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Abstract

Volatility smiles arise in currency option markets when empirical
exchange rate returns distributions exhibit leptokurtosis. This feature
of empirical distributions is symptomatic of turbulent periods when
exchange rate movements are in excess of movements based on the
assumption of normality. In contrast, during periods of tranquility,
movements in exchange rates are relatively small, resulting in uncon-
ditional empirical returns distributions with thinner tails than the
normal distribution. Pricing currency options during tranquil periods
on the assumption of normal returns yields implied volatility frowns,
with over-pricing at both deep-in and deep-out-of-the-money contracts
and under-pricing for at-the-money contracts. This paper shows how a
parametric class of thin-tailed distributions based on the generalised
Student t family of distributions can price currency options during
periods of tranquility.
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1 Introduction

Volatility smiles can arise in currency option markets when empirical ex-

change rate returns distributions exhibit leptokurtosis; see for example Hull

(2000).1 This feature of empirical distributions is characteristic of periods

of turbulence, whereby movements in exchange rates are relatively large and

in excess of movements based on the assumption of normality. In contrast,

during periods of tranquility, movements in the spot prices, and hence in ex-

change rate returns, are relatively small, resulting in empirical distributions

which exhibit relatively thinner tails than the normal distribution.

The implication of thin-tailed returns distributions for pricing currency

options, and options in general, is that options based on the Black Scholes

(1973) model are over-priced for deep in-the-money and deep out-of-the-

money contracts, and under-priced for at-the-money options contracts. The

mispricing of options manifests itself in implied volatility estimates across

strike prices which are relatively lower for the in-the-money and out-of-the-

money contracts and relatively higher for the at-the-money contracts. This

feature is referred to as a volatility frown. Empirically the frown is less

common than both volatility smiles and skews, which occur when the under-

lying returns distribution exhibits leptokurtosis; see for example, Das and

Sundaram (1999) and the references therein. Establishing the link between

the form of the underlying returns distribution and the relationship between

implied volatility and strike prices helps to explain why volatility smiles are

more commonly observed than volatility frowns, as leptokurtic currency re-

turns distributions are more common than thin-tailed distributions.

The aim of this paper is to present a general pricing framework for pricing

options under various market conditions. Whilst the emphasis is on pricing

options in tranquil markets, the framework is, nonetheless, flexible enough
1For a review of the empirical evidence pertaining to exchange rate returns, see de Vries

(1994).
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to enable the pricing of options in more turbulent markets. The approach

adopted involves relaxing the normality assumption underlying the Black-

Scholes model by modelling currency returns using a generalised Student t

distribution; see Lye and Martin (1993), and Lim, Lye, Martin and Martin

(1998).2 This approach to modelling the distributional features of exchange

rate returns, coupled with a time-varying volatility specification, ensures that

the effects which cause implied volatility frowns are corrected for in the pric-

ing of currency options. In particular, the volatility frowns observed in the

data are shown to be manifestations of the misspecification of the under-

lying returns distribution, with the correct specification yielding constant

volatilities across contracts at a given point in time.

The rest of the paper proceeds as follows. To help motivate the form of

the option pricing model, an example of a volatility frown is provided in Sec-

tion 2, based on European call options written on the US/BP exchange rate

in June, 1998. An option pricing model which applies the generalised Student

t distribution to define a flexible parametric risk neutral probability distrib-

ution, is presented in Section 3. This framework also includes a time-varying

volatility structure that extends the Rosenberg and Engle (1997) specifica-

tion by including a variable that captures mean reversion in the conditional

volatility over the sample period investigated. A maximum likelihood esti-

mation procedure is presented in Section 4. The main empirical results are

given in Section 5 where the performance of various option pricing models

are compared. The data consist of a panel of European currency call options

over the period October 1, 1997, to June 16th, 1998, with all options matur-

ing in September, 1998. The statistical and forecasting tests show that the

proposed pricing model is superior to the Black-Scholes model, a model based
2Other approaches which allow for nonnormal returns include: the expansion of the

Black-Scholes model to allow for higher order moments (Corado and Su, 1997); Binomial
trees (Jackwerth and Rubinstein, 1996; and Dennis, 2001); mixtures of lognormals (Melick
and Thomas, 1997); and non-parametric kernel methods (Ait-Sahalia, 1996, Ait-Sahalia
and Lo, 1998, and Ghysels, Patilea, Renault and Torres, 1998).
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on a lognormal mixture distribution, as well as some other special cases of

the generalised Student t pricing framework. Section 6 provides a summary

of the key results and some concluding remarks.

2 Volatility Frowns in the US/UK Currency
Option Market

To help motivate the form of the currency option price model developed in the

paper, Table 1 reports the end of day European currency call option prices,

C, on the 16th of June, 1998, maturing in September, 1998, written on the

US/BP exchange rate. Thus the maturity of this set of option contracts is

τ = 0.252. The strike prices are given byX = {163, 164, ..., 178} , a total of 10
unique contracts traded on this day. The spot exchange rate is S = 165.26,

and the US and UK risk free interest rates are respectively r = 0.05156 and

i = 0.072, which are the 3-month treasury bill rates.

The Black-Scholes model for pricing European currency call options is

also known as the Garman Kohlhagen (1983) option model. This model

is equivalent to the Black-Scholes price for European call option contracts

written on equities paying a continuous dividend stream equal to the foreign

interest rate, i. The key assumptions of this model are that currency re-

turns are identically and independently distributed as normal. The Garman-

Kohlhagen (1983) currency option prices are presented in the last column of

Table 1 using the formula

FGKj = Se−iτN(d1)−Xje−rτN(d2), j = 1, 2, ...., 10, (1)

where the j signifies the jth contract in the set of 10 unique contracts corre-
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sponding to the full range of strike prices, and

d1 =
ln(S/Xj) + r − i+ σ2

2
τ

σ
√
τ

,

(2)

d2 =
ln(S/Xj) + r − i− σ2

2
τ

σ
√
τ

.

The volatility parameter is set at σ = 0.071, which equals the annualised his-

torical volatility estimate based on
√
250 times the standard deviation of re-

turns over the sample period. For the first three contracts,X = {163, 164, 165}
and the last two contracts X = {176, 178} , the Garman-Kohlhagen prices
exceed the actual prices, whereas for the remaining contracts the opposite oc-

curs. This empirical result conflicts with existing empirical evidence whereby

the reverse tends to be true for currency options; namely, Black-Scholes tends

to under-price out-of-the money contracts and over-price at-the-money con-

tracts.

An alternative way to highlight the differences in the two sets of prices

presented in Table 1 is to compute the implied volatility for each contract.

This is achieved by solving the nonlinear equations

Cj = F
GK
j (σj) , j = 1, 2, ..., 10, (3)

for σj , for each of the j = 1, 2, ..., 10, strike prices. The implied volatility es-

timates are presented in Figure 1. The key characteristic is that the implied

volatility estimates are not equal across strike prices even though the con-

tracts are all written in the same market. The estimates range between 6.2%

and 7.2% and display an inverted U-shape. This shape is in stark contrast to

the volatility smile that is usually observed when analysing currency option

data; see for example, Hull (2000). For this reason, the pattern observed in

Figure 1 is referred to as a volatility frown.3

3Similar volatility frowns arise for other days in the sample.
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Implied volatility smiles arise in currency option markets when the Garman-

Kohlhagen price is applied because exchange rate returns are assumed to be

normally distributed, when in fact their empirical distributions show them

to be leptokurtic with fatter tails and sharper peaks than the normal dis-

tribution. In these circumstances, the fatness in the upper tail raises the

probability that a currency option matures in the money thereby yielding a

higher price for the contract. The opposite is true when the underlying distri-

bution is thin-tailed as the probability that the option matures in-the-money

is now smaller, which results in a lower price for the option.

The occurrence of a volatility frown in Figure 1 suggests that the empir-

ical distribution of exchange rate returns exhibits thin-tails over the sample

period. This is indeed the case, as indicated in Figure 2, where the empirical

distribution of US/BP exchange rate returns over the period the 1st of Oc-

tober, 1997, to the 16th of June, 1998, is presented. Exchange rate returns

are computed as differences of the natural logarithms of spot exchange rates

and expressed as a percentage. A normal kernel density is used to compute

the nonparametric density with a bandwidth equal to σT−1/5, where σ is

the estimate of the standard deviation of currency returns and T = 178 is

the sample size. For comparison, the standardised normal distribution is

also presented in Figure 2. The thin-tailed behaviour of the empirical dis-

tribution is evident, whilst the relative sharp peak shows that the number

of days where the exchange rate exhibits very little movement, is also in-

consistent with the normal distribution. The kurtosis coefficient calculated

from the kernel density estimate is 0.357, which is significantly less than that

associated with the normal distribution, namely a kurtosis coefficient of 3.

3 The Option Pricing Model

The empirical results of the previous section showing that a volatility frown is

inconsistent with currency returns being normal, suggest that a more general
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empirical model of option prices based on a nonnormal returns generating

process is needed to reduce pricing biases. To this end, a pricing model is

developed, whereby the risk-neutral probability distribution exhibits suffi-

cient parametric flexibility to be able to capture the empirical characteristics

highlighted above. A special feature of this parametric model is that it nests

a number of pricing models, including the Garman-Kohlhagen model which

is based on the assumption of normally distributed returns.

Let St be the spot exchange rate at time t of one unit of the foreign cur-

rency measured in the domestic currency. Defining rt and it as the respective

domestic and foreign risk free annualised interest rates at time t for maturity

at time t+n, under uncovered interest rate parity, the expected depreciation

of the exchange rate is given by

Et ln
St+n
St

= rt − it −
σ2t+n|t
2

τ , (4)

where Et is the conditional expectation operator based on information at

time t, τ = n/365 is a scale factor expressed as a proportion of a year,

and σ2t+n|t, represents an annualised, time-varying risk premium. The actual

movements in the exchange rate are assumed to be governed by

ln
St+n
St

= rt − it −
σ2t+n|t
2

τ + σ t+n|t
√
τz, (5)

where z is a zero mean, unit variance random variable which represents

unanticipated movements in exchange rates and which is uncorrelated with

rt − it − σ2t+n|t/2. To capture the empirical features of the unconditional

US/BP exchange rate distribution identified in the previous section, z is as-

sumed to be distributed as a generalised Student t distribution following the

formulation of Lye and Martin (1993)
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p (z) = k−1σw exp θ1 tan
−1 µw + σwz√

ν
+ θ2 ln ν + (µw + σwz)

2

+
4

j=1

θj+2 (µw + σwz)
j , (6)

where µw and σw are chosen to ensure that z is standardised to have zero

mean and unit variance, and k is the normalising constant, defined by

k = p (z) dz. (7)

The properties of the alternative parameterisations of this distribution are

discussed below in the context of pricing currency options.4

The specification of the volatility structure is based on the formulation

of Rosenberg and Engle (1997),

σ t+n|t = exp (β0 + β1 ln (St+n/St)) , (8)

whereby conditional volatility is assumed to be a function of the exchange

rate return over the life of the contract. This specification has the effect of

rendering volatility stochastic, with σ t+n|t approaching exp (β0) , as t→ t+n.

Alternative specifications of the volatility structure in option price models are

GARCH (Engle and Mustafa, 1992; Duan, 1995; Sabbatini and Linton, 1998;

Heston and Nandi, 2000; and Hafner and Herwartz, 2001) and stochastic

volatility (Hull and White, 1987; Heston, 1993; Bates, 1996; Ghysels, Harvey

and Renault, 1996; Guo, 1998; and Chernov and Ghysels, 2000).5 These

alternative formulations are less attractive however, as option prices in the

present framework can be computed using a one-dimensional integral which

can be computed numerically. This, in turn, overcomes the need for pricing
4A form of this distribution has already been used by Lim, Lye, Martin and Martin

(1998) to study currency option prices, as well as by Lim, Martin and Martin (2002) in
pricing equity options.

5For further discussion of the specification and estimation of volatility models, see
Harvey, Ruiz and Shephard (1994); Kim, Shephard and Chib (1998); amongst others.
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options by Monte Carlo methods which tend to be relatively less accurate

and computationally much slower.

Consider writing a European call option on St with strike price X, that

matures in n periods. The price of the currency option is; see Hull (2000)

F (St) = E e−rtτ max (St+n −X, 0) |St

= e−rtτ
∞

X

(St+n −X)g(St+n|St)dSt+n, (9)

where

g(St+n|St) = |J | p (z) , (10)

J is the Jacobian of the transformation from z to St+n, given by

J =
dz

dSt+n

=

1 + β1σ
2
t+n|tτ − β1 ln (St+n/St)− rt − it − σ2

t+n|t
2

τ

St+nσ t+n|t
√
τ

, (11)

and σ2t+n|t is as defined in (8). The price of the currency option in (9) nests

a number of special cases. Setting

β1 = 0,

in (8) results in a constant volatility model. Imposing the restrictions

θ4 = −0.5, and θj = 0, ∀j 9= 4,

yields the Garman-Kohlhagen (1983) model, as p (z) in (6) reduces to the

standardised normal distribution and g(St+n|St) in (10) becomes lognormal.
To highlight the properties of this option pricing model consider the case

where the Garman-Kohlhagen model in (1) is used to price options when
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returns are actually distributed according to the generalised Student t dis-

tribution in (6). More specifically, the particular distributional form used in

these experiments is

p (z) = kσw exp − 1 + ν

2
ln ν + (µw + σwz)

2 + θ6 (µw + σwz)
4 , (12)

with ν = 16 and

θ6 = {0.0,−0.05,−0.25} .
Setting θ6 = 0.0 in (12) produces the Student t distribution with ν = 16

degrees of freedom. As θ6 becomes more negative the returns distribution

becomes more thin-tailed. The range of moneyness of the option contracts

considered is 160/165 to 180/165, with S = 165 as the exchange rate, which

is approximately the same moneyness range corresponding to the empirical

frown presented in Table 1. The maturity of the contracts is set at τ = 0.25,

and the domestic and foreign interest rates set at r = 0.05 and i = 0.07,

respectively. The true volatility parameter is σ = 0.07.

Figure 3 shows the resultant volatility smiles and frowns. When returns

are distributed as Student t with θ6 = 0.0 in (12), there is a volatility smile

arising from the relative fatness in the tails of the distribution. Decreasing

θ6 from θ6 = −0.05 to θ6 = −0.25 causes the returns distribution to become
thin-tailed which, in turn, results in a volatility frown.

To show the effects of skewness on the volatility frown the returns distri-

bution is now specified as

p (z) = kσw exp − 1 + ν

2
ln ν + (µw + σwz)

2 + θ3 (µw + σwz)

−0.25 (µw + σwz)
4 , (13)

with ν = 0.64 and θ3, which controls the degree of skewness, set at

θ3 = {−1.0, 0.0, 1.0} .
The exchange rate, strike prices, maturity and interest rates are the same as

in the previous experiment. The results are presented in Figure 4. For sym-

metrical returns, θ3 = 0.0, the frown is relatively flat for a fairly wide range of
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moneyness, turning into a frown only for the deep out-of-the-money options.

Increasing the skewness parameter to θ3 = 1.0, causes the frown to become

more distorted, whilst for θ3 = −1.0, the frown is relatively symmetric over
the moneyness range reported.

The examples presented in Figures 3 and 4 show that volatility frowns can

arise from misspecifying the form of the returns distribution. By assuming

that returns are normal, when in fact they are not, the misspecification in the

returns distribution is translated into a volatility structure that varies across

strike prices. These examples also suggest that by specifying the returns

distribution correctly the volatility structure across strike prices can become

constant.

4 Estimation Procedures

In this section a statistical model is developed whereby observed option prices

are used to estimate the parameters of the model. More formally, the rela-

tionship between Cj,t, the market price of the jth call option contract at time

t, and Fj,t, the theoretical price of the same option contract written at time

t, is given by

Cj,t = Fj,t + ωej,t, (14)

where ej,t represents the pricing error with standard deviation ω. Follow-

ing the approach of Engle and Mustafa (1992) and Sabbatini and Linton

(1998), amongst others, the pricing error ej,t, is assumed to be an iid stan-

dardised normal random variable; see also the discussion in Renault (1997)

and Clement, Gourieroux and Monfort (2000).6 The theoretical option price
6More general specifications of the pricing error in (14) could be adopted. For example,

ω could be allowed to vary across the moneyness spectrum of option contracts, while a
more general distributional structure for ej,t, could be entertained; see, for example, Bates
(1996, 2000). An alternative approach is to define the statistical model in terms of hedging
errors; see Bakshi, Cao and Chen (1997).
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is written as

Fj,t = F (St, Xj,t, τ j , rt, it;Ω) , (15)

where Ω is the vector of parameters which characterise the returns distribu-

tion and the volatility specification. In the special case of the Black-Scholes

option pricing model, Ω = {β0}. Equation (14) may thus be viewed as a
nonlinear regression equation, with parameter vector, Ω.

The unknown parameters of the model can be estimated by maximum

likelihood. The logarithm of the likelihood function is

lnL = −N
2
ln 2πω2 − 1

2
j,t

Cj,t − Fj,t
ω

2

, (16)

where N is the number of observations in the panel of option prices. This

function is maximised with respect to ω and Ω, using the GAUSS procedure

MAXLIK. In maximising the likelihood, ω is concentrated out of the like-

lihood. The numerical integration procedure for computing the theoretical

option price Fj,t, for the various models is based on the GAUSS procedure IN-

TQUAD1. The accuracy of the integration procedure is ensured by checking

that numerically and analytically derived Black-Scholes prices yield parame-

ter estimates that are equivalent to at least four decimal points.7

5 Performance of Alternative Models

5.1 Data

The data set used in the empirical application consists of end-of-day Euro-

pean currency call options for the UK pound written on the US dollar over

the period October 1st, 1997 to June 16th, 1998, a time period of 178 days.

The data set is restricted to contracts which mature in September, 1998, so as

to focus on volatility structures across strike prices. The prices of options are
7The calculation of the theoretical option prices by numerical integration is extremely

fast and more accurate than pricing based on Monte Carlo methods.
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specified as the bid prices. The complete set of strike prices over the sample

period range from X = 158 to 178. Thus the data represent a panel data set

where the cross-sectional units correspond to the strike prices, constituting

N = 736 observations in total.

The US/BP exchange rate is presented in Figure 5. The US and UK risk

free interest rates, taken as the 3-month Treasury bill rates, are presented in

6. The interest rates are relatively stable over the sample periods, deviating

only slightly from their respective sample means of 5% and 7%.

5.2 Empirical Results

The performances of various currency option pricing models are now inves-

tigated. Four alternative models are examined. The first three models are

based on the generalised Student t distribution in (6), whilst the fourth model

is based on a mixture of lognormals used by Melick and Thomas (1997).

5.2.1 Generalised Student t Models

The specifications of the models based on the generalised Student t distrib-

ution are

Normal: θ4 = −0.5, and θj = 0,∀j 9= 4,

Student: θ1 = 0, θ2 = − (1 + γ2) /2, θj = 0,∀j > 2,

Thin-tailed: θ1 = 0, θ2 = − (1 + γ2) /2, θ3 9= 0, θ4 = θ5 = 0, θ6 = −0.25.
The Normal model corresponds to the Garman-Kohlhagen option price model.

The Student model is based on the Student t distribution which allows for

fatness in the tails of the distribution but not skewness. As this distribution

does not exhibit thinned tailed behaviour, it is conjectured that this model

should misprice options during tranquil periods. In contrast, the Thin-tailed

model allows for thinness in the tails of the distribution as θ6 < 0, and thus
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should yield smaller mispricing errors in tranquil markets.8 This model also

allows for skewness as θ3 9= 0.
The parameter estimates of the Thin-tailed, Student and Normal option

price models are contained in Table 2, with standard errors based on the

inverse of the Hessian given in parentheses. For all models the estimate of β1
is statistically significant providing evidence that volatility is not constant

over the sample period. There is also strong evidence of skewness in returns as

the estimate of θ3 in the Thin-tailed model is statistically significant. Both

of these results represent strong statistical evidence against the Garman-

Kohlhagen, Normal, pricing model.

Figure 7 gives the estimated residuals of the Thin-tailed model across all

contracts at each point in time in the sample, with the residuals ordered in

contract blocks at each point in time. This plot shows that for the last part of

the sample, the Thin-tailed model is consistently overpricing options; that is,

the pricing errors are negative. A similar result occurs for the other estimated

models. To understand this result, Figure 8 gives the implicit volatilities

computed for all options in the sample with moneyness of |S/X| < 0.01,

based on equation (3). The striking feature of the implicit volatility estimates

is that for most of the period they are falling from values around 10% early

in the sample period, to around 7% near the end of the sample period. This

suggests that the implied volatility is mean reverting to its long-run value.9

It further suggests that the implied volatility estimates based on (8) yield

predictions that are too high near the end of the sample, which, in turn,
8The choice of θ6 = −0.25, is a convenient normalisation, however other choice could

be adopted.
9To establish the value of the long-run value of volatility, a GARCH(1,1) model is

estimated over the sample period using daily returns data. The estimated model is

100 (lnSt − lnSt−1) = 0.0241 + et

σ2t = 0.0183 + 0.0409e2t−1 + 0.8745σ
2
t−1.

This yields a long-run value of the squared volatility of 0.0183/ (1− 0.0409− 0.8745) =
0.2163. The long-run annualised volatility estimate is then (250) (0.2163) = 7.354%,
which is consistent with the implied volatility estimates reported in Figure 8.
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yield prices that are too high relative to the observed market prices. To

capture this feature of the data the volatility specification in (8) is extended

to include maturity

σ t+n|t = exp β0 + β1 ln (St+n/St) + β2τ t + β3τ
2
t , (17)

where τ t represents maturity at time t. As the option contracts in the sample

period all mature in September 1998, the value of τ t is continually decreasing

over time.10

The parameter estimates of the Thin-tailed, Student and Normal models

based on the extended volatility specification in (17), are given in Table 3.

The estimates of β2 and β3 for all three models in Table 3 are statistically

significant at conventional significance levels showing that volatility over the

sample period is a function of maturity.

The reductions in pricing errors yielded by adopting the extended volatil-

ity specification in (17) are highlighted in Table 4. This table presents esti-

mates of the residual variance ω2, given in (14), for each model, as well as

the AIC and SIC statistics. The residual variance is defined as

ω2 =
j,t (Cj,t − Fj,t)2

N
, (18)

where Cj,t and Fj,t are respectively the actual and expected call option prices.

The results show that there is a large reduction in mispricing errors from the

adoption of the extended volatility specification. The results also show that

the Thin-tailed model yields the smallest average mispricing errors compared

to the Student t and Normal models, although the relative difference between

the models falls with the adoption of the extended volatility specification in

(17).11

10An alternative extension of the volatility specification in (8) is to include higher order
powers of returns. This specification was tried but yielded inferior results to the volatility
specification in (17), and for certain models, did not even converge.
11Plots of the residuals using the extended volatility specification in (17) show that the

models no longer continually misprice options, especially in the latter part of the sample.
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5.2.2 Mixture of Lognormals

The fourth model investigated in the empirical analysis is the lognormal

mixture distribution suggested by Melick and Thomas (1997). The option

pricing model in this case is

F (St) = φFGK σ1, t+n|t + (1− φ)FGK σ2, t+n|t , (19)

where FGK σi, t+n|t , i = 1, 2, is the Garman-Kohlhagen price as defined in

(1), 0 ≤ φ ≤ 1, is the mixing parameter which weights the two subordinate
lognormal distributions, and the subordinate volatilities are specified as12

σ1, t+n|t = exp β1,0 + β1,1 ln (St+n/St) + β1,2τ t + β1,3τ
2
t

σ2, t+n|t = exp β2,0 + β2,1 ln (St+n/St) . (20)

The lognormal mixture distribution can generate both skewed and thin-tailed

risk neutral densities and thus represents a competitor to the generalised

Student t distribution discussed above.

The results from estimating the mixture of lognormal model by maximum

likelihood are presented in Table 5. For completeness, the results based on

volatilities being independent of maturity, β1,2 = β1,3 = 0 in (20), are also

presented. Corresponding estimates of mispricing errors based on the esti-

mates of the residual variance in (18) and the AIC and SIC statistics, are

presented in Table 6. Comparing Tables 4 and 6 shows that when the volatil-

ity is not a function of maturity, the lognormal mixture model is the second

best performer behind the Thin-tailed option price model. Extending the

volatility specification to include maturity, results in the lognormal mixture

model being ranked last. This suggests that this model is not able to capture

the skewness and thin-tailed behaviour of the currency returns distribution
12A more general volatility model was tried initially whereby both subordinate volatil-

ity specifciations were functions of maturity. This more general model did not converge
suggesting that the additional parameterisation was redundant, and hence was excluded
from the final set of empirical results.
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as well as the Thin-tailed model which is based on the generalised Student t

distribution.

5.3 Forecasting

The comparisons of the models presented above are all based on within sam-

ple statistical properties. In this section, following Bakshi, Cao and Chen

(1997) and Sarwar and Krehbiel (2000), the relative out-of-sample forecasting

performance of the four models is investigated. Each model is re-estimated

over a restricted sample period which excludes those contracts written on the

last day in the data set; namely, June 16th, 1998. These options are then

priced using information available prior to June 16th, with the predicted

prices compared with the actual prices.

The results of the forecasting performance of the competing models are

presented in Table 7. For completeness, the results based on the initial and

extended volatility specifications, equations (8) and (17) respectively, are

presented. The statistical measure adopted is the RMSE which is computed

as

RMSE =

10

j=1

Cj,t − F j, June 16th|It−1 2

10
, (21)

where F j, June 16th|It−1 represents option prices quoted on June 16th using

each of the four models, based on previous information, denoted as It−1.

Focussing on the extended volatility specification results, the RMSE statistics

are smallest for the Thin-tailed model, showing that this model prices option

contracts written on the next day more accurately than do the other three

models. The Student t and normal models yield the same RMSEs, while the

lognormal mixture model yields the largest RMSE.
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6 Conclusions

The aim of the paper was to specify a model to price currency options during

tranquil periods characterised by small changes in spot prices and thin-tailed

returns distributions. During these periods, option models based on the as-

sumption of normality were found to over-price deep-in and deep-out of the

money contracts and under-price at-the-money contracts. This yielded a

volatility frown, which was in contrast with the more usual phenomenon of

volatility smiles in currency markets. This establishment of a link between

volatility frowns and thin-tailed returns distributions provided an explana-

tion as to why volatility smiles were more commonly observed than volatility

frowns.

The option price model was based on a parametric specification of the

risk neutral probability distribution which was designed to capture thin-

tails in exchange returns distributions during tranquil currency markets. A

general volatility specification was also adopted which included the currency

return over the remaining life of the option as well a maturity term which

captured mean reversion in exchange rate volatility over the sample period.

The model was applied to pricing European currency call options on the UK

pound written on the US dollar over the period October 1st, 1997 to June

16th, 1998. The analysis was performed on a panel of call options with prices

computed jointly on contracts within days as well as across days.

The key empirical results showed that the proposed option price model

resulted in large reductions in pricing errors and improvements in forecast-

ing, compared to a range of existing option models. The proposed model

was also shown to correct for volatility frowns, thereby demonstrating that

volatility frowns are a manifestation of misspecifying the risk neutral proba-

bility distribution.

18



Figure 1: Implied volatility frown for US/BP European currency call options
written on the 16th of June, 1998, and maturing in September, 1998.
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Figure 2: Empirical distribution of standardised US/BP foreign exchange
returns, 11th of September, 1997, to the 16th of June, 1998.
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Figure 3: Volatility smiles and frowns generated when returns are distributed
as generalised Student t with ν = 16, and varying “thinness parameter” θ6:
true volatility is σ = 0.07.
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Figure 4: Volatility smiles and frowns generated when returns are distributed
as generalised Student t with ν = 0.64, and varying “skewness parameter”
θ3: true volatility is σ = 0.07.
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Figure 5: US/BP exchange rate, October 1st, 1997 to June 16th, 1998.
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Figure 6: US and UK 3-month bill rates, October 1st, 1997 to June 16th,
1998.
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Figure 7: Residuals of the Thin-tailed model across contracts and time, based
on the volatility specification given in equation (8).
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Figure 8: Implicit volatility estimates across all contracts at each point in
time for contracts moneyness |S/X| < 0.01, using equation (3).
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Table 1:

US/BP end of day European currency call option prices,
16th of June, 1998, maturing in September, 1998.

Strike Price Observed Call Price Garman-Kohlhagen Price
X C FGK (σ = 0.071)

163 3.01 3.061
164 2.51 2.513
165 2.03 2.032
166 1.62 1.618

167 1.28 1.268
168 0.99 0.977
169 0.77 0.740
170 0.58 0.551

176 0.06 0.064
178 0.01 0.027
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Table 2:

Maximum likelihood estimates of generalised Student t option price
models using volatility specification (8): standard errors in brackets.

Parameter Thin-tailed Student Normal

β0 -2.608 -2.487 -2.459
(0.004) (0.006) (0.003)

β1 0.759 0.244 0.431
(0.001) (0.005) (0.001)

γ =
√
ν 0.727 2.088 n.a.

(0.155) (0.040)

θ1 0.0 0.0 0.0

θ2 -0.5(1+γ2) -0.5(1+γ2) 0.0

θ3 0.700 0.0 0.0
(0.179)

θ4 0.0 0.0 -0.5

θ5 0.0 0.0 0.0

θ6 -0.25 0.0 0.0

lnL/N 0.401 0.084 -0.210

(a) n.a. = not applicable.
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Table 3:

Maximum likelihood estimates of generalised Student t option price
models using volatility specification (17): standard errors in brackets.

Parameter Thin-tailed Student Normal

β0 -2.902 -2.992 -3.002
(0.019) (0.015) (0.034)

β1 0.577 0.280 0.373
(0.002) (0.095) (0.032)

β2 1.089 1.556 1.528
(0.068) (0.048) (0.043)

β3 -0.615 -0.939 -0.924
(0.051) (0.034) (0.033)

γ =
√
ν 0.612 4.122 n.a.

(0.058) (1.159)

θ1 0.0 0.0 0.0

θ2 -0.5(1+γ2) -0.5(1+γ2) 0.0

θ3 0.452 0.0 0.0
(0.093)

θ4 0.0 0.0 -0.5

θ5 0.0 0.0 0.0

θ6 -0.25 0.0 0.0

lnL/N 0.634 0.609 0.607

(a) n.a. = not applicable.
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Table 4:

Mispricing estimates of the generalised Student t models.

Statistic Model

Thin-tailed Student Normal

Volatility: Equation (8)

Residual variance(a) 0.026 0.049 0.089
AIC(b) -581.626 -117.247 313.292
SIC(c) -563.221 -103.443 322.494

Volatility: Equation (17)

Residual variance(a) 0.016 0.017 0.017
AIC(b) -922.042 -886.306 -885.630
SIC(c) -894.435 -863.300 -867.225

(a) Based on equation (18).

(b) AIC = -2lnL+2k, where L is the likelihood and k is the number of estimated para-
meters.

(c) SIC = -2lnL+ln(N)k, where L is the likelihood, N is the sample size and k is the
number of estimated parameters.
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Table 5:

Maximum likelihood estimates of the mixture of lognormal option
price model for various volatility specifications: standard errors in brackets.

Parameter Volatility Specification, (20)

β1,2 = β1,3 = 0 β1,2, β1,3 9= 0

β1,0 -2.327 -3.963
(0.019) (0.610)

β1,1 0.368 0.192
(0.016) (0.689)

β1,2 0.000 6.130
(1.978)

β1,3 0.000 -3.941
(1.145)

β2,0 -3.512 -2.746
(0.065) (0.057

β2,1 0.522 0.416
(0.047) (0.077)

φ 0.374 0.125
(0.010) (0.019)

lnL/N 0.224 0.598

(a) n.a. = not applicable.
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Table 6:

Mispricing estimates of the mixture of lognormal models.

Statistic Volatility Specification, (20)

β1,2 = β1,3 = 0 β1,2, β1,3 9= 0

Residual variance(a) 0.037 0.018
AIC(b) -319.130 -866.294
SIC(c) -296.124 -834.085

(a) Based on equation (18).

(b) AIC = -2lnL+2k, where L is the likelihood and k is the number of estimated para-
meters.

(c) SIC = -2lnL+ln(N)k, where L is the likelihood, N is the sample size and k is the

number of estimated parameters.
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Table 7:

Forecasting performance of alternative option
price models on June 16th, 1998: RMSE.

Volatility specification Thin-tailed Student Normal Mixture

Without maturity(a) 0.209 0.277 0.440 0.222
With maturity(b) 0.026 0.036 0.036 0.058

(a) Based on equation (8) for the Thin-tailed, Student and Normal models, and equa-
tion (20) with β1,2 = β1,3 = 0, for the mixture of lognormal model.

(b) Based on equation (17) for the Thin-tailed, Student and Normal models, and equa-
tion (20) with β1,2, β1,3 9= 0, for the mixture of lognormal model.
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