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Abstract 

In this paper, we consider the problem of estimation of semi-linear regression models. 

Using invariance arguments, Bhowmik and King (2001) have derived the probability 

density functions of the maximal invariant statistic for the nonlinear component of these 

models. Using these density functions as likelihood functions allows us to estimate 

these models in a two-step process. First the nonlinear component parameters are 

estimated by maximising the maximal invariant likelihood function. Then the nonlinear 

component, with the parameter values replaced by estimates, is treated as a regressor 

and ordinary least squares is used to estimate the remaining parameters. We report the 

results of a simulation study conducted to compare the accuracy of this approach with 

full maximum likelihood estimation. We find maximising the maximal invariant 

likelihood function typically results in less biased and lower variance estimates than 

those from full maximum likelihood. 
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1 Introduction 

A major difficulty with full maximum likelihood estimation of multiparameter models 

is that it can result in poor estimates in some circumstances. There is a problem of 

potentially biased estimates arising from the joint estimation of multiple parameters. A 

good example is the estimate of the variance of the disturbances in the classical linear 

regression model. In this case, the maximum likelihood estimator is known to be biased 

and a simple correction is needed to make it unbiased in small samples. This is because 

the regression coefficients are nuisance parameters when it comes to estimating the 

variance. For further discussion of the problems of joint estimation of multiple 

parameters, see Neyman and Scott (1948), Anderson (1970) and Cox and Hinkely 

(1974). There is a vast amount of literature on the satisfactory handling of nuisance 

parameters, see for example, Fraser (1967), Kalbfleisch and Sprott (1970, 1973), 

Bellhouse (1978), King (1983), Barndorff-Nielsen (1983), Lehmann (1986), Cox and 

Reid (1987), Tunnicliffe Wilson (1989), McCullagh and Tibshirani (1990), Ara and 

King (1993, 1995), Ara (1995), and Laskar and King (1998, 2001). 

One approach that has received a good deal of attention in the literature is the concept of 

the marginal likelihood which was first introduced by Fraser (1967), and further 

developed by Kalbfleisch and Sprott (1970). The main idea is to transform the data 

vector to another random vector, a subvector of which has a likelihood (marginal 

likelihood) that only involves the parameters of interest and the remainder of which 

contains no information about those parameters. There is a lot of evidence in the 

literature that the use of marginal likelihood methods can produce more accurate 

estimates and, in particular, less biased estimates. See for example Cooper and 
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Thompson (1977), Kitanidis and Vomvoris (1983), Kitanidis (1983, 1987), Hoeksema 

and Kitanidis (1985) and Kitanidis and Lane (1985), Cordus (1986), Tunnicliffe Wilson 

(1989), Bellhouse (1991), Shephard (1993), Ara (1995), Ara and King (1993, 1995), 

Laskar and King (1997) and Rahman and King (1998).  

The use of invariance arguments has been a useful method for dealing with some of the 

problems caused by nuisance parameters, particularly for hypothesis testing. The 

approach involves noting that the testing problem is invariant to a certain class of 

transformations on the observed data vector and then requiring the chosen test to also be 

invariant to such transformations. A key device for test construction is the maximal 

invariant statistic. It is a vector function of the data vector that takes the same value for 

data vectors that can be connected by a transformation and different values for those 

data vectors that cannot be connected by a transformation. Thus the class of all invariant 

test statistics corresponds to the class of functions of the maximal invariant. This allows 

us to treat the maximal invariant as the observed data when designing a new test. The 

density function of the maximal invariant can be treated as a likelihood for this purpose. 

This function is known as the maximal invariant likelihood (MIL) function. 

Ara (1995) showed that the marginal likelihood function and the likelihood of the 

maximal invariant statistic are equivalent in the case of nonspherical disturbances in the 

linear regression model. In the context of a linear regression model with a non-linear 

additive component, Bhowmik and King (2001) derived a MIL function for the non-

linear component. The purpose of this paper is to compare maximum MIL (MMIL) and 

full maximum likelihood approaches to the estimation of parameters in the non-linear 

component. Using the MIL function to estimate these parameters results in a two-step 
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process. First the non-linear component parameters are estimated by maximising the 

MIL. Then the non-linear component, with the parameter values replaced by estimates, 

is treated as a regressor and ordinary least squares is used to estimate the remaining 

parameters. Alternatively, the full likelihood of the complete model can be maximised 

to obtain the standard maximum likelihood estimates. The MMIL estimator might be 

expected to be superior to the full likelihood estimator given the evidence in the 

literature outlined above. We derive two MIL functions for two different models and 

these functions will be denoted as MIL1 and MIL2, where MIL1 stands for the linear 

model with a general non-linear component and MIL2 for a linear model with a 

regressor which is a non-linear function of unknown parameter(s). 

The plan of this paper is as follows. In Section 2 we derive the likelihood functions (full 

likelihood and MIL) for the different non-linear models. Monte Carlo experiments to 

investigate the performance of different ML estimators in the context of non-linear 

parameters are outlined and reported in Section 3. Finally, concluding remarks are made 

in Section 4. 

2 Theory 

Our interest is in the following semi-linear model  

y X g X u= + +1 1 2 2 β β( , ) In~ ( , )0 2σ, u N        (2.1) 

where  is an y n ×1  vector,  is an X1 n q×  nonstochastic matrix,  is an nX 2 p×  

nonstochastic matrix of n  observations on p  variables and g X( ,2 2 )β  is a non-linear 

function of the r ×1 parameter vector β 2  and . Note X 2 r  and p  are different for 
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flexibility. Bhowmik and King (2001) derived the density function of a maximal 

invariant statistic for the non-linear component of (2.1). This can be treated as a 

likelihood function for the parameter vector β 2  in order to construct the MIL1 function. 

The MIL1 function is 

f w m c wm( ) ( ) exp{ ( , )}/= −1
2 2
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P  is an  matrix such that m n× PP Im′ = , ′ =P P M1  and m n q= − . 

Let us also consider the following slightly more specific semi-linear model, 

y X g X u= + +1 1 2 2 3β β β( , ) , u N ,    (2.10) In~ ( , )0 2σ

where  is an X1 n q×  nonstochastic matrix,  is an X 2 n p×  nonstochastic matrix and 

g X( ,2 3)β  is a non-linear function of β 3  and . Bhowmik and King (2002) derived 

the density function of a maximal invariant statistic for the non-linear component of this 

model. The MIL2 function is 

X 2

f d d d
n q
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− −
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n q
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where 

d Q X Py N In q= − −( , ) ~ ( ,2 3
2

10β σ )

)

,                 (2.12) 

Q X( ,2 3β  is an (  matrix such that Q X)n q m− − ×1 Q X In q( , ) ( , )2 3 2 3 1β β ′ = − − , 

Q X Q X Mg( , ) ( , ) (2 3 2 3 3)β β β′ = , 

and 

M I g X g X g X g Xg ( ) ( , ){ ( , ) ( , )} ( , )β β β β3 2 3 2 3 2 3
1

2 3= − ′ − β ′ .  (2.13) 

Our aim is to use these two likelihood functions for the estimation of the non-linear 

parameters. A maximal invariant is a random vector and therefore the use of its density 

as a likelihood means that resultant estimators will have the usual asymptotic properties 
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that have been demonstrated for the classical likelihood (see Lehmann 1983, Stuart 

and Ord 1991 and Ara 1995). 

As mentioned earlier, the two-step estimation process involves estimating the non-linear 

component parameters by maximising the MIL function or equivalently the log of MIL. 

For the MIL2 function (2.11), the log likelihood function is 

L n q n q z M zg2
2
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− −
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Therefore, maximising  is equivalent to minimising L2 ′z M zg ( )β 3  with respect to β 3 .  

3 Empirical comparisons 

In order to compare the small sample performance of the three estimators, we conducted 

a simulation study outlined below. 
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3.1 Experimental design 

We evaluated the different estimation methods on the following three semi-linear 

models, namely 

K V
R

ut t
t

t= +
−

+γ β
α

 , u I ,                             (3.1) Nt ~ ( ,0 2σ )

= = +Y f X X X X ut t t t t t+ +( , ) exp( )θ θ θ θ θ1 1 2 2 4 3 3 Nt ~ ( , )0 2σ

t t t= + +α β γ  Nt ~ ( ,0 2σ n

, u I ,               (3.2) 

C U W ut , u I , t) = 1 2, ,..., .                            (3.3) 

Model (3.1) is a non-linear money demand function used by Konstas and Khouja 

(1969), where  

 = quantity of money demanded,  Kt

Vt = national income, 

 = rate of interest, Rt

γ , β  and α  are three unknown parameters such that 0 < < ∞α , β > 0  and γ > 0 . 

Model (3.2) was given by Gallant (1975), where ,  and  are three input 

variables, 

X t1 X t2 X t3

Y f Xt t= ( , )θ  is the output variable, and θ 1 , θ 2 , θ 3  and θ 4  are unknown 

parameters. Model (3.3) is a modified model of the general consumption function from 

Greene (1997), where 

 = aggregate income, Wt

 = consumption, Ct

 = regressor of independent random variables from Ut N ( , )0 1 , 
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α , β  and γ  are three unknown parameters such that α > 0, 0 1< <β  and γ > 0 .  

In Greene’s model, U  is a vector of ones but in our case U  is an  vector of 

independent random variables from 

t t n ×1

N ( , )0 1 . We made this modification to avoid 

problems caused by an ill-conditioned non-linear model. It is worth noting that ill-

conditioning will occur in the models for near zero values of β  in (3.1), θ 4  in (3.2) and 

β  in (3.3). 

For model (3.1), we used generated data to construct the design matrix with V  and  

being independent observations from the [0,1] uniform distribution. The estimates based 

on (i) full maximum likelihood (FML), (ii) maximum MIL1 (MMIL1) and maximum 

MIL2 (MMIL2) when 

t Rt

γ β α σ, , , 2c h =  (0.5, 0.1, 0.05, 0.05), (0.3, 0.1, 0.03, 0.05), (0.3 0.2, 0.015, 0.25), 

(0.7, 0.5, 0.15, 0.05), (0.3, 0.1, 0.03, 0.75), (0.5, 0.1, 0.5, 0.75), (0.5, 0.05, 0.01, 

0.25), (0.5, 0.1, 0.5, 0.05), (1.5, 0.15, 0.2, 0.25), (0.25, 0.05, 0.01, 0.25) 

were used for comparison. At an early stage in our simulations, we identified a problem 

with local maxima of the various likelihood functions and so used a range of starting 

values for γ ,  β , α  and  in the respective optimisation procedures. For model (3.1) 

we used five sets of starting values for 

σ 2

γ ,  β , α  and  and these were (0.05, 0.03, 

0.02, 0.05), (0.2, 0.05, 0.05, 0.2), (0.5, 0.1, 0.07, 0.5), (1, 0.65, 0.15, 0.75) and (1.5, 

0.85, 0.25, 0.95) for FML, (

σ 2

β , α ) = (0.1, 0.05), (0.3, 0.15), (0.5, 0.25), (0.7, 0.35) and 

(1, 0.5) for MMIL1 and α  = 0.05, 0.1, 0.3, 0.4, and 0.5 for MMIL2. 
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For model (3.2), Gallant (1975), used simulated data for ,  and . In our 

study, 

X t1 X t2 X t3

  was independently generated from X t1 N ( , ),0 1  

  was independently generated from X t2 N ( , ),0 1  

X t3  was independently generated from the [0,1] uniform distribution. 

Data was generated for nine different sets of values for θ θ θ1 2 3, ,  θ 4  and , namely  σ 2

(0.5, 0.25, 0.01, 0.25, 0.25), (0.75, 0.5, 0.1, 0.5, 0.9), (0.03, 1.02, 1.1, 0.5, 

0.25), (0.15, 0.5, 0.15, 0.35, 0.5), (

− −

− 0.05, 1.02, − 0.95, − 0.5, 0.25), ( 0.05, 

1.1, 0.5, 

−

− − 0.5, 0.95), (− 0.025, 1.1, − 1.1, − 0.5, 0.25), ( 0.5, 1.1, 0.5, 

0.5, 0.5), (

− −

− − 0.75, − 0.5, 0.5, − 0.75, 0.25). 

Again we identified a problem with local maxima and used five different sets of starting 

values in the respective optimisation procedures to overcome this problem. The five sets 

of starting values for θ 1 , θ 2 , θ 3  θ 4  and  were (σ 2 − 0.85, − 1, − 1.5, 1.2, 0.05), 

(− 0.5, 0.75, 0.85, 0.9, 0.25), (0.5, 

−

− − − − 0.25, − 0.5, − 0.4, 0.5), (0.75, 0.5, 0.5, 0.5, 

0.75) and (1.5, 1, 1.5, 1.2, 0.9) for FML, (θ 3 , θ 4 ) = (− 0.5, − 0.5), ( 0.15, 0.2), 

(0.15, 0.15), (0.25,0.25) and (0.75, 0.75) for MMIL1 and 

− −

θ 3  = − 1, − 0.5, 0.5, 1 and 1.5 

for MMIL2. 

For model (3.3), U  was independently generated from t N ( , )0 1  and W  was generated 

from the [0,1] uniform distribution. Data for C  was generated for seven different sets 

of values for 

t

t

α , β , γ  and  namely σ 2
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(3.5, 0.5, 1.15, 0.05), (1.5, 0.25, 1.155, 0.05), (0.5, 0.25, 1.5, 0.05), (1.5, 0.25, 

1.1, 0.05), (1.5, 0.25, 1.1, 0.01), (0.5, 0.25, 0.25, 0.25), (1.5, 0.75, 0.5, 0.25). 

To overcome problems with local maxima, we used five different sets of starting values 

for α , β , γ  and  and these were (0.25, 0.05, 0.25, 0.05), (0.75, 0.25, 0.5, 0.25), 

(1.2, 0.5, 0.95, 0.5), (1.75, 0.75, 1.25, 0.75) and (3.5, 0.9, 1.75, 0.95) for FML, (

σ 2

β , γ ) 

= (0.1, 0.2), (0.3, 0.5), (0.5, 0.8), (0.7, 1) and (0.95, 1.5) for MMIL1 and γ = 0.25, 0.5, 

0.75, 1 and 1.5 for MMIL2. 

For each case, 2000 iterations were used to simulate the distributions of the estimators. 

We used two sample sizes, n  and = 30 n = 60 . In order to maximise the likelihood 

functions, the Gauss (see Aptech 1995) Co-optimisation routine was used.  

From the simulations, we recorded estimated bias, standard deviation, mean squared 

error and quantiles (5%, 50% and 95%) of the three different estimators (FML, MMIL1 

and MMIL2) of the non-linear parameters of the three different models. 

3.2 The question of existence of second-order moments of estimators 

There is an issue of whether the second-order moments of the estimators exist. If they 

do not exist then our estimates of SD and MSE are meaningless because they will be 

finite estimates of infinity. The possibility of the estimator having an infinite variance 

can be revealed by running the simulations for a range of different numbers of 

iterations. An infinite variance would be reflected in the estimate of SD increasing with 

the number of iterations. We examined this by running simulations for different 

numbers of iterations for each of the models, namely 500, 2000, 5000, 7000, 10,000 and 

15,000. In this simulation experiment, we used only one set of values for the parameters 
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for each of the models. These were γ = 05. , β = 01. , α = 0 05. ,  for model 

(3.1); 

σ 2 0 05= .

θ 1 05= . , θ 2 0 25= . , θ 3 0 01= . , θ 4 0 25= . ,  for model (3.2) and σ 2 0 25= . α = 05. , 

β = 0 25. , γ = 15. ,  for model (3.3). Sample sizes of nσ 2 0 05= . = 30  and n  were 

used. 

= 60

The resultant estimates of the SD are presented in Table 1. They show that SDs for 

model (3.1) for each of the methods, (FML, MMIL1 and MMIL2) are stable for 

different numbers of iterations and for both sample sizes ( n = 30  and n ). For 

model (3.2), we notice that from the use of the FML, MMIL1 and MMIL2 methods, 

estimates of SD for the non-linear parameter decrease slightly when the number of 

iterations is increased, especially for the larger numbers of iterations (7000, 10,000 and 

15,000). Similarly for model (3.3), we observe a small decrease in SD estimates for 

both of the sample sizes when the number of iterations is increased. Therefore, the SD 

results in Table 1 confirm that the second-order moments of the estimators exist, at least 

for the models we considered. 

= 60

3.3 Simulation results 

Estimated bias, standard deviation, mean squared error (MSE), quantiles (5%, 50%, and 

95%) of the three different estimators (FML, MMIL1 and MMIL2) of the non-linear 

parameters of models (3.1), (3.2) and (3.3), for selected parameter combinations are 

presented in Tables 2-4. The following is a discussion of the full set of results. 

For model (3.1), the results show that both FML and MMIL (MMIL1 and MMIL2) 

estimators have little bias. In cases where the FML estimator has a small bias, it is 

reduced by the use of the MMIL1 and MMIL2 estimators, especially for the parameters 
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in the non-linear component and for n = 30 . Using an MMIL estimator in place of 

the FML estimator can reduce bias by up to 99.8%.  

The results also confirm that the MMIL estimators (MMIL1 and MMIL2) have smaller 

SDs than the FML estimator, particularly for the parameters in the non-linear 

component. In some cases, the MMIL2 estimator has a smaller SD than the MMIL1 

estimator, particularly when n . For = 60 n = 30 , the MMIL1 estimator is typically 

better than the MMIL2 estimator. 

When MSE is considered, we see in general the MMIL estimators are better than the 

FML estimator, especially for the parameters in the non-linear component and when 

. Given that the bias and SD both decrease when an MMIL estimator is used in 

place of the FML estimator, it is no surprise to see that the MSE also decreases. 

Sometimes for the parameters in the non-linear component, we observe up to a 99.9% 

reduction in MSE when an MMIL estimator is used. The MMIL2 estimator is better 

than the MMIL1 estimator, particularly when n

n = 30

= 60 . On the other hand, for n  in 

most cases, the MMIL1 estimator is better than the MMIL2 estimator with respect to 

MSE.  

= 30

An analysis of the quantile results reveals that the differences from the median (50th 

percentile) to 5th percentile and 95th percentile for the MMIL estimators are less than for 

those of the FML estimator, especially for the parameters in the non-linear component 

and for . The 100n = 30 1( )− %α  percentile range (PR) of an estimator is calculated as 

, where Q = Q Q1 2 2− −α α/ / p p th quantile. We observe that the 90% PRs for the MMIL 

estimators are less than those for the FML estimator. The PR values show that 

sometimes, the middle 90% parameter estimates are up to 98.4% more tightly 
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distributed for the two-step MMIL method compared to FML estimates, especially 

for the parameters in the non-linear component and for n = 30 . If we observe the 

difference between the 50th percentile (median) and the true value of the parameters, we 

see that the resulting difference is generally less for the MMIL estimators than for the 

FML estimator. 

Table 3 shows selected results for model (3.2). In this case, in general for the parameters 

in the non-linear component, bias is less for the MMIL estimators than for the FML 

estimator for . We observe up to an 82% reduction in bias from using an MMIL 

estimator in place of the FML estimator. The reduction is most noticeable for the 

parameters in the non-linear component and when n

n = 30

= 30 . Notable exceptions for the 

MMIL1 estimator occur when θ 3  is very small. The MMIL2 estimator typically results 

in a higher reduction in bias compared to the FML estimator when n = 30 . The MMIL2 

estimator is often better than the MMIL1 estimator for the parameters in the non-linear 

component. For near zero values of θ 3  and large values of , we observe more biased 

estimates of the parameters in the non-linear component. 

σ 2

Results reported in Table 3 show that in most cases, an MMIL estimator (MMIL1 or 

MMIL2) has a lower SD than the FML estimator for both sample sizes, particularly for 

the parameters in the non-linear component. For the linear parameters, sometimes we 

have a reduction in SD from using an MMIL estimator in place of the FML estimator 

but in most cases, the SDs of the MMIL estimators and the FML estimator are almost 

the same. 

We see that bias and SD results for the parameters in the non-linear component both 

decrease when the MMIL estimator is used and as a result, the MSE also decreases. The 
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results in Table 3 show that for the parameters in the non-linear component and for 

, we obtain up to a 61.8% reduction in MSE from the use of an MMIL estimator 

in place of the FML estimator. When 

n = 30

θ 3  and θ 4  both are positive large numbers or are 

both negative then for n  with respect to MSE, the MMIL estimators are better than 

the FML estimator. The MMIL2 estimator is often better than the MMIL1 estimator in 

this regard, particularly for . For some values of 

= 30

n = 30 θ 3  and θ 4  (θ 3 0 95= − .  and 

θ 4 05= − . ), we do not get a reduction in MSE from using the MMIL2 estimator in place 

of the FML estimator. 

The quantile results in Table 3 show that for the parameters in the non-linear 

component, the 90% PRs for the MMIL estimators are less than those of the FML 

estimator. The 90% PR values generally reveal that the middle 90% estimated values of 

the parameters are up to 40.6% more tightly distributed for the MMIL estimators 

compared to the FML estimator. The difference between the median and true value of 

the parameters is almost always less for the MMIL estimators than for the FML 

estimator, especially for the parameters in the non-linear component. The MMIL 

estimates of non-linear component parameters are more concentrated around their true 

value than are the FML estimates. 

Table 4 shows selected simulation results for model (3.3). Again we have a reduction in 

bias for the MMIL estimators in comparison to the FML estimator, especially for the 

parameters in the non-linear component and for small sample sizes. The overall bias 

results show that there can be up to a 81.8% reduction in bias from the use of an MMIL 

estimator (MMIL1 or MMIL2) in place of the FML estimator. Extremes in bias 

reduction occur when the traditional FML estimator is more biased. However when 
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n = 60 , we do not have a reduction in bias from using the MMIL estimators, 

particularly for the parameters in the non-linear component. For this model, the MMIL1 

estimator is better than the MMIL2 estimator at reducing bias, particularly when 

. n = 30

When , we have a sizable reduction in SD from the use of the MMIL estimators 

in place of the FML estimator. However, for 

n = 30

n = 60  in most cases, especially for the 

parameters in the non-linear component, we do not have a reduction in SD for the 

MMIL estimators compared to the FML estimator. Among the MMIL estimators, the 

MMIL1 estimator is better than the MMIL2 estimator when SD is considered. 

For model (3.3) with n , both bias and SD are almost always decreased when an 

MMIL estimator is used especially for the parameters in the non-linear component. As a 

result, we can obtain up to a 79.9% reduction in MSE for n

= 30

= 30  from the use of an 

MMIL estimator (MMIL1 or MMIL2) in place of the FML estimator. In many cases, 

the MMIL1 estimator has a smaller MSE than the MMIL2 estimator for both sample 

sizes. For the α  parameter and for n = 60 , the MMIL estimators are typically better 

than the FML estimator with respect to MSE, but for the non-linear parameters, the 

differences for  are very small. n = 60

When , the quantile results in Table 4 show that the 90% PRs for the MMIL 

estimators are smaller than those of the FML estimator, particularly for the parameters 

in the non-linear component. The difference between these two percentiles show that 

the middle 90% estimated values of the parameters are up to 32.4% more tightly 

distributed for the MMIL estimators than for the FML estimator.  

n = 30
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4 Concluding remarks 

The results for the three models show that overall the MMIL estimators are less biased 

than the traditional FML estimator, particularly for the parameters in the non-linear 

component and for small sample sizes. The MMIL estimators (MMIL1 and MMIL2) 

typically have smaller SDs than the FML estimator. Similarly, with respect to MSE, the 

MMIL estimators are better than the FML estimator, especially for the parameters in the 

non-linear component and for small sample sizes. The quantile results of the estimators 

give us a closer view of the two methods. The estimated values from the MMIL 

estimators are more concentrated around their true parameter value than for the FML 

estimator. Therefore, we can conclude that when there is a measurable bias in the FML 

estimates, the MMIL estimators will help to reduce this bias, for small sample sizes and 

particularly for the parameters in the non-linear component. However, for all the models 

and for , sometimes the FML estimator and the MMIL estimators are nearly the 

same, especially for the parameters in the non-linear component. 

n = 60

When we compare the MMIL1 and MMIL2 estimators, their performance is more or 

less equal. However, MIL1 is a complicated mathematical function and, for our 

simulations, the MMIL1 estimator was more time consuming to apply. Therefore, we 

recommend the MMIL2 estimator ahead of the MMIL1 estimator because it is 

straightforward and more easily applied.  
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Table 1 Estimates of SD for the non-linear parameters of three different models for 

different numbers of iterations and for two different sample sizes 

Sample 

size 

Number of iterations 

   500           1000           2000              5000            7000           10000         15000 

 
Model 1: M Y

R
ut t

t
t= +

−
+γ β

α
; SD of estimates of α  

    FML 

30     MMIL1 

        MMIL2 

0.00049 

0.00050 

0.00049 

0.00049 

0.00061 

0.00050 

0.00049 

0.00057 

0.00049 

0.00049 

0.00055 

0.00049 

0.00049 

0.00055 

0.00048 

0.00049 

0.00050 

0.00048 

0.00049 

0.00050 

0.00048 

     FML 

60     MMIL1 

        MMIL2 

0.00009 

0.00012 

0.00008 

0.00009 

0.00012 

0.00009 

0.00009 

0.00012 

0.00009 

0.00009 

0.00012 

0.00009 

0.00009 

0.00013 

0.00008 

0.00008 

0.00012 

0.00008 

0.00008 

0.00012 

0.00008 

 Model 2: Y X X Xt t t t= ut+ + +θ θ θ θ1 1 2 2 4 3 3exp( ) ; SD of estimates of θ 3  

     FML 

30      MMIL1 

          MMIL2

6.96426 

7.10115 

7.81624 

6.93151 

6.96940 

7.79325 

6.89750 

6.81410 

8.07040 

7.06477 

6.17519 

7.39501 

6.95384 

6.17230 

7.35290 

6.71809 

6.16213 

7.34501 

6.61518 

6.16185 

7.34463 

     FML 

60     MMIL1 

         MMIL2 

1.95792 

1.74588 

1.86419 

1.95177 

1.74496 

1.79879 

1.95035 

1.74383 

1.88635 

1.88706 

1.72274 

1.89355 

1.82699 

1.71955 

1.88940 

1.83637 

1.71015 

1.88637 

1.83559 

1.71002 

1.86428 

 Model 3: ; SD of estimates of C U Wt t t= + +α β γ  ut γ  

    FML 

30    MMIL1 

         MMIL2 

5.23450 

2.18325 

4.39880 

4.99587 

2.28940 

4.35099 

4.98870 

2.20283 

4.32676 

5.00981 

2.40910 

4.31617 

4.89432 

2.35460 

4.33603 

4.88754 

2.34981 

4.32175 

4.78921 

2.34672 

4.31568 

    FML 

60    MMIL1 

         MMIL2 

2.10130 

1.50103 

2.31661 

1.98715 

1.49665 

2.30525 

1.91666 

1.51905 

2.21115 

1.97758 

1.51505 

2.20402 

1.93872 

1.50655 

2.16357 

1.94116 

1.50310 

2.06473 

1.93987 

1.50265 

2.05153 
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Table 2 Estimated bias, standard deviation, mean squared error, and quantiles (5%, 

50% and 95%) of estimators for model (3.1) based on FML and two step MMIL 

(MMIL1 and MMIL2) estimators 

      nn = 30 = 60                                   
Parameter  Bias* SD MSE Q5  Q50 Q95

  Bias* SD MSE Q5  Q50 Q95  

γ =.5   FML 

MMIL1 

MMIL2 

1.08 

.070 

1.40 

.1116 

.0189 

.0850 

.01246 

.00036 

.00722 

.316 

.363 

.400 

.497

.500

.500

.685

.531

.638

 .36 

 .18 

 .04 

.0500 

.0289 

.0508 

.0025 

.0024 

.0026 

.417 

.420 

.418 

.499

.500

.499

.583 

.582 

.584 

β =.1  FML 

MMIL1 

MMIL2 

.070 

.020 

.008 

.0054 

2.9×10-5 

.0055 

2.9×10-5 

1.2×10-9

.00003 

.091 

.092 

.091 

.100

.100

.100

.109

.102

.109

 .03 

 .60 

 .22 

.0020 

.0001 

.0020 

4.2×10-6

3.7×10-7

4.2×10-6

.097 

.096 

.097 

.100

.100

.100

.103 

.103 

.103 

α =.05   FML 

MMIL1 

MMIL2 

.009

.005 

.003 

.0005 

.0005 

.0005 

2.5×10-7 

2.5×10-7 

2.5×10-7

.049 

.049 

.049 

.050

.050

.050

.051

.051

.051

 .002 

 .030 

 .008 

.00009 

.00012 

8.7×10-5

7.8×10-9

1.5×10-8

1.0×10-8

.049 

.050 

.050 

.050

.050

.050

.050 

.050 

.050 

σ 2 05=.   FML 

MMIL1 

MMIL2 

.180 

.240 

4.65 

.0119 

.0006 

.0124 

.00014 

4.2×10-7

.00017 

.026 

.026 

.027 

.043

.043

.044

.065

.065

.067

 2.07 

 1.56 

 1.99 

.0089 

.0109 

.0090 

.00008 

.0001 

.0001 

.034 

.033 

.034 

.048

.046

.048

.065 

.062 

.064 

 

γ =.5   FML 

MMIL1 

MMIL2 

66.22 

1.89 

4.81 

.3558 

.3317 

.3309 

.1309 

.1099 

.1095 

.0001

-.047

-.052

.554

.505

.499

1.179

1.037

1.031

.03 

.65 

.02 

.1911 

.1917 

.0958 

.0365 

.0367 

.0092 

.182 

.181 

.341 

.502 

.502 

.501 

.817 

.814 

.658 

β =.1 
 FML 

MMIL1 

MMIL2 

14.61 

3.98 

.94 

.0720 

.0278 

.0254 

.0054

.0008 

.0007 

.0002

.041 

.057 

.077

.099

.100

.216

.138

.139

1.10 

3.44 

.79 

.0145 

.0213 

.0143 

.0002

.0005 

.0002 

.074 

.034 

.074 

.099 

.098 

.099 

.122 

.120 

.122 

α =.5   FML 

MMIL1 

MMIL2 

1.01

.33 

.07 

.1357 

.0024 

.0022 

.0184 

6.0×10-6

5.0×10-6

.243 

.495 

.496 

.513

.499

.500

.771

.503

.504

.05

.35 

.03 

.0011 

.0015 

.0011 

1.3×10-6 

2.4×10-6

1.1×10-6

.494 

.498 

.498 

.500 

.500 

.500 

.502 

.505 

.502 

σ 2 75=.   FML 

MMIL1 

MMIL2 

77.36 

62.14 

73.64 

.1833 

.1960 

.1828 

.0396

.0423

.0388

.403 

.402 

.399 

.658

.673

.667

1.005

1.034

.992

34.34

17.71

34.47

.1349 

.1526 

.1345 

.0194 

.0236 

.0193 

.507 

.512 

.507 

.708 

.715 

.708 

.959 

1.01 

.959 

 
 

Q5 = 5th percentile, = Median = 50th percentile and = 95Q50 Q95
th percentile 

* These values have been multiplied by 1000. 
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Table 2 (continued) 
n = 30      n = 60  

Parameter  Bias* SD MSE Q5  Q50 Q95
Bias* SD MSE Q5  Q50  Q95

 

γ =.3  

FML 

MMIL1 

MMIL2 

3.43 

17.95 

1.37 

.1843 

.1936 

.1960 

.0334 

.0338 

.0384 

.0001

-.023

-.031

.294 

.319 

.296 

.617 

.670 

.617 

1.53 

.33 

.18 

.1142 

.1146 

.1145 

.0130 

.0131 

.0131 

.110 

.112 

.110 

.296 

.298 

.296 

.486 

.488 

.486 

β =.2  
FML 

MMIL1 

MMIL2 

.03 

.52 

.08 

.0131 

.0083 

.0133 

.0002 

.0001 

.0002 

.179 

.196 

.179 

.199 

.199 

.199 

.222 

.220 

.222 

.01 

.08 

.03 

.0029 

.0031 

.0029 

8.6×10-6 

9.5×10-6

8.5×10-6

.195 

.195 

.195 

.200 

.200 

.200 

.205 

.205 

.205 

α =.015  FML 

MMIL1 

MMIL2 

.01 

.007 

.0006 

.0002 

.0001 

.0002 

3.3×10-8

1.1×10-8

3.0×10-8

.015 

.015 

.015 

.015 

.015 

.015 

.016 

.015 

.015 

.001

.003

.0002

.0001 

.0001 

.0001 

3.9×10-9 

3.6×10-9

3.6×10-9

.015 

.015 

.015 

.015 

.015 

.015 

.015 

.015 

.015 

σ 2 25=.  
FML 

MMIL1 

MMIL2 

23.5 

19.1 

23.73 

.0617 

.0625 

.0616 

.0044 

.0043 

.0043 

.133 

.135 

.133 

.221 

.227 

.221 

.335 

.338 

.334 

11.33

10.51

11.32

.0446 

.0448 

.0445 

.0021 

.0021 

.0021 

.170 

.172 

.170 

.236 

.237 

.236 

.320 

.320 

.320 

 

γ =.3   FML 

MMIL1 

MMIL2 

30.69 

1.71 

1.84 

.2741 

.3250 

.3251 

.0760 

.1056 

.1057 

.0001

-.238

-.237

.302 

.302 

.302 

.829 

.829 

.829 

18.97

.30 

.69 

.1776 

.1975 

.1975 

.0319 

.0390 

.0389 

1.0×10-4

-.030 

-.032 

.314

.297

.298

.607 

.621 

.620 

β =.1 
 FML 

MMIL1 

MMIL2 

0.36 

0.38 

0.39 

.0074 

.0073 

.0074 

.0001

.0001 

.0001 

.088 

.088 

.088 

.100 

.100 

.100 

.111 

.111 

.111 

.37 

.07 

.03 

.0048 

.0045 

.0045 

.00002 

.00002 

.00002 

.074 

.092 

.092 

.096

.099

.099

.106 

.107 

.107 

α =.03   FML 

MMIL1 

MMIL2 

0.02

0.01 

.007 

.0009 

.0008 

.0008 

7.6×10-7 

7.3×10-7

7.5×10-7

.029 

.029 

.029 

.030 

.030 

.030 

.031 

.031 

.031 

6.05 

.009

.003 

.0080 

.0004 

.0004 

.0001 

1.2×10-7

1.2×10-7

.030 

.029 

.029 

.030

.030

.030

.046 

.031 

.031 

σ 2 75=.   FML 

MMIL1 

MMIL2 

69.82 

72.29 

72.32 

.1847 

.1843 

.1843 

.0389 

.0391 

.0391 

.400 

.400 

.400 

.669 

.667 

.667 

1.004

.998 

.998 

44.58

33.97

34.03

.1586 

.1334 

.1334 

.0271 

.0189 

.0189 

.537 

.512 

.512 

.830

.708

.708

1.001

.955 

.955 

 

Q5 = 5th percentile, = 50th percentile and Q = 95Q50 95
th percentile 

* These values have been multiplied by 1000. 
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Table 3 Estimated bias, standard deviation, mean squared error, and quantiles (5%, 

50% and 95%) of estimators for model (3.2) based on FML and two step MMIL 

(MMIL1 and MMIL2) estimators  
n = 30       n = 60

Parameter  Bias SD MSE Q5  Q50 Q95
Bias SD MSE Q5  Q50 Q95

θ 1 5=.  
 FML 

MMIL1 

MMIL2 

.0010 

.0012 

.0009 

.1087 

.1086 

.1089 

.0118

.0118

.0119

.322 

.322 

.322 

.498 

.498 

.499 

.675 

.675 

.677 

.0001 

.0001 

.0001 

.0732 

.0732 

.0732 

.0054 

.0054 

.0054 

.383 

.383 

.383 

.499 

.499 

.499 

.619 

.619 

.619 

θ 2 25=.  
 FML 

MMIL1 

MMIL2 

.0001 

.0001 

.0003 

.1037 

.1038 

.1040 

.0108

.0108

.0108

.082 

.083 

.080 

.248 

.248 

.247 

.419 

.419 

.419 

.0009 

.0010 

.0008 

.0788 

.0773 

.0789 

.0062 

.0059 

.0062 

.125 

.125 

.125 

.250 

.250 

.250 

.381 

.382 

.382 

θ 3 01=.  
 FML 

MMIL1 

MMIL2 

.4520 

.4573 

.0820 

6.898 

6.814 

8.070 

47.76

46.62

65.11

-3.30

-3.01

-3.38

.035 

.037 

.035 

3.13 

3.10 

3.10 

.0678 

.0362 

.1029 

1.95 

1.74 

1.89 

3.809 

3.041 

3.568 

-1.73 

-1.73 

-1.76 

.017 

.016 

.023 

2.14 

2.04 

1.98 

θ 4 25=.  
 FML 

MMIL1 

MMIL2 

.1037 

.0571 

.0282 

2.46 

1.18 

.186 

6.072

1.392

.0354

.048 

.048 

.048 

.252 

.252 

.252 

.570 

.570 

.570 

.0455 

.0457 

.0236 

.3197 

.3078 

.1849 

.1043 

.0968 

.0347 

.017 

.020 

.015 

.253 

.252 

.253 

.624 

.623 

.611 

σ 2 25=.  
 FML 

MMIL1 

MMIL2 

.0356 

.0355 

.0358 

.0591 

.0592 

.0590 

.0048

.0048

.0048

.129 

.129 

.128 

.210 

.210 

.209 

.317 

.317 

.317 

.0183 

.0182 

.0183 

.0429 

.0429 

.0429 

.0022 

.0022 

.0022 

.166 

.166 

.166 

.230 

0.230

0.230

.304 

.304 

.304 

 

θ 1 75=.  
 FML 

MMIL1 

MMIL2 

.0017 

.0023 

.0014 

.2064 

.2061 

.2066 

.0426

.0425

.0427

.412 

.412 

.412 

.747 

.746 

.748 

1.09 

1.08 

1.09 

.0003 

.0003 

.0003 

.1390 

.1389 

.1390 

.0193 

.0193 

.0193 

.527 

.527 

.527 

.749 

.749 

.749 

.977 

.977 

.977 

θ 2 5=.  
 FML 

MMIL1 

MMIL2 

.0004 

.0001 

.0003 

.1965 

.1964 

.1967 

.0386

.0385

.0387

.188 

.187 

.188 

.495 

.495 

.495 

.822 

.820 

.820 

.0018 

.0017 

.0018 

.1495 

.1495 

.1497 

.0224 

.0223 

.0224 

.264 

.264 

.264 

.500 

.500 

.500 

.750 

.751 

.751 

θ 3 1=.  
 FML 

MMIL1 

MMIL2 

.2551 

.2430 

.0918 

5.39 

5.20 

5.33 

29.13

27.13

28.44

-2.44

-2.30

-2.36

.119 

.124 

.119 

2.67 

2.34 

2.47 

.0667 

.0847 

.0796 

1.544 

1.158 

1.416 

2.387 

1.348 

2.011 

-1.406 

-1.398 

-1.398 

.106 

.105 

.105 

1.91 

1.91 

1.91 

θ 4 5=.  
 FML 

MMIL1 

MMIL2 

.0892 

.0396 

.0502 

2.244 

.2953 

.4929 

5.039

.0887

.2454

.123 

.123 

.123 

.504 

.504 

.504 

1.07 

1.07 

1.07 

.0674 

.0663 

.0444 

.4868 

.4620 

.3879 

.2414 

.2178 

.1524 

.065 

.078 

.061 

.502 

.502 

.502 

1.16 

1.15 

1.15 

σ 2 9=.  
 FML 

MMIL1 

MMIL2 

.1253 

.1239 

.1257 

.2133 

.2139 

.2133 

.0612

.0611

.0613

.465 

.465 

.463 

.758 

.758 

.758 

1.14 

1.14 

1.14 

.0633 

.0632 

.0633 

.1549 

.1549 

.1549 

.0280 

.0279 

.0279 

.601 

.600 

.601 

.829 

.829 

.829 

1.10 

1.10 

1.10 
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Table 3 (continued)  
n = 30      n = 60  

Parameter  Bias SD MSE Q5  Q50 Q95
Bias SD MSE Q5  Q50  Q95  

θ 1 03=.  
 FML 

MMIL1 

MMIL2 

.0011 

.0011 

.0010 

.1087 

.1087 

.1089 

.0118 

.0118 

.0118 

-.147

-.147

-.147

.031

.031

.031

.213 

.213 

.213 

.0010

.0010

.0010

.0732 

.0732 

.0732 

.0054 

.0054 

.0054 

-.085 

-.085 

-.085 

.033 

.033 

.033 

.153 

.153 

.153 

θ 2 102= .  
 FML 

MMIL1 

MMIL2 

.0018 

.0018 

.0018 

.1028 

.1027 

.1028 

.0106 

.0106 

.0106 

.857 

.857 

.856 

1.02

1.02

1.02

1.19 

1.19 

1.19 

.0015

.0015

.0016

.0783 

.0784 

.0784 

.0061 

.0061 

.0061 

.899 

.899 

.899 

1.022 

1.022 

1.022 

1.15 

1.15 

1.15 

θ 3 11= − .  
 FML 

MMIL1 

MMIL2 

.5091 

.4713 

.3867 

5.004 

4.488 

3.678 

25.29 

20.35 

13.67 

-3.79

-2.10

-3.80

-1.09

-1.08

-1.09

.466 

.431 

.443 

.0978

.0746

.0299

1.655 

1.105 

1.938 

2.748 

1.226 

3.754 

-2.90 

-2.90 

-2.90 

-1.087 

-1.087 

-1.087 

.325 

.325 

.325 

θ 4 5= −.  
 FML 

MMIL1 

MMIL2 

.0911 

.0476 

.0457 

2.237 

.2873 

.2587 

5.011 

.0848 

.0690 

-.958

-.948

-.952

-.510

-.520

-.520

-.220

-.210

-.209

.0485

.0413

.0413

.2906 

.2436 

.2437 

.0868 

.0610 

.0610 

-.952 

-.958 

-.958 

-.520 

-.510 

-.510 

-.210 

-.220 

-.220 

σ 2 25=.  
 FML 

MMIL1 

MMIL2 

.0350 

.0350 

.0351 

.0589 

.0589 

.0589 

.0047 

.0047 

.0047 

.130 

.130 

.130 

.210

.210

.210

.317 

.317 

.317 

.0181

.0181

.0181

.0430 

.0430 

.0430 

.0022 

.0022 

.0022 

.166 

.166 

.166 

.230 

.230 

.230 

.304 

.304 

.304 

 

θ 1 025= −.
 

 FML 

MMIL1 

MMIL2 

.0011 

.0011 

.0011 

.1087 

.1087 

.1088 

.0118 

.0118 

.0118 

-.202

-.202

-.2018

-.024

-.0237

-.0236

.158 

.158 

.158 

.0011 

.0012 

.0011 

.0732

.0732

.0732

.0054 

.0054 

.0054 

-.140 

-.140 

-.140 

-.022 

-.022 

-.022 

.098 

.098 

.098 

θ 2 11= .   FML 

MMIL1 

MMIL2 

.0017 

.0018 

.0018 

.1028 

.1028 

.1029 

.0106 

.0106 

.0106 

.937 

.937 

.936 

1.10 

1.10 

1.10 

1.27 

1.27 

1.27 

.0015 

.0014 

.0015 

.0784

.0784

.0784

.0061 

.0061 

.0061 

.979 

.978 

.979 

1.10 

1.10 

1.10 

1.23 

1.23 

1.23 

θ 3 11= − .   FML 

MMIL1 

MMIL2 

.5178 

.4788 

.5008 

5.21 

5.11 

5.03 

27.41 

26.36 

25.54 

-3.82

-3.78

-3.79

-1.09

-1.09

-1.09

.466 

.466 

.465 

.0738 

.0872 

.0694 

1.114

1.140

1.178

1.246 

1.307 

1.392 

-2.89 

-2.90 

-2.89 

-1.09 

-1.10 

-1.09 

.325 

.325 

.325 

θ 4 0 5= − .   FML 

MMIL1 

MMIL2 

.0505 

.0486 

.0496 

.3181 

.3162 

.3038 

.1037 

.1023 

.0947 

-.954

-.948

-.948

-.520

-.519

-.520

-.209

-.209

-.209

.0413 

.0443 

.0413 

.2436

.2511

.2436

.0610 

.0650 

.0610 

-.958 

-.960 

-.958 

-.509 

-.510 

-.510 

-.220

-.220

-.220

σ 2 0 25= .  FML 

MMIL1 

MMIL2 

.0350 

.0350 

.0350 

.0589 

.0589 

.0589 

.0047 

.0047 

.0047 

.130 

.130 

.130 

.210 

.210 

.210 

.317 

.317 

.317 

.0181 

.0180 

.0181 

.0430

.0430

.0430

.0022 

.0022 

.0022 

.166 

.166 

.166 

.230 

.230 

.230 

.304 

.304 

.304 
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Table 4 Estimated bias, standard deviation, mean squared error, and quantiles (5%, 

50% and 95%) of estimators for model (3.3) based on FML and two step MMIL 

(MMIL1 and MMIL2) estimators  
n = 30     n = 60  

Parameter  Bias SD MSE Q5  Q50 Q95
Bias SD MSE Q5  Q50  Q95

α = 15.   FML 

MMIL1 

MMIL2 

.0017

.0030

.0030

.0427 

.0446 

.0446 

.0018 

.0020 

.0020 

1.47 

1.43 

1.43 

1.50 

1.50 

1.50 

1.57 

1.58 

1.58 

.0008 

.0002 

.0002 

.0282 

.0249 

.0249 

.0008 

.0006 

.0006 

1.48 

1.46 

1.46 

1.50 

1.50 

1.50 

1.55 

1.54 

1.54 

β =.25  
 FML 

MMIL1 

MMIL2 

.0272

.0216

.0210

.1191 

.1030 

.1162 

.0149 

.0111 

.0139 

.194 

.200 

.197 

.257 

.256 

.256 

.498 

.491 

.499 

.0097 

.0200 

.0198 

.0833 

.0881 

.0882 

.0070 

.0082 

.0082 

.202 

.147 

.147 

.253 

.261 

.261 

.400 

.435 

.435 

γ = 1155.  FML 

MMIL1 

MMIL2 

.5505

.4113

.4591

2.500 

1.683 

1.776 

6.55 

3.00 

3.36 

.557 

.573 

.583 

1.10 

1.14 

1.14 

4.85 

4.57 

4.49 

.1171 

.2244 

.2202 

1.007 

1.043 

1.031 

1.028 

1.138 

1.111 

.734 

.255 

.255 

1.13 

1.15 

1.15 

2.60 

3.12 

3.12 

σ 2 05=.  
 FML 

MMIL1 

MMIL2 

.0049

.0050

.0050

.0124 

.0125 

.0125 

.0002 

.0002 

.0002 

.036 

.027 

.027 

.044 

.044 

.044 

.067 

.067 

.067 

.0022 

.0022 

.0022 

.0091 

.0092 

.0092 

.0001 

.0001 

.0001 

.041 

.034 

.034 

.047 

.047 

.047 

.064 

.064 

.064 

 
α =.5   FML 

MMIL1 

MMIL2 

.0021

.0029

.0028

.0428 

.0446 

.0447 

.0018 

.0020 

.0020 

.473 

.431 

.431 

.502 

.502 

.502 

.574 

.579 

.578 

.0008 

3.0×10-6

.00001

.0282 

.0249 

.0249 

.0008 

.0006 

.0006 

.480 

.458 

.458 

.499 

.500 

.500 

.545 

.540 

.540 

β =.25  
 FML 

MMIL1 

MMIL2 

.0289

.0279

.0293

.1298 

.1211 

.1264 

.0177 

.0154 

.0168 

.188 

.193 

.192 

.256 

.253 

.254 

.521 

.518 

.520 

.0122 

.0230 

.0243 

.0951 

.1000 

.1156 

.0092 

.0105 

.0139 

.198 

.134 

.135 

.255 

.261 

.261 

.422 

.455 

.455 

γ = 15.   FML 

MMIL1 

MMIL2 

.8890

.5512

.6133

4.99 

2.20 

4.33 

25.67 

5.15 

19.10 

.698 

.750 

.732 

1.41 

1.46 

1.49 

6.25 

5.89 

6.20 

.2312 

.2944 

.2454 

1.917 

1.519 

2.211 

3.73 

2.40 

4.95 

.969 

.310 

.327 

1.48 

1.48 

1.49 

3.50 

4.07 

4.09 

σ 2 05=.  
 FML 

MMIL1 

MMIL2 

.0050

.0050

.0050

.0124 

.0125 

.0124 

.0002 

.0002 

.0002 

.036 

.027 

.027 

.044 

.044 

.044 

.067 

.067 

.067 

.0022 

.0022 

.0022 

.0091 

.0092 

.0092 

.0001 

.0001 

.0001 

.041 

.034 

.034 

.047 

.047 

.047 

.064 

.064 

.064 
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Table 4 (continued)  
n = 30     n = 60  

Parameter  Bias SD MSE Q5  Q50 Q95
Bias SD MSE Q5  Q50  Q95  

α = 15.   FML 

MMIL1 

MMIL2 

.0017 

.0030 

.0030 

.0426 

.0446 

.0447 

.0018 

.0020 

.0020 

1.43 

1.43 

1.43 

1.50 

1.50 

1.50 

1.57 

1.58 

1.58 

.0008 

.0008 

.0008 

.0282 

.0249 

.0249 

.00080 

.00062 

.00062 

1.45 

1.46 

1.46 

1.50 

1.50 

1.50 

1.55 

1.54 

1.54 

β = 0 25.  
 FML 

MMIL1 

MMIL2 

.0269 

.0208 

.0244 

.1174 

.1108 

.1164 

.0145 

.0123 

.0142 

.127 

.127 

.127 

.257 

.253 

.254 

.495 

.494 

.494 

.0095

.0195

.0196

.0820 

.0864 

.0864 

.00682 

.00783 

.00784 

.140 

.149 

.149 

.254 

.261 

.261 

0.397 

0.431 

0.431 

γ = 11.   FML 

MMIL1 

MMIL2 

.5008 

.3920 

.4442 

2.21 

1.62 

1.83 

5.13 

2.79 

3.55 

.071 

.081 

.077 

1.06 

1.09 

1.09 

4.61 

4.26 

4.24 

.1082 

.2126 

.2138 

.9594 

.9881 

.9884 

.93172 

1.0210 

1.0222 

.162 

.242 

.242 

1.08 

1.09 

1.09 

2.46 

2.98 

2.98 

σ 2 0 05= .  
 FML 

MMIL1 

MMIL2 

.0049 

.0050 

.0050 

.0125 

.0125 

.0125 

.0002 

.0002 

.0002 

.027 

.027 

.027 

.044 

.044 

.044 

.067 

.067 

.067 

.0022 

.0022 

.0022 

.0091 

.0092 

.0092 

.00009 

.00009 

.00009 

.034 

.034 

.034 

.047 

.047 

.047 

.064 

.064 

.064 

 
α =.5   FML 

MMIL1 

MMIL2 

.0066 

.0054 

.0054 

.0942 

.0988 

.0990 

.0089 

.0098 

.0098 

.445 

.343 

.343 

.505 

.505 

.505 

.669 

.670 

.671 

.0008

.0002

.0002

.0630 

.0555 

.0555 

.0040 

.0031 

.0031 

.457 

.405 

.405 

.498 

.501 

.501 

.600 

.590 

.590 

β =.25  
 FML 

MMIL1 

MMIL2 

.0718 

.0600 

.0711 

.1950 

.1593 

.1623 

.0432 

.0290 

.0314 

.192 

.193 

.191 

.280 

.281 

.282 

.737 

.735 

.737 

.0453

.0603

.0589

.1339 

.1023 

.1539 

.0200 

.0141 

.0272 

.206 

.136 

.138 

.270 

.278 

.278 

.535 

.596 

.601 

γ =.25   FML 

MMIL1 

MMIL2 

.9922 

.8378 

.7670 

5.75 

4.37 

3.33 

34.06 

19.81

11.67

.001 

.001 

.001 

.238 

.223 

.223 

4.26 

3.76 

3.77 

.3305

.4901

.4673

1.495 

2.474 

1.917 

2.34 

6.36 

3.89 

.001 

.001 

.001 

.244 

.274 

.276 

1.86 

2.53 

2.63 

σ 2 25=.  
 FML 

MMIL1 

MMIL2 

.0236 

.0234 

.0235 

.0625 

.0625 

.0624 

.0045 

.0045 

.0044 

.182 

.133 

.133 

.221 

.222 

.222 

.335 

.337 

.336 

.0110

.0112

.0112

.0453 

.0458 

.0458 

.0022 

.0022 

.0022 

.208 

.168 

.168 

.237 

.236 

.236 

.319 

.321 

.321 
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