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1 Introduction

Although the exact density of the two stage least squares (TSLS) estimator has

been known for a few decades (see for example the review by Phillips (1983))

some of its properties are still surprising for econometricians. Bimodality is one of

these unexpected properties: Nelson and Startz (1990), Maddala and Jeong (1992)

and Woglom (2001) have shown that the density of the TSLS estimator may be

bimodal in a just identified structural equation.

Woglom (2001), who made the most recent contribution to this literature, has

raised the following three points:

(1) the exact finite sample distribution of the TSLS estimator cannot be easily

interpreted (p. 1381);

(2) two conflicting results are available in the literature (p. 1381 and p. 1388):

as the structural equation becomes unidentified, the distribution of the TSLS es-

timator approaches a Cauchy distribution (e.g. Phillips (1983)); however, if the

correlation between the right-hand-side endogenous variables and the instruments

is one (in absolute value) then the density of the TSLS estimator is bimodal (Nel-

son and Startz (1990));

(3) when the degree of endogeneity is large and the structural equation is

weakly identified, the distribution of the TSLS estimator may have two relevant

modes (p. 1388).

This paper addresses these three issues in the context of a just/over-identified

structural equation. Firstly, we show that the possible bimodality of the density

of the TSLS estimator can be easily understood using the exact results reviewed

by Phillips (1983). In fact, it is the product of the interaction of two components

of the exact density: one is unimodal and symmetric, and the other has the shape
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of a pulse wave. Secondly, we explain the apparent conflict between the totally

unidentified case considered by Phillips (1983) and the bimodal density derived by

Nelson and Startz (1990). We argue that there is an infinite number of possible

densities for the TSLS estimator when the model is unidentified, depending on the

path along which the quality of the instruments goes to zero. Finally, we study the

relationship between the degree of overidentification and bimodality of the TSLS

estimator, and show that bimodality cannot exist if the degree of overidentification

is large enough.

Hillier (2004) has recently investigated the properties of the TSLS estimator in

the just identified model considered by Woglom (2001) and offered further insights

into the properties of its density by relating them to the normalization used for

the structural equations. He has also discussed conditional measures of precision

for the TSLS estimator in this context (see also Forchini and Hillier (2003)), and

has given a very simple derivation of the density of the TSLS estimator in a just

identified model.

The rest of the paper is organized as follows. Section 2 presents the model

under consideration. The properties of the exact density affecting bimodality of the

TSLS estimator are considered in Section 3. Section 4 derives the limit densities as

the correlation between right-hand-side endogenous variables and the instruments

tends to zero. Section 5 discusses the case where the degree of overidentification

is large, and Section 6 concludes. All technical results are proved in the appendix.
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2 The two endogenous variables model

Consider the simple instrumental variables model:

y1t = y2tβ + ut (1)

y2t = z′2tπ2 + v2t, t = 1, 2, ..., T (2)

where y1t and y2t are endogenous variables, z2t is a k2×1 vector of exogenous vari-

ables, β and π2 are unknown parameters of dimension 1×1 and k2×1, respectively,

and ut and v2t are random errors. The reduced form for (y1t, y2t) is

(y1t, y2t) = z′2t (π1, π2) + (v1t, v2t) (3)

where

π1 = π2β (4)

and v1t = ut + βv2t. If π2 6= 0, equation (4) uniquely defines the parameter β in

terms of the reduced form parameters (π1, π2), and if k2 = 1 then β = π1/π2. If

π2 = 0, i.e. if the structural equation is not identified, then β can take on any

finite value provided π1 = 0 (see Forchini and Hillier (2003) for further discussion).

It is assumed that the model is identified (i.e. π2 6= 0 and (4) holds), but π2 can

be arbitrarily close to 0. Woglom (2001) and the work cited therein have looked

at the special case where k2 = 1.

Without loss of generality we can assume that the standardizing transforma-

tions described in Theorem 3.3.1 of Phillips (1983) have been applied, and that v1

and v2 are independent vectors of independent standard normal random variables.

There are two reasons to do so. First, these transformations allow us to simplify

the technical results, but do not affect the nature of the problem. If we denote

the variables and the parameters in the unstandardized structural equation and
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reduced form with an asterisk, so that, for example, β∗ is the coefficient of the

endogenous variable in the unstandardized model equivalent to (1) and (2), and if

the 2 × 2 matrix

Ω∗ =

(
ω∗

11 ω∗
21

ω∗
21 ω∗

22

)

denotes the common covariance matrix of the unstandardized reduced form errors

(v∗
1t, v

∗
2t), then the standardized and the unstandardized parameters β and β∗ are

related by

β = (ω∗
22/ω

∗
11.2)

1/2 (β∗ − ω∗
21/ω

∗
22) ,

where ω∗
11.2 = ω∗

11 − (ω∗
21)

2 /ω∗
22. Thus, for a fixed covariance matrix Ω∗, β is a

simple linear transformation of β∗. One may note that if the structural equation

is unidentified then the ordinary least squares estimator β̂OLS of β∗ converges in

probability to plim β̂OLS = ω∗
21/ω

∗
22 as the sample size increases. The quantity

ω∗
22/ω

∗
11.2 is the ratio between the variance of y∗

2t and the conditional variance of

y∗
1t given y∗

2t.

A second reason to look at the standardized model is that β is a bijective

function of the degree of endogeneity (e.g. equations (3.32) and (3.33) of Phillips

(1983))

corr (ut, y2t) = corr (u∗
t , y

∗
2t) = ρ = −

β√
1 + β2

, (5)

a parameter which seems to affect the presence of bimodality in the density of the

TSLS estimator (e.g. Maddala and Jeong (1992) and Woglom (2001)). By focusing

on β we can better take into accout the influence of the degree of endogeneity on

the shape of the distribution. The absolute value of the correlation is close to one

for large values of |β|. For example, β must be at close to 7. 02 to produce ρ equal

to .99. However, ρ reaches ±1 only when β tends to ±∞. Equation (5) seems to
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have been ignored by Nelson and Startz (1990), Maddala and Jeong (1992), and

Woglom (2001).

In this simple model, the TSLS estimator of β is

β̂ =
y′

2PZ2
y1

y′
2PZ2

y2
,

where y1 and y2 are t × 1 having components y1t and y2t respectively, PZ2
=

Z2 (Z ′
2Z2)

−1 Z ′
2 and Z2 is a T × k2 matrix having the variables z′2t as rows. The-

orem 3.3.2 of Phillips (1983) shows that the TSLS estimator of the standardized

coefficient of the endogenous variable (β̂) is related to the estimator of the unstan-

dardized coefficient (β̂
∗
) by the same relationship defining the coefficient, i.e.

β̂ = (ω∗
22/ω

∗
11.2)

1/2
(
β̂
∗
− ω∗

21/ω
∗
22

)
.

Woglom (2001) has considered the distribution of

w = β̂
∗
− β∗ = (ω∗

22/ω
∗
11.2)

−1/2
(
β̂ − β

)
, (6)

and has studied its dependence on the concentration parameter µ2 (= Tπ′
2π2 in the

standardized model) and the degree of endogeneity ρ. However, we prefer to work

with the standardized TSLS estimator β̂ directly. Its density is given by equation

(3.45) of Phillips (1983) as

pdf
(
β̂
)

=
Γ
(

k2+1
2

)

π
1

2 Γ
(

k2

2

) (
1 + β̂

2
) k2+1

2

× (7)

exp

{
−

µ2

2

(
1 + β2

)} ∞∑

j=0

(
k2−1

2

)
j

j!
(

k2

2

)
j

(
µ2β2

2

)j

×

1F1

(
k2 + 1

2
;
k2

2
+ j; a

(
β̂
))
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where

µ2 = Tπ′
2π2

is the concentration parameter,

a
(
β̂
)

=
µ2

2

(
1 + ββ̂

)2

1 + β̂
2 , (8)

and 1F1 (b; c; x) denotes a confluent hypergeometric function

1F1 (b; c; x) =
∞∑

j=0

(b)j

j! (c)j

xj

(e.g. Slater (1960) for details). In the display above (b)j = b (b + 1)

· · · (b + j − 1). For b > 0 and c > 0, 1F1 (b; c; x) is a monotonically increasing

function of x. This is a property that will be very usefull later on.

In the just identified model considered by Woglom (2001) (i.e. k2 = 1) the

density of the TSLS estimator simplifies to

pdf
(
β̂
)

=
exp

{
−µ2

2

(
1 + β2

)}

π
(
1 + β̂

2
) 1F1

(
1;

1

2
; a
(
β̂
))

(9)

(e.g. equation (14) of Phillips (1980) or equation (3.35) of Phillips (1983)). Hillier

(2004) gives a simple derivation of equation (9), and discusses (conditional) mea-

sures of precision of the TSLS estimator.

Equations (7) and (9) depend on two parameters, β and µ2, only, and although

they look complicated, we will be show in the next section that the shape of the

density of the TSLS depends on some simple properties of the confluent hyperge-

ometric function.
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3 Properties of the exact densities

The density pdf
(
β̂
)

can be written as the product of two terms

pdf
(
β̂
)

= lt
(
β̂
)

w
(
β̂
)

.

The first term lt
(
β̂
)
, usually called the “leading term” (e.g. Phillips (1983)),

is obtained by replacing µ2 = 0 in pdf
(
β̂
)

and corresponds to the first line of

equation (7). The second term w
(
β̂
)

is given by the second and third lines of

equation (7).

The function w
(
β̂
)

depends on β̂ only through a
(
β̂
)
, i.e. w

(
β̂
)

= w1

(
a
(
β̂
))

. The function w1 (.) is an infinite linear combination (with positive

coefficients) of confluent hypergeometric functions. We have already observed that

confluent hypergeometric functions like those appearing in w1 (.) are monotonically

increasing, so that w1 (.) is itself a monotonically increasing function. This implies

that w
(
β̂
)

being the composition of w1 (.) and a
(
β̂
)

has its shape mainly de-

termined by a
(
β̂
)
. The function a

(
β̂
)

has the form of a pulse wave, and as β

increases it tends to become v-shaped since the crest becomes less noticeable.

[FIGURE 1 APPROXIMATELY HERE]

Therefore, we can conclude that

Proposition 1 (1) lt
(
β̂
)

is symmetric around the origin β̂ = 0;

(2) w
(
β̂
)

has the form of a pulse wave; its undisturbed level is at

wU = exp

{
−

µ2

2

}
1F1

(
−

k2

2
;
k2

2
;−

µ2β2

2

)
, (10)
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the crest is at β̂ = β where w
(
β̂
)

equals

wC =
∞∑

j=0

(
k2−1

2

)
j

j!
(

k2

2

)
j

(
µ2β2

2

)j

1F1

(
j −

1

2
;
k2

2
+ j;−

µ2
(
1 + β2

)

2

)
, (11)

and the trough is at β̂ = −1/β where w
(
β̂
)

takes on the value

wT = exp

{
−

µ2

2

}
1F1

(
1

2
;
k2

2
;−

µ2β2

2

)
. (12)

It follows from Proposition 1 and the discussion above that

Proposition 2 (1) If either β = 0 or µ2 = 0, then w
(
β̂
)

is constant, and pdf
(
β̂
)

is bell-shaped.

(2) If β 6= 0 and µ2 is large, then w
(
β̂
)

has a high crest (wC −wU = O (|µ|)) and

a shallow trough (wU −wT = O (µ−2)). There could be two modes in the density of

β̂ but one of them would be very small and, certainly, undetectable for large values

of the concentration parameter µ2.

(3) If µ2 6= 0 and |β| is large, then w
(
β̂
)

has a high crest (wC −wU = O
(
|β|k2

)
)

and a deep trough (wU −wT = O
(
|β|k2

)
), so that pdf

(
β̂
)

could present two

relevant modes (one on each side of β̂ = 0).

In a just/over-identified structural equation, one may thus follow Woglom

(2001) and conclude that “practically important bimodality [in the density of the

TSLS estimator] requires high endogeneity [...] along with relatively small first

stage correlation” (p. 1387). We will focus on such situations from now onwards.
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4 The unidentified model

We consider the limit situation where the model is unidentified, and the degree

of endogeneity measured by ρ2 is 1. To do so we define the density of the TSLS

estimator in the unidentified case as the limit density when µ2 tends to zero and

ρ2 tends to 1 along a path of the form µ2 = a (1 − ρ2)+o (1 − ρ2), a ≥ 0. This will

also clarify the conflicting results of Phillips (1983) and Nelson and Startz (1990).

The following theorems give some insights about the shape of the limit density.

Theorem 1 (i) Suppose µ2 → 0 and ρ2 → 1 on the path µ2 = a (1 − ρ2) +

o (1 − ρ2), a ≥ 0, then the density of the TSLS estimator is

pdf
(
β̂
)

=
Γ
(

k2+1
2

)
exp

{
−a

2

}

π
1

2 Γ
(

k2

2

) (
1 + β̂

2
) k2+1

2

∞∑

j=0

(
k2−1

2

)
j

j!
(

k2

2

)
j

(a

2

)j

1F1

(
k2 + 1

2
;
k2

2
+ j;

a

2

β̂
2

1 + β̂
2

)
.

(ii) If the model is just identified (k2 = 1) then the limit of the density simplifies

to

pdf
(
β̂
)

=
exp

{
−a

2

}

π
(
1 + β̂

2
) 1F1

(

1;
1

2
;
a

2

β̂
2

1 + β̂
2

)

.

Theorem 2 The limit density in Theorem 2 has the following properties:

(i) if k2 = 1 bimodality occurs for a > 1;

(iii) if k2 = 2 then bimodality occurs for a > 3.15991;

(iv) if k2 ≥ 3 the density is always unimodal.

For the just identified case, the different results of Phillips (1983) and Nelson

and Startz (1990) are due to the different paths chosen in the calculation of the

limit as µ2 tends to zero and ρ2 tends to one. Phillips (1983) does not make any
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assumption on ρ2 and thus implicitly assumes that a = 0. Depending on the

value of a, the limit density can be bimodal or unimodal for k2 ≤ 2. However, no

bimodality arises for k2 ≥ 3.

Figure 2 shows the limit density in the just identified case for some values of

parameter a.

[FIGURE 2 APPROXIMATELY HERE]

One may note that the ordinary least squares estimator of β would converge in

probability to zero in our setup where the standardizing transformations described

in Theorem 3.3.1 of Phillips (1983) have been applied. Theorem 2 suggests that

if the model is unidentified (or close to being unidentified) and the number of in-

struments is large then the distribution of the TSLS estimator is also concentrated

around 0. This result holds true independently of the path chosen to calculate

the limit density. Moreover, since the exact density given in Theorem 1 does not

depend on the sample size, it is also the asymptotic density for the TSLS estimator.

5 The existence of modes when k2 is large

Section 3 has shown that relevant bimodality requires a relatively small µ2. The

limit densities of the TSLS estimator obtained in Section 4 (where µ2 tends to

zero) are necessarily unimodal when k2 ≥ 3. This section investigates the possible

bimodality of the density of the TSLS estimator when µ2 is finite (but not zero)

and k2 is large.

The following theorem and its corollary give formal conditions for the existence

of modes.
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Theorem 3 The TSLS estimator has one mode if the equation

∑∞
j=0

( k2−1

2 )
j

j!(k2
2

+1)
j

(
µ2β2

2

)j

1F1

(
k2+3

2
; k2+2

2
+ j; µ2

2
(1+βx)2

1+x2

)

∑∞
j=0

( k2−1

2 )
j

j!(k2
2 )

j

(
µ2β2

2

)j

1F1

(
k2+1

2
; k2

2
+ j; µ2

2
(1+βx)2

1+x2

) (13)

=
k2x (1 + x2)

µ2 (β − x) (1 + βx)

has only one solution in x; it has two modes if the equation above has three solutions

in x. There is one solution to equation (13) in the interval [min {β,−1/β} , max {β,−1/β}].

If there are three solutions, two will be in the range (−1/β, +∞) if β < 0 and in

(−∞,−1/β) if β > 0.

Corollary 1 If k2 is large, β 6= 0 and µ2 > 0, then equation (13) has only one

solution at x = 0.

Therefore, as k2 becomes large, the density of the TSLS estimator tends to have

only one mode in the neighborhood of β̂ = 0. Corollary 1 shows that as the num-

ber of instruments increases the distribution of the TSLS estimator is concentrated

around the probability limit for the OLS estimator in the unidentified case. Intu-

itively,
(
1 + β̂

2
)−(k2+1)/2

in the leading term lt
(
β̂
)

becomes concentrated around

zero when k2 is large.

6 Conclusions

Nelson and Startz (1990), Maddala and Jeong (1992) and Woglom (2001) have

shown that the density of the TSLS estimator may be bimodal in a just identified

structural equation. This paper has looked further at this issue in a just/over-

identified structural equation in order to provide a better understanding of the

problem. It has argued that bimodality arises because of the complex interaction
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between two components of the exact density: one of these is symmetric and one

has the shape of a pulse wave.

The paper has shown that bimodality of the density of the TSLS estimator

may appear if µ2 is large, but one of the modes would be surely undetectable in

this case. As in the just identified case bimodality may occur when ρ2 is close to

one and µ2 is relatively small. However, it becomes less likely when k2 is large (in

this case the density has only one mode in the neighborhood of zero). In situations

where identification is weak, the central tendency of the TSLS estimator is biased

away from the true value in the direction of the probability limit of the ordinary

least squares estimator (Nelson and Startz (1990) p. 967).

Finally we have shown that both the Cauchy density and a bimodal density

can be obtained as µ2 tends to zero and ρ2 tends to one. In fact, the density of

the TSLS may converge to a large variety of (possibly bimodal) densities as µ2

approaches zero and ρ2 goes to one. This reconciles the results of Phillips (1983)

and Nelson and Startz (1990) for the just identified case. If k2 ≥ 3 no bimodality

can be present in the limit density.

A Technical appendix

A.1 Proof of Theorem 1

Using (5) we can write µ2 = a/
(
1 + β2

)
+o
(
β−2
)

and the statement of the theorem

follows easily from the continuity of the exponential and of the hypergeometric

functions.
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A.2 Proof of Theorem 2

It can be easily checked that the limit density can have only two modes, and that

if a trough exists it must occur at β̂ = 0. Moreover, one can easily show that

d2

dβ̂
2

1F1

(
k2+1

2
; k2

2
+ j; a

2
β̂

2

1+β̂
2

)

(
1 + β̂

2
)k2+1

2

∣∣∣∣∣∣∣∣
β̂=0

=
k2 + 1

4
Γ

(
k2

2

)(
k2

2

)

j

[
−

4

Γ
(

k2

2

) (
k2

2

)
j

+
2a

Γ
(

k2

2
+ 1
) (

k2

2
+ 1
)

j

]

so that

d2 pdf
(
β̂
)

dβ̂
2

∣∣∣∣∣∣
β̂=0

=
k2 + 1

4

Γ
(

k2+1
2

)
exp

{
−a

2

}

π
1

2

(
1 + β̂

2
) k2+1

2

∞∑

j=0

(
k2−1

2

)
j

j!

(a

2

)j
[

−
4

Γ
(

k2

2

) (
k2

2

)
j

+
2a

Γ
(

k2

2
+ 1
) (

k2

2
+ 1
)

j

]

.

After using (2.2.4) in Slater (1960) and simplifying one obtains

d2 pdf
(
β̂
)

dβ̂
2

∣∣∣∣∣∣
β̂=0

= −
(k2 + 1) Γ

(
k2+1

2

)
exp

{
−a

2

}

Γ
(

k2

2
+ 1
)
π

1

2

(
1 + β̂

2
)k2+1

2

1F1

(
k2 − 3

2
;
k2

2
;
a

2

)

and d2 pdf
(
β̂
)

/dβ̂
2
∣∣∣
β̂=0

> 0 if and only if 1F1

(
k2−3

2
; k2

2
; a

2

)
< 0. For k2 = 1 one

has 1F1

(
−1; 1

2
; a

2

)
= 1 − a < 0 which implies a > 1. For k2 = 2, 1F1

(
−1

2
; 1; a

2

)
<

0, implies a > 3.15991. For k2 ≥ 3, 1F1

(
k2−3

2
; k2

2
; a

2

)
≥ 1 for all a so that

d2 pdf
(
β̂
)

/dβ̂
2
∣∣∣
β̂=0

≤ 0 for all a.
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A.3 Proof of Theorem 3

To simplify notation let β̂ = x. By deriving equation (7) with respect to x, setting

the derivative equal to zero and rearranging one obtains

∑∞
j=0

( k2−1

2 )
j

j!(k2
2

+1)
j

(
µ2β2

2

)j

1F1

(
k2+3

2
; k2+2

2
+ j; µ2

2
(1+βx)2

1+x2

)

∑∞
j=0

( k2−1

2 )
j

j!(k2
2 )

j

(
µ2β2

2

)j

1F1

(
k2+1

2
; k2

2
+ j; µ2

2
(1+βx)2

1+x2

) (14)

=
k2x (1 + x2)

µ2 (β − x) (1 + βx)
.

The left hand side of (14) is a non-negative, continuous function of x, having a

minimum at x = −1/β, a maximum at x = β, and tending to

1F1

(
−k2

2
; k2

2
+ 1;−µ2β2

2

)

1F1

(
−k2

2
; k2

2
;−µ2β2

2

)

as x → ∞. It has the same shape as a (.) defined in equation (8). The right hand

side of (14) can take on any real value as x ranges in the interval

(min {−1/β, β} , max {−1/β, β}). As x goes to infinity the right hand side of

(14) has an asymptote of the form

−
k2

βµ2
x +

k2

(
1 − β2

)

β2µ2
,

and

lim
x→max{−1/β,β}+

k2x (1 + x2)

µ2 (β − x) (1 + βx)
= − sign (β)∞

lim
x→min{−1/β,β}

−

k2x (1 + x2)

µ2 (β − x) (1 + βx)
= sign (β)∞.

Moreover, if β > 0 the right hand side has a unique maximum in the range

(β, +∞) (which stays below the horizontal axis) and a unique minimum in the

range (−∞,−1/β) (which stays above the horizontal axis). It follows that there
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is one solution to equation (14) in the interval [min {β,−1/β} , max {β,−1/β}],

and, if there are three solutions two of them will be in the range (−1/β, +∞) if

β < 0 and in (−∞,−1/β) if β > 0.

A.4 Proof of Corollary 1

Let f (x) denote the left-hand-side of (13). Note that f (x) has a minimum at

x = −1/β where fm = f (−1/β) equals

fm =
1F1

(
k2−1

2
; k2

2
+ 1; µ2β2

2

)

1F1

(
k2−1

2
; k2

2
; µ2β2

2

)

= 1 + O
(
k−1

2

)

(where the last line follows from equation (4.3.6) of Slater (1960)) and a maximum

at x = β where fM = f (β) equals

fM =

∑∞
j=0

( k2−1

2 )
j

j!(k2
2

+1)
j

(
µ2β2

2

)j

1F1

(
k2+3

2
; k2+2

2
+ j;

µ2(1+β2)
2

)

∑∞
j=0

( k2−1

2 )
j

j!(k2
2 )

j

(
µ2β2

2

)j

1F1

(
k2+1

2
; k2

2
+ j; µ2

2

µ2(1+β2)
2

)

= 1 + O
(
k−1

2

)

(where again equation (4.3.6) of Slater (1960) has been used), so that when k2 is

large

1 + O
(
k−1

2

)
=

k2x (1 + x2)

µ2 (β − x) (1 + βx)
.

Rearraning the expression in the last display one has

1 + O
(
k−1

2

)

k2
=

x (1 + x2)

µ2 (β − x) (1 + βx)
,

and the theorem follows.
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Figure 1: The top graph contains the typical shape of a
(
β̂
)

for β small. The

bottom one illustrates a
(
β̂
)

when β is large.
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Figure 2: Graph of the limit densities in the just identified case for a = 0 (dashed
line), a = 1 (dotted line) and a = 3 (solid line).
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