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Abstract

In this paper, we consider the problem of estimation of semi-linear regression models.
Using invariance arguments, Bhowmik and King (2001) have derived the probability
density functions of the maximal invariant statistic for the nonlinear component of these
models. Using these density functions as likelihood functions allows us to estimate
these models in a two-step process. First the nonlinear component parameters are
estimated by maximising the maximal invariant likelihood function. Then the nonlinear
component, with the parameter values replaced by estimates, is treated as a regressor
and ordinary least squares is used to estimate the remaining parameters. We report the
results of a simulation study conducted to compare the accuracy of this approach with
full maximum likelihood estimation. We find maximising the maximal invariant
likelihood function typically results in less biased and lower variance estimates than

those from full maximum likelihood.
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1 Introduction

A major difficulty with full maximum likelihood estimation of multiparameter models
is that it can result in poor estimates in some circumstances. There is a problem of
potentially biased estimates arising from the joint estimation of multiple parameters. A
good example is the estimate of the variance of the disturbances in the classical linear
regression model. In this case, the maximum likelihood estimator is known to be biased
and a simple correction is needed to make it unbiased in small samples. This is because
the regression coefficients are nuisance parameters when it comes to estimating the
variance. For further discussion of the problems of joint estimation of multiple
parameters, see Neyman and Scott (1948), Anderson (1970) and Cox and Hinkely
(1974). There is a vast amount of literature on the satisfactory handling of nuisance
parameters, see for example, Fraser (1967), Kalbfleisch and Sprott (1970, 1973),
Bellhouse (1978), King (1983), Barndorff-Nielsen (1983), Lehmann (1986), Cox and
Reid (1987), Tunnicliffe Wilson (1989), McCullagh and Tibshirani (1990), Ara and

King (1993, 1995), Ara (1995), and Laskar and King (1998, 2001).

One approach that has received a good deal of attention in the literature is the concept of
the marginal likelihood which was first introduced by Fraser (1967), and further
developed by Kalbfleisch and Sprott (1970). The main idea is to transform the data
vector to another random vector, a subvector of which has a likelihood (marginal
likelihood) that only involves the parameters of interest and the remainder of which
contains no information about those parameters. There is a lot of evidence in the
literature that the use of marginal likelihood methods can produce more accurate

estimates and, in particular, less biased estimates. See for example Cooper and



Thompson (1977), Kitanidis and Vomvoris (1983), Kitanidis (1983, 1987), Hoeksema
and Kitanidis (1985) and Kitanidis and Lane (1985), Cordus (1986), Tunnicliffe Wilson
(1989), Bellhouse (1991), Shephard (1993), Ara (1995), Ara and King (1993, 1995),

Laskar and King (1997) and Rahman and King (1998).

The use of invariance arguments has been a useful method for dealing with some of the
problems caused by nuisance parameters, particularly for hypothesis testing. The
approach involves noting that the testing problem is invariant to a certain class of
transformations on the observed data vector and then requiring the chosen test to also be
invariant to such transformations. A key device for test construction is the maximal
invariant statistic. It is a vector function of the data vector that takes the same value for
data vectors that can be connected by a transformation and different values for those
data vectors that cannot be connected by a transformation. Thus the class of all invariant
test statistics corresponds to the class of functions of the maximal invariant. This allows
us to treat the maximal invariant as the observed data when designing a new test. The
density function of the maximal invariant can be treated as a likelihood for this purpose.

This function is known as the maximal invariant likelihood (MIL) function.

Ara (1995) showed that the marginal likelihood function and the likelihood of the
maximal invariant statistic are equivalent in the case of nonspherical disturbances in the
linear regression model. In the context of a linear regression model with a non-linear
additive component, Bhowmik and King (2001) derived a MIL function for the non-
linear component. The purpose of this paper is to compare maximum MIL (MMIL) and
full maximum likelihood approaches to the estimation of parameters in the non-linear

component. Using the MIL function to estimate these parameters results in a two-step



process. First the non-linear component parameters are estimated by maximising the

MIL. Then the non-linear component, with the parameter values replaced by estimates,
is treated as a regressor and ordinary least squares is used to estimate the remaining
parameters. Alternatively, the full likelihood of the complete model can be maximised
to obtain the standard maximum likelihood estimates. The MMIL estimator might be
expected to be superior to the full likelihood estimator given the evidence in the
literature outlined above. We derive two MIL functions for two different models and
these functions will be denoted as MIL1 and MIL2, where MIL1 stands for the linear
model with a general non-linear component and MIL2 for a linear model with a

regressor which is a non-linear function of unknown parameter(s).

The plan of this paper is as follows. In Section 2 we derive the likelihood functions (full
likelihood and MIL) for the different non-linear models. Monte Carlo experiments to
investigate the performance of different ML estimators in the context of non-linear
parameters are outlined and reported in Section 3. Finally, concluding remarks are made

in Section 4.

2  Theory

Our interest is in the following semi-linear model

y=X, B, +9(X,,5,)+U, U~N(0!O-2|n) (2.1)

where y is an nx1 vector, X, iS an nxq nonstochastic matrix, X, is an nxp
nonstochastic matrix of n observations on p variables and g(X,,/,) is a non-linear

function of the rx1 parameter vector £, and X,. Note r and p are different for



flexibility. Bhowmik and King (2001) derived the density function of a maximal
invariant statistic for the non-linear component of (2.1). This can be treated as a

likelihood function for the parameter vector S, in order to construct the MIL1 function.

The MIL1 function is

(W) = 2T ()™ expio(w, Ao LRl .2 w 2l la)y,
VZa(w. ;) n RIS w Loy 2.2)
where
a(w,3,) = WPg (X, ,) 2.3)
g'(X,,p,) = 2P (2.4)
O
ctw, 5,) =b(w, )~ L) - g7 (%, )M (X, 8), @)
w=z/(z'2)"?, (2.6)
z=Py, (2.7)
n= el (2.8)
F(E)

.ElL,.,.] is the confluent hypergeometric function, which has the form

c(c+1) 52 (c), o"
F[c,d,8]=1+ d —d(d+1) o Z(d)k o (2.9)



P isan mxn matrix such that PP'=1_, P'P=M, and m=n—-q.

Im

Let us also consider the following slightly more specific semi-linear model,

y =X+ Bo9(X,. By) +u, u~N(0,0°l,), (2.10)
where X, is an nxq nonstochastic matrix, X, is an nx p nonstochastic matrix and

g(X,, ;) is a non-linear function of B, and X,. Bhowmik and King (2002) derived

the density function of a maximal invariant statistic for the non-linear component of this

model. The MIL2 function is

f(d)= (Zﬂaz)_nglexp[— 212 (d'd )}
(o2

= (27[0-2 )—”_2‘1 expli- 2i2 (z’Mgj (ﬂ3)z):| , (2.11)
where
d =Q(X,,B5)Py ~ N(0,0°1, .., (2.12)

Q(X,,B;) is an (n—g-1)xm matrix such that Q(X,,S;)Q(X,,5;) =1,

Q(szﬂs)'Q(leﬂs) = Mg(ﬂ?}) )
and
My (B3) = 1 = 9(X,, B (X5, 85) 9(X,, B3) Y 1 9(X,, B5) - (2.13)

Our aim is to use these two likelihood functions for the estimation of the non-linear
parameters. A maximal invariant is a random vector and therefore the use of its density

as a likelihood means that resultant estimators will have the usual asymptotic properties



that have been demonstrated for the classical likelihood (see Lehmann 1983, Stuart

and Ord 1991 and Ara 1995).

As mentioned earlier, the two-step estimation process involves estimating the non-linear
component parameters by maximising the MIL function or equivalently the log of MIL.

For the MIL2 function (2.11), the log likelihood function is

n—q—l n_q_l 1 '
L, =~ log(27)~ "1 log(0?) == (M, (£,)2).
Now
oL n-g-11 1 .,
ot 2 ?+2a4(ZMg(ﬁ3)z)’
z’'M z
and ngz =0 implies 6% =~ g;ﬂsi . Thus, replacing &* in the log likelihood, we
~ -

have

-q- -q- Z'M z -q-
Lot g 1log(27r)—n (21 1Iog( : g;ﬂsj)- j_n (21 1

Therefore, maximising L, is equivalent to minimising z'M(3,)z with respect to j,.

3 Empirical comparisons

In order to compare the small sample performance of the three estimators, we conducted

a simulation study outlined below.



3.1 Experimental design

We evaluated the different estimation methods on the following three semi-linear

models, namely

B

K, =yV,+——+u,, U, ~ IN(0,6%), (3.1)
R -«

Y, = f(X,,0) = 0,X,, +6,X,, +86,exp(0;X5) +U,, U, ~ IN(0,67), (3.2)

C,=aU, +BW +u,u ~IN(0,0c%),t=12,.,n (3.3)

Model (3.1) is a non-linear money demand function used by Konstas and Khouja
(1969), where

K, = quantity of money demanded,

V, = national income,

R, = rate of interest,

y, B and « are three unknown parameters such that O<a <, >0 and y >0.
Model (3.2) was given by Gallant (1975), where X,, X,, and X, are three input
variables, Y, = f(X,,6) is the output variable, and 6,, 6,, 6, and 6, are unknown
parameters. Model (3.3) is a modified model of the general consumption function from

Greene (1997), where

W, = aggregate income,
C, = consumption,

U, = regressor of independent random variables from N(0,1),



a, B and y are three unknown parameters such that « >0, 0< <1 and y >0.

In Greene’s model, U, is a vector of ones but in our case U, is an nx1 vector of
independent random variables from N(0,1). We made this modification to avoid

problems caused by an ill-conditioned non-linear model. It is worth noting that ill-

conditioning will occur in the models for near zero values of £ in (3.1), 6, in (3.2) and

£ in (3.3).

For model (3.1), we used generated data to construct the design matrix with V, and R,

being independent observations from the [0,1] uniform distribution. The estimates based
on (i) full maximum likelihood (FML), (ii) maximum MIL1 (MMIL1) and maximum

MIL2 (MMIL2) when

(v.5,2,6)= (0.5, 0.1, 0.05, 0.05), (0.3, 0.1, 0.03, 0.05), (0.3 0.2, 0.015, 0.25),

(0.7, 0.5, 0.15, 0.05), (0.3, 0.1, 0.03, 0.75), (0.5, 0.1, 0.5, 0.75), (0.5, 0.05, 0.01,

0.25), (0.5, 0.1, 0.5, 0.05), (1.5, 0.15, 0.2, 0.25), (0.25, 0.05, 0.01, 0.25)

were used for comparison. At an early stage in our simulations, we identified a problem

with local maxima of the various likelihood functions and so used a range of starting

values for , £, a and o in the respective optimisation procedures. For model (3.1)

we used five sets of starting values for ¥, B, a and & and these were (0.05, 0.03,

0.02, 0.05), (0.2, 0.05, 0.05, 0.2), (0.5, 0.1, 0.07, 0.5), (1, 0.65, 0.15, 0.75) and (1.5,

0.85, 0.25, 0.95) for FML, (4, ) = (0.1, 0.05), (0.3, 0.15), (0.5, 0.25), (0.7, 0.35) and

(1, 0.5) for MMIL1 and « =0.05, 0.1, 0.3, 0.4, and 0.5 for MMIL2.
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For model (3.2), Gallant (1975), used simulated data for X,,, X,, and X, . In our

study,

X, was independently generated from N (0,1),
X,, was independently generated from N (0,1),

X, was independently generated from the [0,1] uniform distribution.

Data was generated for nine different sets of values for 6,,60,,0, 6, and &*, namely

(0.5, 0.25, 0.01, 0.25, 0.25), (0.75, 0.5, 0.1, 0.5, 0.9), (0.03, 1.02, — 1.1, —0.5,
0.25), (0.15, 0.5, 0.15, 0.35, 0.5), (- 0.05, 1.02, —0.95, — 0.5, 0.25), (- 0.05,
~1.1, 0.5, 0.5, 0.95), (- 0.025, 1.1, —1.1, —0.5, 0.25), (- 0.5, — 1.1, 0.5,

~0.5,05), (- 0.75, 0.5, 0.5, —0.75, 0.25).

Again we identified a problem with local maxima and used five different sets of starting

values in the respective optimisation procedures to overcome this problem. The five sets
of starting values for 4,, 6,, 6, 6, and o were (-0.85, -1, —1.5, —1.2, 0.05),
(-0.5, —0.75, —0.85, —0.9, 0.25), (0.5, —0.25, — 0.5, —0.4, 0.5), (0.75, 0.5, 0.5, 0.5,
0.75) and (1.5, 1, 1.5, 1.2, 0.9) for FML, (6, 6,) = (-0.5, —0.5), (- 0.15, —0.2),
(0.15, 0.15), (0.25,0.25) and (0.75, 0.75) for MMIL1 and 6, = —1, —0.5,0.5, 1 and 1.5

for MMIL2.

For model (3.3), U, was independently generated from N(0,1) and W, was generated

from the [0,1] uniform distribution. Data for C, was generated for seven different sets

of values for o, B, y and & namely
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(3.5, 0.5, 1.15, 0.05), (1.5, 0.25, 1.155, 0.05), (0.5, 0.25, 1.5, 0.05), (1.5, 0.25,

1.1, 0.05), (1.5, 0.25, 1.1, 0.01), (0.5, 0.25, 0.25, 0.25), (1.5, 0.75, 0.5, 0.25).

To overcome problems with local maxima, we used five different sets of starting values
for a, B, y and o° and these were (0.25, 0.05, 0.25, 0.05), (0.75, 0.25, 0.5, 0.25),
(1.2, 0.5, 0.95, 0.5), (1.75, 0.75, 1.25, 0.75) and (3.5, 0.9, 1.75, 0.95) for FML, (3, 7)
= (0.1, 0.2), (0.3, 0.5), (0.5, 0.8), (0.7, 1) and (0.95, 1.5) for MMIL1 and » = 0.25, 0.5,

0.75, 1 and 1.5 for MMIL2.

For each case, 2000 iterations were used to simulate the distributions of the estimators.
We used two sample sizes, n=30 and n=60. In order to maximise the likelihood

functions, the Gauss (see Aptech 1995) Co-optimisation routine was used.

From the simulations, we recorded estimated bias, standard deviation, mean squared
error and quantiles (5%, 50% and 95%) of the three different estimators (FML, MMIL1

and MMILZ2) of the non-linear parameters of the three different models.

3.2 The question of existence of second-order moments of estimators

There is an issue of whether the second-order moments of the estimators exist. If they
do not exist then our estimates of SD and MSE are meaningless because they will be
finite estimates of infinity. The possibility of the estimator having an infinite variance
can be revealed by running the simulations for a range of different numbers of
iterations. An infinite variance would be reflected in the estimate of SD increasing with
the number of iterations. We examined this by running simulations for different
numbers of iterations for each of the models, namely 500, 2000, 5000, 7000, 10,000 and

15,000. In this simulation experiment, we used only one set of values for the parameters



12

for each of the models. These were y =05, =01, a =005, o* =005 for model
(3.1); 6, =05, 9,=025, 6,=001, 6, =025, ¢* =025 for model (3.2) and « =05,
£=025, y=15, ¢° =005 for model (3.3). Sample sizes of n=30 and n=60 were

used.

The resultant estimates of the SD are presented in Table 1. They show that SDs for
model (3.1) for each of the methods, (FML, MMIL1 and MMIL2) are stable for
different numbers of iterations and for both sample sizes (n=30 and n=60). For
model (3.2), we notice that from the use of the FML, MMIL1 and MMIL2 methods,
estimates of SD for the non-linear parameter decrease slightly when the number of
iterations is increased, especially for the larger numbers of iterations (7000, 10,000 and
15,000). Similarly for model (3.3), we observe a small decrease in SD estimates for
both of the sample sizes when the number of iterations is increased. Therefore, the SD
results in Table 1 confirm that the second-order moments of the estimators exist, at least

for the models we considered.

3.3 Simulation results

Estimated bias, standard deviation, mean squared error (MSE), quantiles (5%, 50%, and
95%) of the three different estimators (FML, MMIL1 and MMIL2) of the non-linear
parameters of models (3.1), (3.2) and (3.3), for selected parameter combinations are

presented in Tables 2-4. The following is a discussion of the full set of results.

For model (3.1), the results show that both FML and MMIL (MMIL1 and MMIL2)
estimators have little bias. In cases where the FML estimator has a small bias, it is

reduced by the use of the MMIL1 and MMIL2 estimators, especially for the parameters
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in the non-linear component and for n=30. Using an MMIL estimator in place of

the FML estimator can reduce bias by up to 99.8%.

The results also confirm that the MMIL estimators (MMIL1 and MMIL2) have smaller
SDs than the FML estimator, particularly for the parameters in the non-linear
component. In some cases, the MMIL2 estimator has a smaller SD than the MMIL1
estimator, particularly when n=60. For n=30, the MMIL1 estimator is typically

better than the MMIL2 estimator.

When MSE is considered, we see in general the MMIL estimators are better than the
FML estimator, especially for the parameters in the non-linear component and when
n=30. Given that the bias and SD both decrease when an MMIL estimator is used in
place of the FML estimator, it is no surprise to see that the MSE also decreases.
Sometimes for the parameters in the non-linear component, we observe up to a 99.9%
reduction in MSE when an MMIL estimator is used. The MMIL2 estimator is better
than the MMIL1 estimator, particularly when n=60. On the other hand, for n=30 in
most cases, the MMIL1 estimator is better than the MMIL2 estimator with respect to

MSE.

An analysis of the quantile results reveals that the differences from the median (50"
percentile) to 5™ percentile and 95™ percentile for the MMIL estimators are less than for
those of the FML estimator, especially for the parameters in the non-linear component

and for n=30. The 100(1- )% percentile range (PR) of an estimator is calculated as

Qoo = Q.2 » Where Q,= pth quantile. We observe that the 90% PRs for the MMIL

estimators are less than those for the FML estimator. The PR values show that

sometimes, the middle 90% parameter estimates are up to 98.4% more tightly
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distributed for the two-step MMIL method compared to FML estimates, especially

for the parameters in the non-linear component and for n=30. If we observe the
difference between the 50™ percentile (median) and the true value of the parameters, we
see that the resulting difference is generally less for the MMIL estimators than for the

FML estimator.

Table 3 shows selected results for model (3.2). In this case, in general for the parameters
in the non-linear component, bias is less for the MMIL estimators than for the FML
estimator for n=30. We observe up to an 82% reduction in bias from using an MMIL
estimator in place of the FML estimator. The reduction is most noticeable for the
parameters in the non-linear component and when n=30. Notable exceptions for the

MMIL1 estimator occur when &, is very small. The MMIL2 estimator typically results

in a higher reduction in bias compared to the FML estimator when n=30. The MMIL2

estimator is often better than the MMIL1 estimator for the parameters in the non-linear
component. For near zero values of &, and large values of o, we observe more biased

estimates of the parameters in the non-linear component.

Results reported in Table 3 show that in most cases, an MMIL estimator (MMIL1 or
MMIL2) has a lower SD than the FML estimator for both sample sizes, particularly for
the parameters in the non-linear component. For the linear parameters, sometimes we
have a reduction in SD from using an MMIL estimator in place of the FML estimator
but in most cases, the SDs of the MMIL estimators and the FML estimator are almost

the same.

We see that bias and SD results for the parameters in the non-linear component both

decrease when the MMIL estimator is used and as a result, the MSE also decreases. The



15

results in Table 3 show that for the parameters in the non-linear component and for
n =30, we obtain up to a 61.8% reduction in MSE from the use of an MMIL estimator

in place of the FML estimator. When &, and 6, both are positive large numbers or are

both negative then for n =30 with respect to MSE, the MMIL estimators are better than
the FML estimator. The MMIL2 estimator is often better than the MMIL1 estimator in

this regard, particularly for n=30. For some values of &, and 6, (8,=-0.95 and
6, =-05), we do not get a reduction in MSE from using the MMIL2 estimator in place

of the FML estimator.

The quantile results in Table 3 show that for the parameters in the non-linear
component, the 90% PRs for the MMIL estimators are less than those of the FML
estimator. The 90% PR values generally reveal that the middle 90% estimated values of
the parameters are up to 40.6% more tightly distributed for the MMIL estimators
compared to the FML estimator. The difference between the median and true value of
the parameters is almost always less for the MMIL estimators than for the FML
estimator, especially for the parameters in the non-linear component. The MMIL
estimates of non-linear component parameters are more concentrated around their true

value than are the FML estimates.

Table 4 shows selected simulation results for model (3.3). Again we have a reduction in
bias for the MMIL estimators in comparison to the FML estimator, especially for the
parameters in the non-linear component and for small sample sizes. The overall bias
results show that there can be up to a 81.8% reduction in bias from the use of an MMIL
estimator (MMIL1 or MMIL2) in place of the FML estimator. Extremes in bias

reduction occur when the traditional FML estimator is more biased. However when
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n=60, we do not have a reduction in bias from using the MMIL estimators,
particularly for the parameters in the non-linear component. For this model, the MMIL1
estimator is better than the MMIL2 estimator at reducing bias, particularly when

n=230.

When n =30, we have a sizable reduction in SD from the use of the MMIL estimators
in place of the FML estimator. However, for n=60 in most cases, especially for the
parameters in the non-linear component, we do not have a reduction in SD for the
MMIL estimators compared to the FML estimator. Among the MMIL estimators, the

MMIL1 estimator is better than the MMIL2 estimator when SD is considered.

For model (3.3) with n=230, both bias and SD are almost always decreased when an
MMIL estimator is used especially for the parameters in the non-linear component. As a
result, we can obtain up to a 79.9% reduction in MSE for n=30 from the use of an
MMIL estimator (MMIL1 or MMIL2) in place of the FML estimator. In many cases,
the MMIL1 estimator has a smaller MSE than the MMIL2 estimator for both sample
sizes. For the « parameter and for n=60, the MMIL estimators are typically better
than the FML estimator with respect to MSE, but for the non-linear parameters, the

differences for n =60 are very small.

When n =230, the quantile results in Table 4 show that the 90% PRs for the MMIL
estimators are smaller than those of the FML estimator, particularly for the parameters
in the non-linear component. The difference between these two percentiles show that
the middle 90% estimated values of the parameters are up to 32.4% more tightly

distributed for the MMIL estimators than for the FML estimator.
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4  Concluding remarks

The results for the three models show that overall the MMIL estimators are less biased
than the traditional FML estimator, particularly for the parameters in the non-linear
component and for small sample sizes. The MMIL estimators (MMIL1 and MMIL2)
typically have smaller SDs than the FML estimator. Similarly, with respect to MSE, the
MMIL estimators are better than the FML estimator, especially for the parameters in the
non-linear component and for small sample sizes. The quantile results of the estimators
give us a closer view of the two methods. The estimated values from the MMIL
estimators are more concentrated around their true parameter value than for the FML
estimator. Therefore, we can conclude that when there is a measurable bias in the FML
estimates, the MMIL estimators will help to reduce this bias, for small sample sizes and
particularly for the parameters in the non-linear component. However, for all the models
and for n=60, sometimes the FML estimator and the MMIL estimators are nearly the

same, especially for the parameters in the non-linear component.

When we compare the MMIL1 and MMIL2 estimators, their performance is more or
less equal. However, MIL1 is a complicated mathematical function and, for our
simulations, the MMIL1 estimator was more time consuming to apply. Therefore, we
recommend the MMIL2 estimator ahead of the MMIL1 estimator because it is

straightforward and more easily applied.

Acknowledgement

The research reported in this paper forms part of the first author’s Ph.D. thesis. This

research was supported by the Monash Research Graduate School and in part by an



18

ARC grant. We are grateful to Don Poskitt, Rob J. Hyndman, Simone D. Grose and
Baki Billah for helpful suggestions. An earlier version of this paper was presented at the

2002 Econometric Society Australasian Meeting held in Brisbane, Australia.

References

Anderson, E.B., 1970. Asymptotic properties of conditional maximum-likelihood

estimators. J. Roy. Statist. Soc. B 32, 283-302.

Aptech System, 1995. Gauss: System and Graphics Manual. Vol. 1, Maple Vally, WA.

Ara, 1., 1995. Marginal Likelihood Based Tests of Regression Disturbances. Ph.D.

Thesis, Monash University, Clayton, Melbourne.

Ara, 1., King, M.L., 1993. Marginal likelihood based tests of regression disturbances.
Paper presented at the 1993 Australasian Meeting of the Econometric Society,

Sydney.

Ara, I, King, M.L., 1995. Marginal likelihood based tests of a subvector of the
parameter vector of linear regression disturbances. Proceedings of the
Econometrics Conference at Monash University, C.S. Forbes, P. Kofman and

T.R.L. Fry (eds.), Monash University, 69-106.

Barndorff-Nielsen, O.E., 1983. On a formula for the distribution of the maximum

likelihood estimator. Biometrika 70, 343-365.

Bellhouse, D.R., 1978. Marginal likelihood methods for distributed lag models. Statist.

Hefte 19, 2-14.



19

Bellhouse, D.R., 1991. Marginal and approximate conditional likelihoods for

sampling on successive occasions. Survey Methodology 17, 69-78.

Bhowmik, J.L., King M.L., 2001. Deriving tests of the regression model using the
density function of a maximal invariant. Paper presented at the 2001

Australasian Meeting of the Econometric Society, Auckland, New Zealand.

Bhowmik, J.L., King M.L., 2002. Parameter estimation in linear models with a non-
linear component using a maximal invariant likelihood function. Paper
presented at the 2002 Australasian Meeting of the Econometric Society,

Brisbane, Australia.

Cooper, D.R., Thompson, R., 1977. A note on the estimation of parameters of the

autoregressive-moving average process. Biometrika 64, 625-628.

Corduas, M., 1986. The Use of Marginal Likelihood in Testing for Correlation in Time

Series Regression. M. Phil. Thesis, University of Lancaster.

Cox, D.R., Hinkley, D.V., 1974. Theoretical Statistics. Chapman and Hall, London.

Cox, D.R., Reid, N., 1987. Parameter orthogonality and approximate conditional

inference (with discussion). J. Roy. Statist. Soc. B 49, 1-309.

Fraser, D.A.S., 1967. Data transformations and the linear model. Ann. Math. Statist. 38,

1456-1465.

Gallant, A.R., 1975. Non-linear regression. Amer. Statist. 29, 75-81.

Greene, W.H., 1997. Econometric Analysis. Prentice Hall, New York.



20

Hoekseman, R.J., Kitanidis, P.K., 1985. Comparison of Gaussian conditional mean
and kriging estimation in the geostatistical solution to the inverse problem.

Water Resources Research 21, 825-836.

Kalbfleisch, J.D., Sprott, D.A., 1970. Application of likelihood methods to models

involving large numbers of parameters. J. Roy. Statist. Soc. B 32, 175-208.

Kalbfleisch, J.D., Sprott, D.A., 1973. Marginal and conditional likelihoods. Sankhya A

35, 311-328.

King, M.L., 1983. Testing for autoregressive against moving average errors in the linear

regression model. J. Econometrics 21, 35-51.

Kitanidis, P.K., 1983. Statistical estimation of polynomial generalized covariance

functions and hydrologic applications. Water Resources Research 19, 909-921.

Kitanidis, P.K., 1987. Parametric estimation of covariances of regionalized variables.
Water Resources Bulletin, American Water Resources Association 23, 557-

567.

Kitanidis, P.K., Lane, R.W., 1985. Maximum likelihood parameter estimation of
hydrologic spatial processes by the Gauss-Newton method. J. Hydrology 79,

59-71.

Kitanidis, P.K., Vomvoris, E.G., 1983. A geostatistical approach to the inverse problem
in ground water modelling (steady state) and one-dimensional simulation.

Water Resources Research 19, 677-690.



21

Konstas, P., Khouja, M.W., 1969. The Keynesian demand-for-money function:

Another look and some additional evidence. J. Mon. Cred. Bank. 1, 765-777.

Laskar, M.R., King, M.L., 1998. Estimation and testing of regression disturbances

based on modified likelihood functions. J. Statist. Plann. Inference 71, 75-92.

Laskar, M.R., King, M.L., 2001. Modified likelihood and related methods for handling
nuisance parameters in the linear regression model. In A.K.M.E. Saleh ed. Data
Analysis from Statistical Foundations, Nova Science Publisher, Inc.

Huntington, New York, 119-142.

Lehmann, E.L., 1983. Theory of Point Estimation. Wiley, New York.

Lehmann, E.L., 1986. Testing Statistical Hypotheses. Second Edition, Wiley, New

York.

McCullagh, P., Tibshirani, R., 1990. A simple method for the adjustment of profile

likelihoods. J. Roy. Statist. Soc. B 52, 325-344.

Neyman, J., Scott, E.L., 1948. Consistent estimates based on partially consistent

observations. Econometrica 16, 1-32.

Rahman, S., King, M.L., 1998. Marginal likelihood score based tests of regression
disturbances in the presence of nuisance parameters. J. Econometrics 82, 81-

106.

Shephard, N., 1993. Maximum likelihood estimation of regression models with

stochastic trend components. J. Amer. Statist. Assoc. 88, 590-595.



22

Stuart, A., Ord, K., 1991. Kendall’s Advanced Theory of Statistics. Vol. 2, Oxford

University Press, New York.

Tunnicliffe Wilson, G., 1989. On the use of marginal likelihood in time series model

estimation. J. Roy. Statist. Soc. B 51, 15-27.



23

Table 1 Estimates of SD for the non-linear parameters of three different models for

different numbers of iterations and for two different sample sizes

Sample Number of iterations
size 500 1000 2000 5000 7000 10000 15000
Model 1: M, =¥, +RLi+ut ; SD of estimates of «
t

FML | 0.00049  0.00049  0.00049 0.00049 0.00049 0.00049 0.00049
30 MMIL1| 0.00050  0.00061  0.00057 0.00055 0.00055 0.00050 0.00050
MMIL2| 0.00049  0.00050  0.00049 0.00049 0.00048 0.00048 0.00048
FML | 0.00009  0.00009  0.00009 0.00009 0.00009 0.00008 0.00008
60 MMIL1| 000012  0.00012  0.00012 0.00012 0.00013 0.00012 0.00012
MMIL2| 0.00008  0.00009  0.00009 0.00009 0.00008 0.00008 0.00008

Model 2: Y, =0, X, + 8, X,, + 6, exp(8,X,,) + U, ; SD of estimates of &,
FML |6.96426  6.93151  6.89750 7.06477 6.95384 6.71809 6.61518
30 MMIL]| 7.10115  6.96940  6.81410 6.17519 6.17230 6.16213 6.16185
MMIL2| 7.81624  7.79325  8.07040 7.39501 7.35290 7.34501 7.34463
FML | 1.95792  1.95177  1.95035 1.88706 1.82699 1.83637 1.83559
60 MMILL| 1.74588  1.74496  1.74383 1.72274 1.71955 1.71015 1.71002
MMIL2| 1.86419 179879  1.88635 1.89355 1.88940 1.88637 1.86428

Model 3: C, =a U, + SW,” +u, ; SD of estimates of y

FML |5.23450  4.99587  4.98870 5.00981 4.89432 4.88754 4.78921
30 MMIL1| 2.18325 228940  2.20283 2.40910 2.35460 2.34981 2.34672
MMIL2| 4.39880  4.35099  4.32676 4.31617 4.33603 4.32175 4.31568
FML |210130  1.98715 1.91666 1.97758 1.93872 1.94116 1.93987
60 MMIL1| 1.50103  1.49665  1.51905 1.51505 1.50655 1.50310 1.50265
MMIL2| 2.31661  2.30525  2.21115 2.20402 2.16357 2.06473 2.05153




24

Table 2 Estimated bias, standard deviation, mean squared error, and quantiles (5%,
50% and 95%) of estimators for model (3.1) based on FML and two step MMIL
(MMIL1 and MMILZ2) estimators

Parameter

y =5 FML
MMIL1
MMIL2

B=1 FML
MMIL1
MMIL2

05 FML
MMIL1
MMIL2

N
Il

o’ =05 FML
MMIL1
MMIL2

y=5 FML
MMIL1
MMIL2
f=1 FML
MMIL1
MMIL2
a=5 FML
MMIL1
MMIL2
o’ =75 FML
MMIL1
MMIL2

n=230
Bias* SD MSE Q5 Q50
1.08 .1116 .01246 .316 .497
.070 .0189 .00036 .363 .500
140 .0850 .00722 .400 .500
070 .0054 2.9x10° .091 .100
020 2.9x10° 1.2x10° .092 .100
.008 0055 00003 -091 .100
.009 .0005 2.5x107 .049 .050
.005 .0005 25%x107 .049 .050
003 .0005 95107 -049 .050
180 .0119 .00014 .026 .043
240 .0006 4.2x107 .026 .043
465 .0124 00017 .027 .044
66.22 .3558 .1309 .0001 .554
1.89 .3317 .1099 -.047 .505
481 .3309 .1095 -.052 .499
14,61 .0720 .0054 .0002 .077
3.98 .0278 .0008 .041 .099
.94 .0254 .0007 .057 .100
1.01 1357 .0184 243 513
.33 0024 6.0x10° .495 .499
.07 .0022 50x10® .496 .500
7736 .1833 .0396 .403 .658
62.14 1960 .0423 .402 .673
73.64 .1828 .0388 .399 .667

n=:60
Q,, Bias* SD MSE Q, Q, Q
685 .36 .0500 .0025 .417 .499 .583
531 .18  .0289  .0024 .420 .500 .582
638 .04  .0508 .0026 .418 .499 .584
109 .03 .0020 4.2x10° .097 .100 .103
102 .60  .0001 3.7x107 .096 .100 .103
109 .22 0020 4.2x10°€ .097 .100 .103
.051 .002 .00009 7.8x10°.049 .050 .050
051 .030 .00012 15x10%€.050 .050 .050
.051 .008 8.7x10° 1 ox10¢€-050 .050 .050
065 207 .0089 .00008 .034 .048 .065
065 156 .0109  .0001 .033 .046 .062
067 199 .0090 .0001 .034 .048 .064
1.179 .03 1911 0365 .182 .502 .817
1.037 .65 .1917 0367 .181 .502 .814
1.031 .02 .0958 .0092 .341 .501 .658
216 110 .0145 .0002 .074 .099 .122
138 344 .0213 .0005 .034 .098 .120
139 .79 .0143  .0002 .074 .099 .122
771 .05 .0011 1.3x10° 494 .500 .502
503 .35  .0015 2.4x10° 498 .500 .505
504 .03 .0011 1 q1,30° 498 .500 .502
1.005 34.34 1349 0194 507 .708 .959
1.034 17.71 1526 0236 512 .715 1.01
992 34.47 1345 0193 507 .708 .959

Q, = 5" percentile, Q,,= Median = 50th percentile and Q= 95" percentile

* These values have been multiplied by 1000.
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Table 2 (continued)

n=30 n =60
Parameter Bias* SD MSE Q Q, Qs Bias* SD MSE  Q, Qp Qs
FML 343 .1843 .0334 .0001 .294 .617 153 .1142 .0130 .110 .296 .486
y =3 MMIL1 17.95 .1936 .0338 -.023 .319 .670 .33 .1146 .0131 .112 .298 .488
MMIL2 1.37 .1960 .0384 -.031 .296 .617 .18 .1145 .0131 .110 .296 .486
p=2 FML .03 .0131 .0002 .179 .199 .222 .01 .0029 8.6x10° .195 .200 .205

MMIL1 .52 .0083 .0001 .196 .199 .220 .08 .0031 95x10° .195 .200 .205
MMIL2 .08 .0133 .0002 .179 .199 .222 .03 .0029 gg,10® .195 .200 .205

a =015 FML .01 .0002 33x10® .015 .015 .016 .001 .0001 3.9x10° .015 .015 .015
MMILL .007 .0001 11x10® .015 .015 .015 .003 .0001 3gx10° .015 .015 .015
MMIL2 .0006 .0002 3 gy10® 015 .015 .015 .0002 .0001 3g.10° 015 .015 .015

o? =25 FML 235 .0617 .0044 133 .221 .335 11.33 .0446 .0021 .170 .236 .320
MMIL1 19.1 .0625 .0043 .135 .227 .338 10.51 .0448 .0021 .172 .237 .320
MMIL2 23.73 .0616 .0043 .133 .221 .334 1132 .0445 .0021 .170 .236 .320

y=3 FML 3069 2741 0760 .0001 .302 .829 18.97 .1776 .0319 1.0x10*.314 .607
MMIL1 1.71 3250 .1056 ~-238 .302 .829 .30 .1975 .0390 -030 .297 .621
MMIL2 1.84 .3251 .1057 -237 .302 .829 .69 .1975 .0389 -032 .298 .620
B=1 FML 036 .0074 0001 .088 .100 .111 .37 .0048 .00002 .074 .096 .106
MMIL1 0.38 .0073 .0001 .088 .100 .111 .07 .0045 .00002 .092 .099 .107
MMIL2 0.39 .0074 .0001 .088 .100 .111 .03 .0045 .00002 .092 .099 .107
a=03 FML 002 .00097.6x107 .029 .030 .031 6.05 .0080 .0001 .030 .030 .046
MMIL1 0.01 .000873x10” .029 .030 .031 .009 .0004 1.2x107 .029 .030 .031
MMIL2 .007 .00087 5,107 .029 .030 .031 .003 .0004 12x107 .029 .030 .031

o?=75 FML 69.82 .1847 .0389 .400 .669 1.004 44.58 .1586 .0271  .537 .830 1.001
MMIL1 72.29 .1843 .0391 400 .667 .998 33.97 .1334 .0189 .512 .708 .955
MMIL2 72.32 .1843 .0391 400 .667 .998 34.03 .1334 .0189 .512 .708 .955

Q, = 5" percentile, Q,,= 50th percentile and Q= 95" percentile

* These values have been multiplied by 1000.
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Table 3 Estimated bias, standard deviation, mean squared error, and quantiles (5%,
50% and 95%) of estimators for model (3.2) based on FML and two step MMIL

(MMIL1 and MMILZ2) estimators

Parameter

6,=5 FML
MMIL1
MMIL2
6,=25 FML
MMIL1
MMIL2
0,=01 FML
MMIL1
MMIL2
0,=25 FML
MMIL1
MMIL2
o’ =25 FML
MMIL1
MMIL2

0,=75 FML
MMIL1
MMIL2
6,=5 FML
MMIL1
MMIL2
0,=1 FML
MMIL1
MMIL2
0,=5 FML
MMIL1
MMIL2
o2 =9 FML
MMIL1
MMIL2

n=30

Bias

.0010
.0012
.0009
.0001
.0001
.0003
4520
4573
.0820
.1037
.0571
.0282
.0356
.0355
.0358

.0017
.0023
.0014
.0004
.0001
.0003
.2551
.2430
.0918
.0892
.0396
.0502
1253
1239
1257

SD

.1087
.1086
.1089
1037
.1038
.1040
6.898
6.814
8.070
2.46
1.18
.186
.0591
.0592
.0590

.2064
.2061
.2066
1965
1964
1967
5.39
5.20
5.33
2.244
.2953
4929
.2133
2139
.2133

MSE

.0118
.0118
.0119
.0108
.0108
.0108
47.76
46.62
65.11
6.072
1.392
.0354
.0048
.0048
.0048

.0426
.0425
.0427
.0386
.0385
.0387
29.13
27.13
28.44
5.039
.0887
2454
.0612
.0611
.0613

Qs
322
322
322
.082
.083
.080
-3.30
-3.01
-3.38
.048
.048
.048
129
129
128

412
412
412
188
187
188
-2.44
-2.30
-2.36
123
123
123
465
465
463

Q50

498
498
499
.248
.248
247
.035
.037
.035
.252
.252
.252
.210
.210
.209

747
746
.748
495
495
495
119
124
119
.504
.504
.504
.758
.758
.758

Qos
675
675
677
419
419
419
3.13
3.10
3.10
570
.570
.570
317
317
317

1.09
1.08
1.09
.822
.820
.820
2.67
2.34
2.47
1.07
1.07
1.07
1.14
1.14
1.14

n =60
Bias SD MSE Q; Qs  Qus
.0001 .0732 .0054 .383 .499 .619
.0001 .0732 .0054 .383 .499 .619
.0001 .0732 .0054 .383 .499 .619
.0009 .0788 .0062 .125 .250 .381
.0010 .0773 .0059 .125 .250 .382
.0008 .0789 .0062 .125 .250 .382
.0678 195 3809 -1.73 .017 214
0362 174 3.041 -173 .0l6 2.04
1029 189 3568 -1.76 .023 1.98
.0455 3197 .1043 .017 .253 .624
.0457 .3078 .0968 .020 .252 .623
0236 .1849 .0347 .015 .253 .611
.0183 .0429 .0022 .166 .230 .304
.0182 .0429 .0022 .166 0.230 .304
.0183 .0429 .0022 .166 0.230 .304
.0003 .1390 .0193 .527 .749 977
.0003 .1389 .0193 .527 .749 .977
.0003 .1390 .0193 .527 .749 .977
.0018 .1495 .0224 .264 .500 .750
.0017 .1495 .0223 .264 500 .751
.0018 .1497 .0224 264 500 .751
.0667 1544 2387 -1.406 .106 1.91
.0847 1.158 1.348 -1.398 .105 191
0796 1416 2.011 -1.398 .105 1.91
.0674 .4868 .2414 065 502 1.16
.0663 .4620 .2178 .078 502 1.15
.0444 3879 .1524 061 502 1.15
.0633 .1549 .0280 .601 .829 1.10
.0632 .1549 .0279 .600 .829 1.10
.0633 .1549 .0279 .601 .829 1.10



Table 3 (continued)

Parameter

6,=03 FML
MMIL1
MMIL2
6, =102 FML
MMIL1
MMIL2
6, =-11 FML
MMIL1
MMIL2
0,=-5 FML
MMIL1
MMIL2
o’ =25 FML
MMIL1
MMIL2

6, = —025 FML
MMIL1
MMIL2
0,=11 FML
MMIL1
MMIL2
0,=-11 FML
MMIL1
MMIL?2
6,=-05 FML
MMIL1
MMIL2
o’ =025FML
MMIL1
MMIL2

27

n=30 n =60
Bias SD MSE Q Q, Q, Bias SD MSE Q Q, Q.
.0011 .1087 .0118 -.147 .031 .213 .0010 .0732 .0054 -.085 .033 .153
.0011 .1087 .0118 -.147 .031 .213 .0010 .0732 .0054 -.085 .033 .153
.0010 .1089 .0118 -.147 .031 .213 .0010 .0732 .0054 -.085 .033 .153
.0018 .1028 .0106 .857 1.02 1.19 .0015 .0783 .0061 .899 1.022 1.15
.0018 .1027 .0106 .857 1.02 1.19 .0015 .0784 .0061 .899 1.022 1.15
.0018 .1028 .0106 .856 1.02 1.19 .0016 .0784 .0061 .899 1.022 1.15
5091 5.004 25.29 -3.79 -1.09 .466 .0978 1.655 2.748 -2.90 -1.087 .325
4713 4.488 20.35 -2.10 -1.08 .431 .0746 1.105 1.226 -2.90 -1.087 .325
3867 3.678 13.67 -3.80 -1.09 .443 .0299 1.938 3.754 -2.90 -1.087 .325
.0911 2.237 5.011 -.958 -510 -.220 .0485 .2906 .0868 -.952 -.520 -.210
0476 .2873 .0848 -.948 -520 -.210 .0413 .2436 .0610 -.958 -510 -.220
.0457 2587 .0690 -.952 -520 -.209 .0413 .2437 .0610 -.958 -510 -.220
.0350 .0589 .0047 .130 .210 .317 .0181 .0430 .0022 .166 .230 .304
.0350 .0589 .0047 .130 .210 .317 .0181 .0430 .0022 .166 .230 .304
0351 .0589 .0047 .130 .210 .317 .0181 .0430 .0022 .166 .230 .304
.0011 .1087 .0118 -.202 -.024 .158 .0011 .0732 .0054 -.140 -.022 .098
.0011 .1087 .0118 -.202 -.0237 .158 .0012 .0732 .0054 -.140 -.022 .098
.0011 .1088 .0118 -.2018-.0236 .158 .0011 .0732 .0054 -.140 -.022 .098
0017 .1028 .0106 .937 1.10 1.27 .0015 .0784 .0061 .979 1.10 1.23
.0018 .1028 .0106 .937 1.10 1.27 .0014 .0784 .0061 .978 1.10 1.23
.0018 .1029 .0106 .936 1.10 1.27 .0015 .0784 .0061 .979 1.10 1.23
5178 521 27.41 -3.82 -1.09 .466 .0738 1.114 1.246 -2.89 -1.09 .325
4788 511 26.36 -3.78 -1.09 .466 .0872 1.140 1.307 -290 -1.10 .325
5008 5.03 25.54 -3.79 -1.09 .465 .0694 1.178 1.392 -2.89 -1.09 .325
0505 .3181 .1037 -.954 -520 -.209 .0413 .2436 .0610 -.958 -.509 -.220
0486 .3162 .1023 -.948 -519 -209 .0443 .2511 .0650 -.960 -.510 -.220
0496 .3038 .0947 -.948 -520 -209 .0413 .2436 .0610 -.958 -.510 -.220
.0350 .0589 .0047 .130 .210 .317 .0181 .0430 .0022 .166 .230 .304
.0350 .0589 .0047 .130 .210 .317 .0180 .0430 .0022 .166 .230 .304
.0350 .0589 .0047 .130 .210 .317 .0181 .0430 .0022 .166 .230 .304
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Table 4 Estimated bias, standard deviation, mean squared error, and quantiles (5%,
50% and 95%) of estimators for model (3.3) based on FML and two step MMIL

(MMIL1 and MMILZ2) estimators

n=30 n =60
Parameter Bias SD MSE Q Q, Qs Bias SO MSE Q Qs Qs
a=15 FML .0017 .0427 .0018 1.47 150 157 .0008 .0282 .0008 1.48 150 1.55
MMIL1 .0030 .0446 .0020 1.43 150 1.58 .0002 .0249 .0006 146 150 1.54
MMIL2 .0030 .0446 .0020 1.43 150 1.58 .0002 .0249 .0006 146 150 1.54
p=25 FML 0272 1191 .0149 .194 257 498 .0097 .0833 .0070 .202 .253 .400
MMIL1 .0216 .1030 .0111 .200 .256 .491 .0200 .0881 .0082 .147 .261 .435
MMIL2 .0210 .1162 .0139 .197 .256 .499 .0198 .0882 .0082 .147 .261 .435
y =1155FML 5505 2500 6.55 .557 1.10 4.85 .1171 1.007 1.028 .734 113 2.60
MMIL1 4113 1.683 3.00 573 1.14 457 .2244 1043 1138 .255 115 3.12
MMIL2 4591 1.776 3.36 .583 1.14 449 2202 1031 1.111 .255 115 3.12
o2 =05 FML .0049 .0124 .0002 .036 .044 .067 .0022 .0091 .0001 .041 .047 .064
MMIL1 .0050 .0125 .0002 .027 .044 .067 .0022 .0092 .0001 .034 .047 .064
MMIL2 .0050 .0125 .0002 .027 .044 .067 .0022 .0092 .0001 .034 .047 .064
a=5 FML .0021 .0428 .0018 .473 .502 .574 .0008 .0282 .0008 .480 .499 .545
MMIL1 .0029 .0446 .0020 .431 .502 .579 3.0x10° .0249 .0006 .458 .500 .540
MMIL2 .0028 .0447 .0020 .431 502 .578 .00001 .0249 .0006 .458 .500 .540
£ =25 FML .0289 .1298 .0177 .188 .256 .521 .0122 .0951 .0092 .198 .255 .422
MMIL1 .0279 .1211 .0154 .193 .253 .518 .0230 .1000 .0105 .134 .261 .455
MMIL2 .0293 .1264 .0168 .192 .254 .520 .0243 .1156 .0139 .135 .261 .455
y=15 FML .8890 4.99 2567 .698 141 625 .2312 1917 373 969 148 3.50
MMIL1 5512 220 5.15 .750 146 589 .2944 1519 240 310 148 4.07
MMIL2 .6133 4.33 19.10 .732 149 6.20 .2454 2211 495 327 149 4.09
o? =05 FML .0050 .0124 .0002 .036 .044 .067 .0022 .0091 .0001 .041 .047 .064
MMIL1 .0050 .0125 .0002 .027 .044 .067 .0022 .0092 .0001 .034 .047 .064
MMIL2 .0050 .0124 .0002 .027 .044 .067 .0022 .0092 .0001 .034 .047 .064



Table 4 (continued)

Parameter

a=15 FML

MMIL1
MMIL2
FML

MMIL1
MMIL2
FML

MMIL1
MMIL2
FML

MMIL1
MMIL2

FML
MMIL1
MMIL2
FML
MMIL1
MMIL2
FML
MMIL1
MMIL2
FML
MMIL1
MMIL2

n=230
Bias SD MSE Q, Q, Q.
.0017 .0426 .0018 1.43 150 157
.0030 .0446 .0020 1.43 150 158
.0030 .0447 .0020 1.43 150 158
0269 .1174 .0145 127 .257 .495
0208 .1108 .0123 .127 .253 .494
0244 1164 .0142 127 254 .494
5008 221 513 071 1.06 4.61
3920 162 279 .081 1.09 4.26
4442 183 355 077 1.09 4.24
0049 .0125 .0002 .027 .044 .067
.0050 .0125 .0002 .027 .044 .067
.0050 .0125 .0002 .027 .044 .067
.0066 .0942 .0089 445 .505 .669
.0054 .0988 .0098 .343 .505 .670
.0054 .0990 .0098 .343 .505 .671
0718 .1950 .0432 .192 .280 .737
.0600 .1593 .0290 .193 .281 .735
0711 .1623 .0314 .191 .282 .737
9922 575 34.06 .001 .238 4.26
8378 437 19.81 .001 .223 3.76
7670 333 11.67 .001 .223 3.77
0236 .0625 .0045 .182 .221 .335
0234 0625 .0045 .133 .222 .337
0235 .0624 .0044 133 .222 .336

29

n =60
Bias SD MSE Q  Q, Q
.0008 .0282 .00080 1.45 1.50 155
.0008 .0249 .00062 1.46 150 154
.0008 .0249 .00062 1.46 150 154
.0095 .0820 .00682 .140 .254  0.397
0195 .0864 .00783.149 .261 0.431
0196 .0864 .00784 .149 .261 0.431
1082 9594 93172 .162 1.08 2.46
2126 .9881 1.0210.242 1.09 2.98
2138 .9884 1.0222 .242 1.09 2.98
.0022 .0091 .00009 .034 .047 .064
.0022 .0092 .00009 .034 .047  .064
.0022 .0092 .00009 .034 .047 .064
.0008 .0630 .0040 .457 .498 .600
.0002 .0555 .0031 .405 .501 .590
.0002 .0555 .0031 .405 .501 .590
0453 1339 .0200 .206 .270 .535
0603 .1023 .0141 .136 .278 .596
0589 .1539 .0272 .138 .278 .601
3305 1495 234 .001 .244 1.86
4901 2474 6.36 .001 .274 253
4673 1917 3.89 .001 .276 2.63
0110 .0453 .0022 .208 .237 .319
0112 .0458 .0022 .168 .236 .321
0112 .0458 .0022 .168 .236 .321
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