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Abstract

In this paper we compare two non-stationary time series using non-parametric

procedures. Evolutionary spectra are estimated for the two series. Randomization tests

are performed on groups of spectral estimates for both related and independent time

series. Simulation studies show that in certain cases the tests perform reasonably well.

The tests are applied to observed geological and financial time series.
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1 Introduction

The comparison of two or more time series is useful in many different situations. A

geological application would be the detection of differences between the waveforms of

an earthquake and a nuclear explosion of similar strength. A medical application would

be the comparison of different sections of a particular brain wave recording and a

financial application would be the comparison of the performance of different stocks

and shares or the comparison of interest rates between various countries.

Identification of similarities or differences in such time series is useful for

decision making and forecasting. Suppose that we have a number of time series that we

want to forecast. As a result of testing for differences between underlying processes,
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groups of similar time series can be identified. Then instead of fitting models to all the

given series and forecasting each of them, a model can be fitted to a representative of

each group and forecasting can then be performed on this representative. This is

especially useful if one has to forecast a large number of time series, as can often be the

case in inventory control. In terms of reduced time and costs this would certainly be

more practical. It is also well known that better estimates are obtained by pooling

similar data sets. These similar data sets, which in this case would be non-stationary

time series, can be identified on the basis of the techniques for differentiating between

them.

Most existing time series comparison techniques are applicable to time series that

are stationary, or to non-stationary time series that can be transformed to stationary

time series by some simple transformation such as differencing. These comparison

techniques have been put forward by authors such as: Jenkins (1961), De Sousa and

Thomson (1982), Shumway (1982), Basawa et al. (1984), Coates and Diggle (1986),

Swanepoel and Van Wyk (1986), Diggle and Fisher (1991), Guo (1999), Timmer et al.

(1999), and Maharaj (2000). Since many time series in various fields are not easily

transformable non-stationary series, the existing time series comparison procedures

cannot be used if one is required to test for differences between such series.

In this paper we will consider time series that may or may not be stationary in the

mean but are variance non-stationary. For such series no variance reduction

transformation will make them variance stationary. Some examples of such time series

are waveforms of earthquakes and nuclear explosions and certain financial series.

In Section 2, we briefly describe the estimation of the evolutionary spectrum and in

Section 3, we describe the non-parametric tests that will be used to compare the
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evolutionary spectra of two different series. In Section 4, we describe the simulation

study and report the results, while in Section 5, we apply the tests to observed non-

stationary time series.

2 Evolutionary Spectra

Priestley (1965) developed the evolutionary spectra approach to the spectral analysis of

non-stationary time series. Because the structure of non-stationary series changes over

time, estimating a conventional spectrum will not be appropriate. In order to take into

account these structural changes over time, evolutionary spectra, that is, successive

spectra of overlapping portions of the time series are estimated. This can be likened to

viewing the series through a moving time window of fixed length.

Let {Xt , t = 1, 2, . . . , T} be a discrete parameter stochastic process. If {Xt} is

stationary then the spectral density function or spectrum is defined by

( ) ki

k
kX ecf ω

∞

−∞=
∑π

=ω
1

(2.1)

where ck  is the covariance function of Xt and ω, the frequency, is in the range (0,π). A

smoothed estimate of the spectrum is

( ) ki
m

mk
kkX ecf ω

−=
∑λ

π
=ω

1ˆ    (2.2)

were kλ is a suitably chosen lag window and m < T is called the truncation  point. The

choice of lag window is discussed in Priestley (1966). If Xt is non-stationary, then

choosing a weight function ut of suitable length, the estimate of the evolutionary

spectrum is
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where ( )ωXtf̂  is the smoothed estimate of the spectrum in the neighbourhood of t.

3 Testing Procedure

Given two semi-stationary series {xt} and {yt}, that is, series that are stationary in the

mean but non-stationary in the variance, evolutionary spectra are estimated using the

“double window technique” of equations (2.2) and (2.3). In what follows, we will use

the Bartlett window for kλ  and the Daniel window for the ut. The Bartlett window is

defined as
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with the modulus of the Fourier transform being
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This is the spectral window corresponding to kλ and it has bandwidth mπ . The

Daniel window is defined as
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where 'T is  the length of the corresponding time window ( )ω'TU  which is the Fourier

transform of ut, with

( ) ( )'/1
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This length of the time window ( )ω'TU  must be long enough so that fairly stable

estimates are obtainable for a reasonable number of spectral components but not too

long so that the occurrence of a fundamental change will be lost in all the averaging.

3.1 Randomisation Tests

Randomisation tests  (see Siegel, 1956) are non-parametric tests with which one can

obtain the exact probability under the null hypothesis without making any assumptions

about normality or homogeneity of variance.

In order to use these tests, the spectral estimates must be uncorrelated. Thus in

order to obtain approximately uncorrelated estimates, the frequencies {ωj} and the time

points {ti } should be chosen so that spacings between {ωj} are at least mπ  and the

spacings between {ti } are at least 'T  (see Priestley, 1965).

Then within each time window of length 'T , the approximately uncorrelated

spectral estimates of the two series are compared by means of the randomisation tests.

In this case within each time window, the null hypothesis is that there is no difference

between the evolutionary spectra of the two time series. If there are b time windows

each of length 'T , then it is expected that if the two non-stationary time series under

consideration have similar patterns, the test would be non-significant for most of the b

time windows. On the other hand if the two time series have markedly different

patterns, it is expected that the test would be significant for most of the b time

windows.
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Within each time window, let D be any measure of distance between the estimated

spectra  ( )jtxh ωˆ  and ( )jtyh ωˆ , j = 1, 2, . . . , p of the two non-stationary time series  xt

and yt respectively. Then, under the null hypothesis the distribution of D will be

invariant under p2  possible interchanges of ( )jtxh ωˆ  and ( )jtyh ωˆ . In practice it will not

be feasible to determine the distribution of D but it can be approximated adequately by

calculating D1, D2, . . . , Ds for some large number s-1 of interchanges of the spectral

estimates at each frequency and by calculating the significance probability of the

observed D-value, say D1, as the proportion of values D1, D2, . . . , Ds
  at least as large

as D1.

Following Siegel (1956), for related time series for each time window we will use

∑
=

=
p

j
jdD

1

where

( ) ( )jtyjtxj hhd ωω ˆˆ −=

and for independent time series we will use

( ) ( )∑∑
==

−=
p

j
jty

p

j
jtx hhD

11

ˆˆ ωω .

4 Simulation Study1

4.1 Design

On comparing the theoretical and estimated evolutionary spectra, Priestley (1965)

showed that the method for estimating evolutionary spectra described in Section 2,

                                                       
1 All programs were written in Gauss and are available from the author on request.
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using the spectral and time windows in (3.1) and (3.2) respectively, appeared to work

quite well for series generated from the semi-stationary process

( ) ( ) tYtCtX =

with

( ) ( )
( ) 









 −−
=

2

2

2002

500t
exptC

and Yt being an ARMA process.  Hence we have used X(t) which generates series that

are non-stationary in variance as the generating process for our study with  Yt being an

ARMA process.

To gauge how the independent case randomization test performed for series

generated from the same non-stationary process, unrelated series of length T = 200 and

T = 500 were simulated from each of X(t), with Yt being AR(1): φ  =  0, 0.5, 0.9;

MA(1): θ  = 0.5; and ARMA(1,1), φ  =  -0.6, θ =  0.3. These ARMA models were

chosen, so that both first and second order processes as well as a range of parameter

values would be considered. To gauge how the test performed for series generated from

different non-stationary processes, unrelated series were simulated from X(t) with

AR(1): φ  =  0 versus φ  >  0.

The performance of the related case randomisation test was assessed using the

same scenarios as for the independent case except that it was assumed that ARMA

innovations were correlated at 0.5.

The evolutionary spectra were estimated for various values of pair ( )', Tm  for the

Bartlett and Daniel windows in Equation (3.1) and (3.2) respectively. Values of m were

chosen to be T0.4, T0.5, T0.6, T0.7  and T0.8, and values of 'T  were chosen  to be T/8 and



8

T/4. That is, spectral estimates were obtained for eight time windows of length T/8, and

four time windows of length T/4.

For each pair of series, the relevant test was performed within each time window

and a count was made of the number of times the test was significant at the 5% level

over all the time windows. This count was recorded for each of 100 simulations. An

average count was then obtained over the 100 simulations. Low averages compared to

the number of time windows would indicate a greater similarity between the generating

processes whereas high averages compared to the number of time windows would

indicate a greater difference between the generating processes.

4.2 Results and Discussion

For T = 200, for the combinations (h = T0.8, T ′  = T/8) and  (h = T0.8, T ′= T/4), the tests

for related and independent series performed reasonably well in terms of size and

power.  For the eight-time-window scenario, where each window was of length T ′  =

T/8, the average number of windows in which the null hypothesis was rejected was no

more than 3.50, when it was true, while when it was false, the average number of

windows in which it was rejected was as high as 7.46 for extremely different series. For

the four-time-window scenario, where each window was of length T ′  = T/4, the

average number of windows in which the null hypothesis was rejected was no more

than 1.80, when it was true, while when it was false, the average number of windows in

which it was rejected was as high as 3.76 for extremely different series.  Similar

averages where obtained in terms of size for the combinations (h = T0.7, T ′  = T/8) and

(h = T0.7, T ′= T/4). However in terms of power, the tests did not perform as well for

these combinations.



9

For T = 500, for the combinations (h = T0.8, T ′  = T/8) and  (h = T0.8, T ′= T/4),

the tests performed much better for both related and independent series, in terms of size

and power than for T = 200.  The average number of windows in which the null

hypothesis was rejected when it was true, was no more than 2.59 for the eight-time-

window scenario and no more than 1.12 for the four-time-window scenario. When the

null hypothesis was false, the average number of windows in which it was rejected was

as high as 7.86 for extremely different series for the eight-time window scenario, and as

high as 3.99 for extremely different series for the four-time-window scenario.

For all other combinations of h and T ′ , for both T = 200 and T = 500 and for both

independent and related series, the tests’ performances were reasonably good in terms

of size but very poor in terms of power. Results for the combinations h = T0.8 and T ′

=T/8, and   h = T0.8 and T ′  =T/4 are given in Tables 1 to 4.

<Table 1>

<Table 2>

<Table 3>

<Table 4>

A simulation study with the same generating processes described in Section 4.1

was also carried out using a Parzen lag window with the Daniel lag window to estimate

the evolutionary spectra. Fairly similar results to those described above were obtained.
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5 Applications

5.1 Financial Data: Related Series

Graphs of monthly interest rates2 from July 1980 to June 2000 of four OECD countries,

Australia, the United Kingdom (UK), France and the United States of America  (USA)

are given in Figure 1. Clearly these time series are non-stationary. While differencing

renders them stationary in the mean, it does not render them stationary in variance as

seen in Figure 2. Since the same economic and financial factors affect interest rates in

the OECD countries, we will apply the test for related series to each pair of differenced

series. We use the differenced series since the test (as demonstrated in the simulation

study) is applicable to series that are stationary in the mean but are non-stationary in

variance.

It can be seen from Figure 1 that interest rates from about July 1980 to January

1982, and from about January 1989 to June 2000 appear to move in tandem for all four

countries whereas from about January 1982 to January 1989 Australia‘s interest rate

appears to follow a different pattern from the others. From the months from about April

1984 and June 2000 the interest rates for the UK , USA and France appear to move in

tandem , whereas from about January 1982 and April 1984, France’s interest rates

appear to follow a different pattern from the other countries.

The results of the test for related series for combinations of  m and T ′  for m = T0.7

and T0.8,  and  T ′  = T/8 and T/4 are given in Table 5.

<Figure 1>

<Table 5>

                                                       
2 Source: Australian Bureau of Statistics
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The results reveal that over the period from January 1980 to June 2000 there is

not much difference between the interest rates patterns of France and the UK, that is, in

1 out of 8 time windows and in 0 out of the 4 time-windows, the null hypothesis of no

difference is rejected. There are some differences between the interest rates patterns of

the USA and France, and the USA and the UK, that is, between 3 to 5 out of 8 time

windows and in 2 out of 4 time-windows, the null hypothesis of no difference is

rejected. However for the interest rate patterns between Australia and the other

countries, there appear to be fairly large difference, that is, the null hypothesis of no

difference is rejected for between 5 to 8 out of 8 time windows and, for between 3 to 4

out of 4 time windows. These results appear to be consistent with some of the

observations made from Figure 1.

5.2 Geological Data: Independent Series

It is clear from an examination of earthquake and nuclear explosion waveforms that

there are some differences in their patterns. It is therefore expected that there will be

differences in their spectra and indeed their evolutionary spectra as well. Figures 3 and

4 show the standardised waveforms3 of a nuclear explosion detonated in China in

August 1995 and an earthquake that occurred in the Solomon Islands in September

1995. The two events, which were of similar strength, were recorded at the same

seismological station. Each series consists of 600 observations recorded over a 30

second interval.  Clearly it can be seen that the series are variance non-stationary.

Furthermore, it can be seen that their patterns differ considerably over some time

periods but less so over others.

                                                       
3 Source: Australian Geological Survey Organisation.
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The results of the test for independent series for combinations of  m and T ′  for m

= T0.7 and T0.8,  and  T ′  = T/8 and T/4 are given in Table 6.

<Figure 3>

<Figure 4>

<Table 6>

The results reveal that there appears to be some differences between the waveforms of

the earthquake and the nuclear explosion, in that for between 4 to 5 out of 8 time

windows and for 2 out of 4 time windows, the null hypothesis of no difference is

rejected. These results appear to be consistent with the observations made from Figures

3 and 4.

6. Concluding   Remarks

In summary then, it would appear from the simulation study that for certain

combinations of lag and time window lengths, the tests based on the evolutionary

spectra for both independent and related series cases perform reasonably well. The

applications to real data demonstrate that tests can be quite successfully applied. Hence

it seems that these tests can be quite useful for differentiating between time series that

are variance non-stationary.
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Table 1 Average number of time windows associated with size:  T = 200

Independent Series Related Series

Process m = T0.8

T ′  =T/8

m = T0.8

T ′  =T/4

m = T0.8

T ′  =T/8

M = T0.8

T ′  =T/4

AR(1)  0 2.75 1.42 3.13 1.49

            0.5 3.33 1.55 2.85 1.62

            0.9 3.29 1.69 3.40 1.80

MA(1) 0.5 3.15 1.54 2.70 1.69

ARMA  0.6;  0.3 3.19 1.66 3.50 1.54

Table 2 Average number of time windows associated with power:  T = 200
AR(1) φφ = 0 versus AR(1)  φφ > 0

Independent Series Related Series

Process m = T0.8

T ′  =T/8

m = T0.8

T ′  =T/4

M = T0.8

T ′  =T/8

M = T0.8

T ′  =T/4

AR(1)           0 2.75 1.42 3.13 1.49

                  0.2 2.87 1.47 2.71 1.25

                  0.4 3.27 1.69 3.26 1.76

                  0.6 4.86 2.51 4.88 2.68

                  0.8 7.04 3.76 7.46 3.74

Table 3 Average number of time-windows associated with size:  T = 500

Independent Series Related Series

Process M = T0.8

T ′  =T/8

m = T0.8

T ′  =T/4

m = T0.8

T ′  =T/8

m = T0.8

T ′  =T/4

AR(1)  0 1.99 0.82 1.80 1.12

            0.5 2.21 1.03 2.07 0.98

            0.9 2.59 1.12 2.29 0.99

MA(1) 0.5 2.05 0.96 2.10 0.97

ARMA  0.6;  0.3 2.03 1.07 1.97 0.99
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Table 4 Average number of time windows associated with power:  T = 500
AR(1) φφ = 0 versus AR(1)  φφ > 0

Independent Series Related Series

Process m = T0.8

T ′  =T/8

m = T0.8

T ′  =T/4

m = T0.8

T ′  =T/8

m = T0.8

T ′  =T/4

AR(1)           0 1.99 0.82 1.80   1.12

                  0.2 2.18 0.91 2.08   0.98

                  0.4 2.81 1.45 3.20   1.59

                  0.6 5.53 3.15 5.47   3.24

                  0.8 7.75 3.92 7.86   3.99

Table 5 Number of time windows for which the null hypothesis was rejected

m  = T0.8  T ′  = T/8
8 Time Windows

m = T0.7  T ′  = T/8
8 Time Windows

AUS USA FRA AUS USA FRA

USA 8 USA 7

FRA 8 4 FRA 7 3

UK 6 5 1 UK 5 4 1

m = T0.8  T ′  = T/4
4 Time Windows

m = T0.7  T ′  = T/4
4 Time Windows

AUS USA FRA AUS USA FRA

USA 3 USA 3

FRA 4 2 FRA 4 2

UK 4 2 0 UK 4 2 0

Table 6   Number of time windows for which the null hypothesis was rejected

Comparison of Earthquake and Nuclear explosion waveforms

T ′ = T/8
8 time windows

T ′ = T/4
4 time windows

m = T0.8   4 2

m = T0.7   5 2
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Figure 1 Interest rates of the four OECD countries: January 1980 - June 2000

Figure 2 Series of first differences of the interest rates of the four OECD

                   countries: January 1980 - June 2000
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Figure 3 Standardised waveform of a nuclear explosion

Figure 4 Standardised waveform of an earthquake
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