priori, then Assump-

tion 5 can be dispensed with and the result in Theorem 4.2 will continue to hold. More

importantly, Theorem 4.2 is expressed in terms of standardized statistics and in practice it

is unlikely that the mean vectors and covariance matrices required to construct such quanti-

ties will be known. Standardization can be circumvented, however, and the sieve bootstrap
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can be implemented without prior knowledge of the moments of ST . Formally we have the

following result.

Theorem 4.3 Suppose that for any process y(t) that satisfies Assumptions 1, 2 and 3 the

statistic ST admits the formal Edgeworth expansion

P(V
− 1

2

T (ST − E[ST ]) ≤ z) = G(z) +
r
∑

j=3

T 1−j/2πj(z,Kr)g(z) + o(T 1−r/2)

uniformly in z for some r ≥ 3. Suppose also that ST satisfies Asumption 4. Then

|P∗(T− 1

2 (S∗
T − ST ) ≤ s) − P(T− 1

2 (ST − E[ST ]) ≤ s)| = Op(T
−(1−d′)+β)

for all β > 0 uniformly in s.

Statistics for which Edgeworth expansions have been established in the context of frac-

tional processes, and to which the results given here can be applied, include quadratic forms

in Gaussian long memory processes and Gaussian maximum likelihood estimates, Lieberman,

Rousseau and Zucker (2001, 2003), and semiparametric Whittle estimates of long memory,

Giraitis and Robinson (2003).

5 Practical Considerations and An Illustration

5.1 Practical Considerations

Thus far we have couched our discussion of the sieve bootstrap in terms of the Yule-Walker

estimates. Estimating the parameters of the autoregressive approximation by directly mini-

mizing the observed mean squared error T−1
∑T

t=1(y(t)−φh(1)y(t−1)+ · · ·+φh(h)y(t−h))2

leads to the least squares estimates of course. By way of contrast, whereas the least squares

estimator minimizes the observed mean squared error, the Yule-Walker estimator need not,

but there is no guarantee that the least squares estimate of φh(z) will, like φ̄h(z), be sta-

ble. The difference in the two estimators is due to edge effects and, as is shown in Poskitt

(2004), although these effects are asymptotically negligible the two estimators can have

quite different finite sample behaviour. In particular, when applied to noninvertible and

fractional processes the Yule-Walker coefficient estimates exhibit a substantial finite sample

bias which feeds through to the prediction error variance and order estimates, c.f. Tjøstheim

and Paulsen (1983) and Paulsen and Tjøstheim (1985). Such biases are not present with the

least squares estimator, suggesting that the sieve bootstrap be constructed from statistics

based on least squares calculations. In the context of the sieve bootstrap, however, we require

an estimate of φh(z) that is stable. A suitable compromise is given by the algorithm due to

Burg (1968). Burg’s algorithm generates a stable estimator of φh(z) that shares the superior

finite sample properties of least squares, see Poskitt (2004). It is therefore recommended

that for practical purposes Burg’s algorithm be used at the first step of the sieve bootstrap

rather than the Levinson-Durbin algorithm.

It is useful to note that alternative methods of autoregressive order determination that

generate asymptotically efficient selection criteria have been proposed in the literature. The
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criterion autoregressive transfer function suggested by Parzen (1974),

CATT (h) = 1 −
(T − h)σ̃2

T σ̄−2
h

+
h

T

and the mean squared prediction error criterion of Mallows (1973),

MCT (h) = T

(

σ̄2
h

σ̃2
− 1

)

+ 2h ,

where

σ̃2 = 2π exp







(2πN)−1
N
∑

j=1

T−1
∑

τ=1−T

cT (τ) cos(2πjτ/T ) + γ′







,

γ′ = 0.57721 (Eulers constant) and N = [(T − 1)/2], a nonparametric estimate of the

innovation variance constructed from the periodogram by analogy with (3.3), for example.

Any of these criteria could be used to determine h in place of AIC.

5.2 An Illustration

This section illustrates the main results of the paper by means of a small simulation experi-

ment. The experiments follow Lieberman et al. (2003) and examine the distribution of the

maximum likelihood estimator d̃T of d for the fractional noise process (1 − z)dy(t) = ε(t)

where ε(t) is standard Gaussian white noise. The true values of d considered where 0.1, 0.2,

0.3 and 0.4, and the sample sizes examined were T = 20, 40, 80, 160. To obtain d̃T the exact

Gaussian likelihood was maximized over the interval [−0.49, 0.49].

The performance of the sieve bootstrap is summarized graphically in the following figures,

which present the exact distribution and the bootstrap distribution. The exact, or Monte–

Carlo, distribution of ζT = π
√

T/6(d̃T − d) was calculated empirically, as in Lieberman

et al. (2003), using 1000 simulation replications. For each realization of the process the sieve

bootstrap distribution of ζ∗T = π
√

T/6(d̃∗T − d) was constructed from B = 500 bootstrap

re-samples, with the order hT chosen via AIC, using Burg’s algorithm to estimate the

models. Note that the value of B used here ensures that P(sups |F̄S∗

T
,B(s) − FS∗

T
(s)| < δ) >

1−2 exp(−δ2(1000)). Both distributions were evaluated using a kernel density estimate based

on a Gaussian kernel with bandwidth equal to 0.75 s 5

√

(243/35N) where s is the standard

deviation calculated from the N data values being smoothed, see Wand and Jones (1995).

To provide a basis for comparison the exact and an approximate Edgeworth expansion that

provide asymptotic expansions of the distribution of ζT up to terms o(T− 1

2 ), as described in

Lieberman and Phillips (2004), are also plotted, as is the asymptotic normal approximation.

Figure 1 presents the distributions obtained when d = 0.2 and T = 40, 160. The sieve

bootstrap does not give as accurate an approximation to the exact (Monte–Carlo) distri-

bution as the Edgeworth expansions, nor the normal approximation, and the ability of the

sieve bootstrap to provide a reasonable representation of the distribution of ζT appears to

be called into question.

[Figure 1 about here.]
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The effects of increasing d are seen in Figure 2, which presents the distributions obtained

when d = 0.4 and T = 40, 160.

[Figure 2 about here.]

The slower convergence rate for ζ∗T inherent in having a larger value of d does not seem to

have harmed the performance of the sieve bootstrap. Rather, the larger value of d has clearly

produced a deterioration in the performance of the normal approximation, particularly when

T = 40. The relativities seen in Figure 2 are not too unexpected, of course, since the conver-

gence rate of both Edgeworth expansions is o(T− 1

2 ), compared to the O(T−(1−d′)+β), β > 0,

rate for the sieve bootstrap given in Theorem 4.2, compared to Op(1) for the asymptotic

approximation.

In both Figure 1 and Figure 2 the distribution of ζ∗T appears to have fatter tails than the

true distribution, to be rather more skewed, and more platykurtic in the case of Figure 1.

A detailed examination of individual replications reveals the cause; the likelihood surface is

often very flat in an asymmetric interval around d,

[Figure 3 about here.]

as illustrated in Figure 3. This figure plots the log-likelihood for ten randomly chosen

realizations when d = 0.4 and T = 160. Roughly speaking, for each of these realizations

any value of d in the interval (0.375, 0.45) seems equally likely and d̃T can fall anywhere in

the interval. For such realizations the sieve bootstrap values d̃∗T are also concentrated in the

same interval, and hence the overall skewness. This suggests that previous distortions to the

sieve bootstrap distribution can be removed by re-centering, the justification for which lies

in Theorem 4.3. The consequences of re-centering are illustrated in Figures 4 and 5,

[Figure 4 about here.]

which present the counterparts to Figures 1 and 2 for ζ̃∗T = π
√

T/6(d̃∗T − d̃T ) = ζ∗T − ζT .

[Figure 5 about here.]

The improvement in performance brought about by removing the fluctuations in ζT is appar-

ent. The sieve bootstrap now yields a more accurate representation of the true distribution

than does the asymptotic normal approximation, even for moderately large T , and it is cap-

turing the second order properties of the estimator quite well, on a par with the analytically

derived, but unfeasible, Edgeworth expansions.

Finally, it is of interest to note that the performance of the sieve bootstrap appears to be

at least as good as that of the model based bootstrap. The latter is derived in the obvious way,

using the residuals from the known model, rather than the autoregressive approximation, as

a basis for constructing the bootstrap re–samples.
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6 Proofs and Technical Lemmas

Before proceeding let us collect together some properties of the AR(h) approximation and

the associated estimates. We begin with a lemma that relates the residuals

ǭh(t) =
h
∑

j=0

φ̄h(j)y(t− j)

to the prediction errors ǫh(t). The lemma depends on Theorem 3.1, which we prove first.

Proof of Theorem 3.1: The result follows directly from Corollary 4.1 and Theorem 5.1 of

Poskitt (2004).

Lemma 6.1 Under the same assumptions as for Theorem 3.1

T−1
T
∑

t=1

{ǭh(t) − ǫh(t)}2 = O

{

(

h

λmin(Γh)

)(

log T

T

)1−2d′
}

.

uniformly in h ≤ HT , HT = o{(T/ log T )
1

2
−d′} where d′ = max{0, d}.

Proof: From the definition of ǭh(t) and ǫh(t) we get

ǭh(t) − ǫh(t) =
h
∑

j=1

{φ̄h(j) − φh(j)}y(t− j)

and

T−1
T
∑

t=1

{ǭh(t)−ǫh(t)}2 ≤ |T−1
T
∑

t=1

ǫh(t){ǭh(t)−ǫh(t)}|+ |T−1
T
∑

t=1

ǭh(t){ǭh(t)−ǫh(t)}| . (6.1)

From the Cauchy-Schwartz inequality we now have

|T−1
T
∑

t=1

ǫh(t){ǭh(t) − ǫh(t)}| = |T−1
T
∑

t=1

h
∑

j=1

{φ̄h(j) − φh(j)}ǫh(t)y(t− j)|

≤



‖φ̄h − φh‖
2 ·

h
∑

j=1

(

T−1
T
∑

t=1

ǫh(t)y(t− j)

)2




1

2

and simple substitution gives us

T−1
T
∑

t=1

ǫh(t)y(t− r) =
h
∑

j=0

φh(j)T−1
T
∑

t=1

y(t− j)y(t− r) ,

which by Poskitt (2004, Theorem 4.1) equals

h
∑

j=0

φh(j)[γ(j − r) +O{(log T/T )
1

2
−d′}] .

Since φh(j), j = 1, . . . , h, solve the Yule-Walker equations
∑h

j=0 φh(j)γ(j − r) = 0 for

r = 1, . . . , h. Moreover, φh(z) 6= 0, |z| ≤ 1, and there exists constants C < ∞ and ζ < 1
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such that |φh(j)| < Cζj and
∑h

j=0 |φh(j)| < C(1 − ζh+1)/(1 − ζ) < C(1 − ζ)−1 so that
∑h

j=0 φh(j)O{(log T/T )
1

2
−d′} = O{(log T/T )

1

2
−d′}. This result, when combined with Theo-

rem 3.1 gives us the bound O
{

(h/λmin(Γh)) (log T/T )1−2d′
}

for the first term on the right

hand side in (6.1).

Similarly,

T−1
T
∑

t=1

ǭh(t){ǭh(t) − ǫh(t)} =

h
∑

j=1

{φ̄h(j) − φh(j)}T−1
T
∑

t=1

ǭh(t)y(t− j)

and

T−1
T
∑

t=1

ǭh(t)y(t− r) =
h
∑

j=0

φ̄h(j)T−1
T
∑

t=1

y(t− j)y(t− r)

=
h
∑

j=0

φ̄h(j)[cT (j − r) +O{(log T/T )
1

2
−d′}]

where the last equality follows as a consequence of Theorems 4.1 and 4.2 of Poskitt (2004).

Since φ̄h(j), j = 1, . . . , h, solve the empirical Yule-Walker equations
∑h

j=0 φ̄h(j)cT (j−r) = 0,

r = 1, . . . , h, and φ̄h(z) is by construction stable, a repetition of the arguments just applied

to the first term on the right hand side of (6.1) yields the same order of magnitude for the

second term, and the lemma is proved.

Set ϕh(z) =
∑∞

j=0 ϕh(j)zj where the ϕh(j) and φh(j) are related by the recursions

φh(0) = ϕh(0) = 1 ,

j
∑

i=0

ϕh(i)φh(j − i) = 0, j = 1, 2, . . . . (6.2)

Then ϕh(z) = {φh(z)}−1 for |z| ≤ 1 and since φh(z) 6= 0, |z| ≤ 1, the same is true of ϕh(z).

Define ϕ̄h(z) = {φ̄h(z)}−1 similarly by replacing φh(z) by φ̄h(z). We now present some

properties of the operator ϕh(z) and its corresponding estimate ϕ̄h(z).

Lemma 6.2 Suppose that Assumptions 1 and 2 hold. Then

|ϕ̄h(j) − ϕh(j)| ≤
h

(1 + 1/h)j
O

{

(

h

λmin(Γh)

)
1

2

(

log T

T

)
1

2
−d′
}

.

uniformly in j and h ≤ HT . Moreover,

∞
∑

j=0

|ϕ̄h(j) − ϕh(j)| = O

{

(

h5

λmin(Γh)

)

1

2

(

log T

T

)
1

2
−d′
}

.

Proof: By definition

ϕ̄h(z) − ϕh(z) =
φh(z) − φ̄h(z)

φ̄h(z)φh(z)

and the first part of the lemma follows directly from Cauchy’s inequality for holomorphic



Nonstandard Sieve Bootstrap 15

functions and Theorem 3.1. We now have

∞
∑

j=0

|ϕ̄h(j) − ϕh(j)| ≤
∞
∑

j=0

h

(1 + 1/h)j
O

{

(

h

λmin(Γh)

)
1

2

(

log T

T

)
1

2
−d′
}

= O

{

(

h5

λmin(Γh)

)

1

2

(

log T

T

)
1

2
−d′
}

,

as required.

In the analysis of infinite autoregressions it is common practice to handle the truncation

effect due to using an AR(h) approximation by appealing to Baxter (1962)’s inequality, see

also Berk (1974). Since under present assumptions an infinite autoregressive representation

is not guaranteed to exist we cannot employ that technique here. We can, nevertheless,

handle the consequences of using an AR(h) approximation by using the following lemma.

Lemma 6.3 Assume that the process y(t) satisfies Assumption 2. Then for all δ > 0 there

exists an h sufficiently large such that |φh(eiω)k(eiω) − 1| < δ a.e. for ω ∈ (−π, π].

Proof: Using the standard isometric isomorphism between the time and frequency domains

we find that the lemma is an immediate consequence of the fact that as h increases ǫh(t)

converges to ε(t) in mean square. Indeed, let ρ(z) =
∑

j≥1 ρ(j)z
j = φh(z)k(z) − 1. Then

ǫh(t) − ε(t) =
∑

j≥1 ρ(j)ε(t− j) and from Parseval’s relation

∑

j≥1

ρ(j)2 =

∫ π

−π
|φh(eiω)k(eiω) − 1|2dω = 2πσ−2E[(ǫh(t) − ε(t))2] .

Since the mean squared difference E[(ǫh(t)−ε(t))2] can be made arbitrarily small by taking h

sufficiently large, we can conclude, via Arzelà’s Theorem and Munroe (1953, Theorem 25.7),

that |φh(eiω)k(eiω) − 1| < δ a.e. for ω ∈ (−π, π].

Proof of Theorem 4.1: From the definition of Mallow’s metric and Assumption 4, and

applying the Cauchy-Schwartz inequality (twice), we have

{η(FS∗

T
, FST

)}2 ≤ E[E∗[‖S∗
T − ST ‖

2]]

≤
1

T

T
∑

t=1

E[E∗[Bt(yt, y
∗
t )

2]] ·
1

T

T
∑

t=1

E[E∗[(y(t) − y∗(t))2]]

≤ lim sup
T→∞

1

T

T
∑

t=1

E[E∗[Bt(yt, y
∗
t )

2]] ·
1

T

T
∑

t=1

E[E∗[(y(t) − y∗(t))2]] .

By successive substitution into the recursions

y∗(t) = ǫ∗h(t) −
h
∑

j=1

φ̄h(j)y∗(t− j) and y(t) = ǫh(t) −
h
∑

j=1

φh(j)y(t− j)

we obtain the representations

y∗(t) =
∞
∑

j=0

ϕ̄h(j)ǫ∗h(t− j) and y(t) =
∞
∑

j=0

ϕh(j)ǫh(t− j) ,
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from which it follows that

y(t) − y∗(t) =
∞
∑

j=0

(ϕh(j) − ϕ̄h(j))ǫh(t− j) +
∞
∑

j=0

ϕ̄h(j)(ǫh(t− j) − ǫ∗h(t− j))

= u(t) + v(t) , say.

Thus we are faced with the task of evaluating E[E∗[(u(t) + v(t))2]].

Consider first E[E∗[v(t)2]]. By construction ǫh(t) − ǫ∗h(t) are i.i.d. with respect to P ∗

and ǫh(t) − ǫ∗h(t) = ǫh(τ) − ǫ∗h(τ) with probability 1/T , τ ∈ {1, . . . , T}. Hence

E∗[v(t)2] = T−1
T
∑

τ=1

(ǫh(τ) − ǫ∗h(τ))2 ·
∞
∑

j=0

|ϕ̄h(j)|2 .

The first term in the product on the right hand side is

T−1
T
∑

τ=1

(ǫh(τ) − ǫ∗h(τ))2 = T−1
T
∑

τ=1

(ǫh(τ) − σ̄hǫ̃h(τ))2

= T−1
T
∑

τ=1

(

ǫh(τ) − ǭh(τ) + ǭh(τ)

(

1 − (
σ̄h

sǭh

)

)

+ ǭh(
σ̄h

sǭh

)

)2

= T−1
T
∑

τ=1

(ǫh(τ) − ǭh(τ))2 + o(1) ,

where the final line is a consequence of the fact that 1 − (σ̄h/sǭh
) and ǭh are both o(1). To

show that 1 − (σ̄h/sǭh
) and ǭh are o(1) first note that

ǭh = T−1
T
∑

t=1

ǫh(t) + T−1
T
∑

t=1

h
∑

j=1

{φ̄h(j) − φh(j)}y(t− j) = o(1) .

Hence s2ǭh
= T−1

∑T
t=1 ǭh(t)2 + o(1) and by Lemma 6.1 this equals T−1

∑T
t=1 ǫh(t)2 + o(1) =

σ2
h + o(1). Thus σ̄2

h/s
2
ǭh

∼ 1 and 1 − (σ̄h/sǭh
) = o(1). To bound the second term, recall

that φh(z) 6= 0, |z| ≤ 1. This implies that constants C < ∞ and ζ < 1 exist such that

|ϕh(j)| < Cζj for j = 1, 2, . . . and hence that
∑∞

j=0 |ϕh(j)| < ∞. Using Lemma 6.2 we are

lead to the conclusion that

∞
∑

j=0

|ϕ̄h(j)| ≤

∞
∑

j=0

|ϕh(j)| +

∞
∑

j=0

|ϕ̄h(j) − ϕh(j)|

= O(1) +O

{

(

h5

λmin(Γh)

)

1

2

(

log T

T

)
1

2
−d′
}

,

and from Lemma 6.1 it follows that

E[E∗[v(t)2]] = O

{

(

h

λmin(Γh)

)(

log T

T

)1−2d′
}

. (6.3)

Now consider E[E∗[u(t)2]]. Since u(t) is a constant relative to the probability measure
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P ∗ we have E[E∗[u(t)2]] = E[u(t)2E∗[1]] and

E[u(t)2] =
σ2

2π

∫ π

−π
|ϕh(eiω) − ϕ̄h(eiω))|2|φh(eiω)k(eiω)|2dω .

From Lemma 6.3 however

|φh(eiω)k(eiω)| ≤ 1 + |φh(eiω)k(eiω) − 1|

≤ 1 + δ a.e. (−π, π]

for any δ > 0 for all h sufficiently large and

E[u(t)2] ≤
σ2

2π

∫ π

−π
|ϕh(eiω) − ϕ̄h(eiω))|2(1 + δ)2dω =

(σ(1 + δ))2

2π

∞
∑

j=0

|ϕ̄h(j) − ϕh(j)|2

as h = hAIC
T → ∞ as T → ∞. Using Lemma 6.2 we can therefore conclude that

E[u(t)2] = O

{

(

h5

λmin(Γh)

)(

log T

T

)1−2d′
}

. (6.4)

Evaluating E[E∗[(u(t) + v(t))2]] using Minkowski’s inequality in conjunction with (6.3)

and (6.4) now yields the first statement of the theorem. The second statement follows by not-

ing from Poskitt (2004, Lemma 5.7) that the presence of spectral zeroes of the type character-

ized by Assumption 3 implies that 1/λmin(Γh) is of order O{h2q} at most where q ≥ 0. Thus

h5/λmin(Γh) ≤ O{(log T )a(5+2q)} for all h ≤MT = [c(log T )a], and (log T )a(5+2q)/T β → 0 as

T → ∞ for all β > 0.

Proof of Theorem 4.2: From equation (4.4) it is sufficient for us to establish that ‖K∗
r −

Kr‖ = O(T− 1

2
+d′+β) for any β > 0. This will follow if we can show that for all θ in a

neighbourhood of the origin | logψ∗
T (θ) − logψT (θ)| = O{T− 1

2
+d′+β} uniformly in θ, which

is equivalent to showing that |ψ∗
T (θ) − ψT (θ)| = O{T− 1

2
(1−2d′)+β}.

Lemma 6.4 Suppose that the process y(t) satisfies Assumptions 1, 2 and 3 , and that the

statistic ST satisfies Assumption 4. Then |ψ∗
T (θ)− ψT (θ)| = O{T− 1

2
(1−2d′)+β} for all β > 0

uniformly in θ.

Proof: Consider the linear combinations lT = λ′ST and l∗T = λ′S∗
T where λ is any fixed

vector of unit length. Then |ψ∗
T (θ) − ψT (θ)| = |ψ∗

T (t) − ψT (t)| for θ = tλ, where ψ∗
T (t) and

ψT (t) denote the characteristic functions of l∗T and lT respectively. By Theorem 25.6 and

Exercise 26– k of Munroe (1953), however, |ψ∗
T (t)−ψT (t)| ≤ V (F ∗

T −FT ) where V (F ∗
T −FT )

is the total variation of F ∗
T − FT , the difference in the distribution functions of l∗T and lT .

By definition

V (F ∗
T − FT ) = sup

M
∑

i=1

|(F ∗
T (xi) − FT (xi)) − (F ∗

T (xi−1) − FT (xi−1))|

where the supremum is taken over all possible finite partitions of R, namely, −∞ < x0 <

x1 < . . . < xM < ∞ with M < ∞. The result |ψ∗
T (θ) − ψT (θ)| = O{T− 1

2
(1−2d′)+β} follows,

a là the Cramèr-Wold device, by establishing that V (F ∗
T − FT ) = O{T− 1

2
(1−2d′)+β}.
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Consider then the events {lT ≤ x + ǫ}, {l∗T ≤ x} and {|l∗T − lT | > ǫ} where x ∈ R

and ǫ > 0. Since {l∗T ≤ x} equals the union of {l∗T ≤ x} ∩ {|l∗T − lT | ≤ ǫ} and {l∗T ≤

x} ∩ {|l∗T − lT | > ǫ}, and {l∗T ≤ x} ∩ {|l∗T − lT | ≤ ǫ} ⊆ {lT ≤ x+ ǫ}, it follows that F ∗
T (x) is

bounded above by FT (x+ ǫ) +P (P ∗(|l∗T − lT | > ǫ)). Similarly, F ∗
T (x) can be bounded below

by FT (x− ǫ) − P (P ∗(|l∗T − lT | > ǫ)). The distribution FT (x) =
∫

λ′s≤x dFST
(s) is absolutely

continuous with respect to Lebesgue measure and differentiable for all x and by the first

Mean Value Theorem the difference

FT (x+ ǫ) − FT (x− ǫ) ≤ 2mǫ

where m = supx limǫ→0(FT (x+ ǫ) − FT (x− ǫ))/2ǫ. Thus

|F ∗
T (x) − FT (x)| ≤ 2mǫ+ P (P ∗(|l∗T − lT | > ǫ))

uniformly in x. Applying Markov’s inequality we have

P (P ∗(|l∗T − lT | > ǫ)) ≤
E[E∗[|l∗T − lT |

2]]

ǫ2

and by the Cauchy-Schwartz inequality E[[E∗[|l∗T − lT |
2]] ≤ E[E∗[‖S∗

T − ST ‖
2]]. As already

shown, under Assumptions 1 and 2 E[E∗[‖S∗
T −ST ‖

2]] = O
{

(

h5/λmin(Γh)
)

(log T/T )1−2d′
}

.

Set ǫ = T β/T
1

2
−d′ where β > 0, and recall that under Assumption 3 the ratio h5/λmin(Γh) =

O{(log T )a(5+2q)} where q ≥ 0 for all h ≤ [c(log T )a]. Then P (P ∗(|l∗T − lT | > T β/T
1

2
−d′)) ≤

O(T−2β(log T )1+a(5+2q)−2d′) and we find that

sup
x

|F ∗
T (x) − FT (x)| ≤ T− 1

2
+d′+β(2m+ o(T

1

2
−d′−β)) .

Now, for every set of disjoint intervals (xi−1, xi], i = 1, . . . ,M , we have

M
∑

i=1

|(F ∗
T (xi) − FT (xi)) − (F ∗

T (xi−1) − FT (xi−1))| ≤ 2M sup
x

|F ∗
T (x) − FT (x)| .

We can therefore conclude that V (F ∗
T − FT ) = O{T− 1

2
(1−2d′)+β}, as required.

The heuristics behind Lemma 6.4 is straightforward; convergence of Mallow’s metric

implies convergence in distribution and hence, via an analogy of the Cramér-Levy continuity

theorem, convergence of the characteristic function. Lemma 6.4 implies that ‖K∗
r − Kr‖ =

O(T− 1

2
+d′+β) for all r ≥ 1 and Theorem 4.2 follows directly.

Proof of Theorem 4.3: The events {T− 1

2 (S∗
T −ST ) ≤ s} and {T− 1

2 (ST −E[ST ]) ≤ s} are

equivalent to {Z∗
T ≤ z∗ + ζT }, where z∗ = T

1

2 V∗−
1

2

T s and ζT = V∗−
1

2

T (ST − E∗[S∗
T ]), and

{ZT ≤ z}, where z = T
1

2 V
− 1

2

T s, respectively. Thus

P∗(T− 1

2 (S∗
T − ST ) ≤ s) − P(T− 1

2 (ST − E[ST ]) ≤ s] = P∗(Z∗
T ≤ z∗ + ζT ) − P(ZT ≤ z)

and

|P∗(Z∗
T ≤ z∗ + ζT ) − P(ZT ≤ z)| ≤ I1 + I2 + I3
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where

I1 = |P∗(Z∗
T ≤ z∗ + ζT ) − P∗(Z∗

T ≤ z∗)| ,

I2 = |P∗(Z∗
T ≤ z∗) − P(ZT ≤ z∗)| and

I3 = |P(ZT ≤ z∗) − P(ZT ≤ z)| .

To evaluate the magnitude of I1 note that the derivatives of G(z) and g(z) of all orders,

which can be expressed in terms of the covariant Hermite polynomials, are uniformly bounded

in R
m. Applying the Mean Value Theorem to (4.3) it follows that there exists a constant

m∗ < ∞ such that supz∗ I1 ≤ m∗‖ζT ‖ + o(T− 1

2 ). But ‖ζT ‖ ≤ ‖(T
1

2 V∗−
1

2

T )‖ · ‖T− 1

2 (ST −

E∗[S∗
T ])‖. Recognizing that ST is a constant relative to the measure P ∗ we have

E[‖T− 1

2 (ST − E∗[S∗
T ])‖2] = E[‖T− 1

2E∗[(ST − S∗
T )]‖2]

≤ T−1E[E∗[‖(ST − S∗
T )‖2]]

= T−1O

{

(log T )1+a(5+2q)−2d′

T 1−2d′

}

.

Given that T−1V∗
T = O(1) it follows from Markov’s inequality that, for all β > 0, ‖ζT ‖ will

exceed T−(1−d′)+β with a probability that is bounded above by O{(log T )1+a(5+2q)−2d′/T 2β}.

We can therefore conclude that I1 is Op(T
−(1−d′)+β) uniformly in z∗.

As in Theorem 4.2, we have ‖K∗
r − Kr‖ = O(T−( 1

2
−d′)+β) for all r ≥ 1 and β > 0, and

from equation (4.4) it follows that I2 is O(T−(1−d′)+β) uniformly in z∗.

Using the Mean Value Theorem in conjunction with (4.2) we can, as with I1, bound

I3 by m‖z − z∗‖ + o(T− 1

2 ) for some m < ∞. Now, z − z∗ = T
1

2 (V
− 1

2

T − V∗−
1

2

T )s and

from Lemma 6.4 we have T−1‖VT − V∗
T ‖ = O(T β/T (3/2−d′)) for all β > 0. Thus, if ‖s‖ ≤

C(T β log T/T (1−d′))
1

2 where C <∞ we can deduce that ‖z−z∗‖ = O{(T β/T (1−d′))(log T/T
1

2 )
1

2 }.

On the other hand, min{‖z‖, ‖z∗‖} > C ′(T β log T/T (1−d′))
1

2 for any given C ′ <∞ whenever

‖s‖ > C(T β log T/T (1−d′))
1

2 and C is sufficiently large. From (4.2), however, it follows that

P(‖ZT ‖ > C ′′(log T )
1

2 ) = o(T− 1

2 ) for any C ′′ > 0 and P(‖ZT ‖ > C ′(T β log T/T (1−d′))
1

2 ) ≤

P(‖ZT ‖ > C ′′(log T )
1

2 ) for all C ′′ < C ′(T β/T (1−d′))
1

2 . Hence we are lead to the conclusion

that, bar a set whose probability is o(T− 1

2 ), the term I3 = o(T−(1−d′)+β)). Bringing this

bound on I3 together with those on I1 and I2 completes the proof.
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Figure 1: Probability densities for d = 0.2, T = 40, top panel, and T = 160, bottom panel:
Exact (Monte–Carlo) (black), Edgeworth (blue), Approximate–Edgeworth (cyan), Normal
(green), Model Bootstrap (magenta), Sieve Bootstrap (ζ∗T ) (red)
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Figure 2: Probability densities for d = 0.4, T = 40, top panel, and T = 160, bottom panel:
Exact (Monte–Carlo) (black), Edgeworth (blue), Approximate–Edgeworth (cyan), Normal
(green), Model Bootstrap (magenta), Sieve Bootstrap (ζ∗T ) (red)
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Figure 3: Log-likelihood function for 10 realizations of process (1 − z)dy(t) = ε(t) when
d = 0.4, T = 160.
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Figure 4: Probability densities for d = 0.2, T = 40, top panel, and T = 160, bottom panel:
Exact (Monte–Carlo) (black), Edgeworth (blue), Approximate–Edgeworth (cyan), Normal
(green), Model Bootstrap (magenta), Sieve Bootstrap (ζ̃∗T ) (red)
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Figure 5: Probability densities for d = 0.4, T = 40, top panel, and T = 160, bottom panel:
Exact (Monte–Carlo) (black), Edgeworth (blue), Approximate–Edgeworth (cyan), Normal
(green), Model Bootstrap (magenta), Sieve Bootstrap (ζ̃∗T ) (red)
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