
ISSN 1440-771X 

 
 

Australia 
 
 
 
 
 

Department of Econometrics 
and Business Statistics 

 
http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Weighted Average Power 
Change for the Gaussian

 
G. Fo

 

 
 
 
 
 
 
 
 

August
 
 
 
 
 
 
 
 

Working Pa

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics
 

Similar Tests for Structural 
 Linear Regression Model 

rchini 
 

 2005 

per 20/05 

https://core.ac.uk/display/6340645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Weighted Average Power Similar Tests for Structural

Change for the Gaussian Linear Regression Model

G. Forchini ∗†

Monash University

August 2005

Abstract

The average exponential tests for structural change of Andrews and Ploberger
(Econometrica, 62, 1994) and Andrews, Lee and Ploberger (Journal of Economet-
rics 70, 1996) and modifications thereof maximize a weighted average power which
incorporates specific weighting functions in order to make the resulting test sta-
tistics simple. Generalizations of these tests involve the numerical evaluation of
(potentially) complicated integrals. In this paper we suggest a uniform Laplace ap-
proximation to evaluate weighted average power test statistics for which a simple
closed form does not exist. We also show that a modification of the avg-F test is
optimal under a very large class of weighting functions and can be written as a ratio
of quadratic forms. Finally, we discuss how the computational burden of averaging
over all possible change-points can be addressed.
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1 Introduction

Andrews and Ploberger (1994) and Andrews, Lee, and Ploberger (1996) suggest finite

sample similar tests for structural change at unknown change-points in the Gaussian

linear regression model which maximize a weighted average power (WAP). They obtain

a class of optimal tests for the case where the disturbance variance is known. For the case

where the error variance is unknown, they propose replacing the unknown variance by

an estimate, and show that the resulting tests are still similar. Andrews and Ploberger

(1994) also prove that these tests are asymptotically optimal.

Forchini (2002) extends the results of Andrews and Ploberger (1994) and Andrews,

Lee, and Ploberger (1996), and derives similar WAP tests for structural change at un-

known change-points which allow for an unknown variance. These tests are optimal

for any sample size and are equivalent to those of Andrews and Ploberger (1994) and

Andrews, Lee, and Ploberger (1996) in large samples.

Unfortunately, existing WAP tests for structural change at unknown change-points

have two drawbacks. (i) Firstly, they incorporate specific choices of weighting functions

which have been selected in such a way that the resulting test statistics have relatively

simple functional forms. The use of different weighting functions to accommodate the

relative importance of different departures from the null hypothesis is not viable because

of the need to evaluate complicated integrals numerically. (ii) Secondly, these tests

require the evaluation of several F-tests (or other equivalent tests) for all possible change-

points. Since WAP tests have non-standard distributions, calculating their critical values

may be very computer intensive especially when the sample size is large.

This paper contributes to the literature by investigating the construction of WAP

tests for general weighting functions. Firstly, we find that the WAP test for local de-

partures from the null denoted by LR0 by Forchini (2002) is optimal for a large class

of weighting functions, and can be written as a ratio of quadratic forms in the vector

of residuals calculated under the null hypothesis. These properties make the test very
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attractive in practical applications. The avg-F test of Andrews and Ploberger (1994)

and Andrews, Lee, and Ploberger (1996) is also optimal in large samples for a larger

class of weighting functions than the one originally used in its derivation, however, its

computation is more involved than that of the LR0 test statistic.

Secondly, we study WAP tests for general weighting functions for alternatives hy-

potheses which are not necessarily local to the null hypothesis. We find that the use

of (uniform) Laplace approximations (e.g. Bleistein and Handelsman (1986)) provides

easily computable expressions for WAP test statistics. These approximations can be

easily implemented, and there is plenty of evidence in the literature that they are very

accurate. We briefly discuss the problem of averaging over all possible change-points,

and suggest ways of reducing the computational burden that it involves.

The rest of the paper is organized as follows. Section 2 presents the model, the

notation, and reviews existing results about WAP tests. Section 3 gives the main results.

All proofs are in the Appendix. Section 4 briefly discusses the problem of averaging over

all possible-change points, and Section 5 concludes.

2 The model and WAP Tests for Structural Change

We consider a Gaussian linear regression model with t + 1 sub-samples, containing re-

spectively τ1, τ2, ..., τ t+1 (
∑t+1

i=1 τ i = T ) observations:

y = Xβ + Z (τ) γ + u (1)

where y is a T×1 vector of dependent variables, X = (Z, W ) is a T×p matrix of indepen-

dent and fixed regressors. The sub-matrix Z is partitioned as Z =
(
Z ′τ1

, Z ′τ2
, ..., Z ′τ t

, Z ′τ t+1

)′

where block Zτ i contains τ i observations (i = 1, 2, ..., t + 1) on k variables, and the

T × K matrix Z (τ) is obtained by deleting the first k columns, and all the columns

which can be obtained as a linear combination of the remaining ones (to keep the no-

tation as simple as possible we do not index K by τ) in the block diagonal matrix
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diag
(
Zτ1 , Zτ2 , ..., Zτ t , Zτ t+1

)
. Using this notation we identify change-points by an index

τ which represents a partition of T into t + 1 integer parts, τ = (τ1, τ2, ..., τ t+1), τ i > 0

for all i,
∑t+1

i=1 τ i = T . The subset of all partitions of T of interest (i.e. the set of all

possible change-points in the model) is denoted by Υ. For further discussion of this

notation see Forchini (2002).

The following assumptions are supposed to hold:

Assumptions:

(1) u ∼ N
(
0, σ2IT

)

(2) T − p−K ≥ 0

(3) X and Z (τ) are fixed for all τ ∈ Υ

(4) Z (τ)′MXZ (τ) γ/ (T − p) = Qτ + o (1) for all τ ∈ Υ, where Qτ is a finite positive

definite matrix, and MX = IT −X (X ′X)−1 X ′

(5) K = O (T − p)

Assumptions (1), (2), (3) and (4) are standard in this literature. Assumption (5)

reflects the fact that the number of possible change-points may increase as the sample

size increases.

By writing the model as in equation (1) one can easily show that both the class of

tests invariant under the transformations y → ay + Xϑ (with a > 0, ϑ ∈ Rp) and the

class of similar tests for H0 : y ∼ N
(
Xβ, σ2IT

)
against any alternative whatever are

characterized by the vector v = C ′y/ (y′MXy)1/2, where C is a T × T − p matrix such

that CC ′ = MX , C ′C = IT−p and C ′X = 0 (cf. King and Hillier (1985) and Hillier

(1987)).
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The power of the critical region ω is (e.g. equation (A.3) of Forchini (2002))

Pω =
1

2π(T−p)/2
exp

{
−1

2
(T − p) λτ

}

∫

ω

∞∑

j=0

Γ
(

T−p+j
2

)
2j/2

j!

(
(T − p)1/2 λ1/2

τ φ′τΛ
′
τv

)j
(dv) ,

where

Λτ = C ′Z (τ)
(
Z (τ)′MXZ (τ)

)−1/2

φτ = (T − p)−1/2 (
Z (τ)′MXZ (τ)

)1/2 (γ/σ) /λ1/2
τ

λτ = φ′τφτ = γ′Z (τ)′MXZ (τ) γ/
[
(T − p) σ2

]
.

No uniformly most powerful test exists in this set-up, so one usually considers WAP tests

(e.g. Wald (1943) and Cox and Hinkley (1974)). Andrews and Ploberger (1994) and

Andrews, Lee, and Ploberger (1996) suggest averaging over the partitions τ ∈ Υ with

weights p (τ), and over all values of
(
β′, γ′

)′ with a weighting function proportional to

the density of a normal distribution. They show that if the error variance σ2 is known,

a WAP test has the form

exp-Fc =
∑

τ∈Υ

p (τ) exp
{

cKτ fτ

2(1+c)

}

(1 + c)K/2
(2)

where fτ is the F test statistic for testing the null hypothesis H0 : γ = 0 against the

alternative H1 : γ 6= 0 for a fixed change-point τ .

Forchini (2002) extends the results of Andrews and Ploberger (1994) and Andrews,

Lee, and Ploberger (1996) by deriving a WAP test for structural change for the case

where σ2 is unknown. This is done by averaging the power over the partitions τ ∈ Υ

with weights p (τ) (as suggested by Andrews and Ploberger (1994) and Andrews, Lee,

and Ploberger (1996)) and over all possible directions of C ′Z (τ) γ/σ with uniform weight

(as advised by Wald (1943) and Hillier (1987)). However, since all this is not enough to

obtain uniformly most powerful tests in terms of WAP, a further averaging over λτ > 0
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with weight g (λτ ) is needed. In this case the WAP of the critical region ω is

P̄ω =
2Γ (b)

Γ (q) Γ (b− q)

∑

τ∈Υ

p (τ)
∫

λτ >0

∫

ω
(cos θτ )

K−1

(sin θτ )
T−p−K−1 exp {−bh (λτ ; θτ )} g (λτ ) dθτdλτ ,

where

h (λ; θ) = λ− b−1 ln
{

1F1

(
b; q; bλ cos2 θ

)}
(3)

cos2 θτ = [q/ (b− q)] fτ (1 + [q/ (b− q)] fτ )
−1, and b = (T − p) /2, q = K/2. Here and in

the rest of the paper we make use of the standard notation for hypergeometric functions

(e.g. Slater (1960)).

The critical region which maximizes WAP has the form

Sg,p =
∑

τ∈Υ

p (τ) I (θτ ) > kα (4)

for a suitable constant kα, such that the size of the test is α, where

I (θ) =
∫

λ>0
exp {−bh (λ; θ)} g (λ) dλ. (5)

A closed form for the WAP test can be obtained by choosing g (λτ ) proportional to a cer-

tain power of λτ . For example, if one chooses g (λτ ) in such a way that (T − p) λτ/
√

c ∼
χ2

K , the resulting test statistic is

LRc =
∑

τ∈Υ

p (τ)

(1 + c)K/2
(
1 + c

1+c cos2 θτ

)(T−p)/2
. (6)

Forchini (2002) (Corollary 1) shows that (2) and (6) are approximately the same as T

increases for fixed p. The statistic LRc seems cumbersome because it depends on cos2 θτ

which does not seem to have an econometric interpretation. However, the following

result holds.

Proposition 1 The quantity cos2 θτ is the coefficient of determination of the OLS re-

gression of MXy on MXZ (τ).
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For an arbitrary weighting function g, the integral (5) over λτ in (4) cannot be

evaluated explicitly. In the next section we will generalize the WAP tests to cover such

situations.

3 Main results

Our first result deals with a WAP test statistic for local departures from the null hy-

pothesis, obtained as LR0 = b−1 limc→0

[(
LRc − (1 + c)−q) /c

]
. Theorem 1 shows that

LR0 has the same functional form for a large class of weighting functions.

Theorem 1 Let f (λ) to be a piecewise continuous function such that
∫∞
−∞ |f (λ)| dλ < ∞ and

∫∞
−∞ f (λ) dx = 1, and define ga (λ) = a−1f

(
a−2λ2

)
then the

WAP test statistic Sπ0,p = lima→0 Sπa,p is equal, after a suitable normalization, to

LR0 = b−1Sπ0,p + 1 =
∑

τ∈Υ

p (τ) cos2 θτ .

Moreover,

LR0 =
û′AΥû

û′û

where û = MXy is the vector of residuals of the OLS regression of y on X, and

AΥ =
∑

τ∈Υ

p (τ) Z (τ)
(
Z (τ)′MXZ (τ)

)−1
Z ′ (τ) .

Therefore for all weighting functions ga (λ) satisfying the conditions of Theorem 1,

the WAP test for local departure is an average of the coefficients of determination of

the auxiliary OLS regressions of MXy on MXZ (τ), τ ∈ Υ. Moreover, in order to

calculate the LR0, one just needs to run one OLS regression (of y on X) and to evaluate

a quadratic form, since the T ×T matrix AΥ must be computed once only. This is a very

appealing property because it is a WAP test for which the computation burden is low.

One may notice that the calculation of the critical values for the LR0 can be efficiently

done numerically using Imhof (1961)’s procedure.

For large T we have that
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Corollary 1 The avg-F test based on the statistic avg-F=
∑

τ∈Υ p (τ) fτ is optimal in

large samples for the class of weighting functions ga (λ) specified in Theorem 1.

Note that the avg-F test cannot be written as ratio of quadratic forms in û, because

the denominator of the F-test statistic for fixed τ is the estimate of σ2 based on the

unrestricted model (1).

Apart from this special case, the optimal test depends on the specific weighting

function g (λ). If such function is more complicated than a mixture of polynomials and

simple exponentials, I (θ) in (5) does not have a closed form. Therefore, it is reasonable

to approximate the integral I (θ), given its structure, using a Laplace expansion. It can

be easily checked that h′ (λ; θ) = 0 is equivalent to

1F1

(
b; q; bλ cos2 θ

)

1F1 (b + 1; q + 1; bλ cos2 θ)
=

b

q
cos2 θ. (7)

The expression on the left-hand-side is a strictly increasing function of λ and has a

minimum at λ = 0. So the minimum of h (λ; θ), λ0, occurs on the boundary (λ0 = 0) if

cos2 θ ≤ q/b, and at an interior point (λ0 > 0) if cos2 θ > q/b. Thus, one has to consider

three cases:

1. if cos2 θ < q/b, then

I (θ) ∼ I1 (θ) =
g (0)

bh′ (0; θ)
=

g (0)
b (1− (b/q) cos2 θ)

(8)

since h (0; θ) = 0, h′ (0; θ) = 1− (b/k) cos2 θ (e.g. Section 4.3 of De Bruijn (1961));

2. if cos2 θ > q/b, then a standard Laplace expansion (e.g. De Bruijn (1961)) gives

I (θ) ∼ I2 (θ) =
(2π)1/2 exp {−bh (λ0; θ)} g (λ0)

[h′′ (λ0; θ) b]1/2
(9)

where λ0 solves (7); and,

3. if cos2 θ = q/b then

I (θ) ∼ I2 (θ) /2. (10)
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The expansions above are not uniform in θ, and (10) cannot be obtained as a limiting

case of (8) or (9) as cos2 θ → q/b. As as consequence, these approximations to I (θ) can

be extremely poor when cos2 θ is nearly equal to q/b. Thus, we need to find an asymptotic

expansion which holds uniformly with respect to θ.

Theorem 2 Let νθ be 1 if cos2 θ < q/b and −1 otherwise, λ0 be the minimum of h (λ; θ)

in the region where 1F1

(
b; q; bλ cos2 θ

)
is positive, and Φ(x) denote the cumulative distri-

bution function of a standard normal distribution. Suppose that g (λ) has no singularity

in [0, +∞). Then, for large b,

I (θ) ∼ IA (θ) = I2 (θ)
(
1− Φ

(
νθ

√
−2bh (λ0; θ)

))
+ I1 (θ)− νθg (λ0)

b
√
−2h (λ0; θ) h′′ (λ0; θ)

,

(11)

uniformly in θ, where I1 (θ) and I2 (θ) are defined in equations (8) and (9) respectively.

In order to achieve uniformity, the asymptotic expansion of I (θ) in Theorem 2 is

slightly more complicated than the standard ones presented earlier on in equations (8),

(9) and (10). It is a weighted average of I1 (θ) and I2 (θ) plus a correction term. Since

it requires the evaluation of h (λ; θ) and h′′ (λ; θ) at the saddlepoint λ0 (even though λ0

may not be in [0, +∞)) and of h′ (0; θ) only, it can be easily computed. The restriction

that g (λ) does not have singularities can be relaxed by using the techniques of Chapter

9 of Bleistein and Handelsman (1986).

In order to implement the approximate WAP test using equation (11) we need to

calculate numerically the saddlepoint λ0. The following result gives an asymptotic ex-

pansion for λ0 which can be inserted directly in (11) or can be used to obtain a starting

point for a numerical calculation of λ0.

Theorem 3 Let a = b/q − 1 = O (1) , then, for large b, the saddlepoint for h (λ; θ) in

(3) is approximately

λ0 ∼ λ̃0 = −1− a− (1 + a) cos (2θ)
2 (1 + a) sin2 θ

.

9



We will see in Section 3.1 that the approximation is good when cos2 θ ≥ q/b, but it

may be poor when cos2 θ < q/b.

Finally, one may note that the test statistic
∑

τ∈Υ p (τ)IA (θτ ) is a complicated func-

tion of cos2 θτ and in general has a non-standard asymptotic distribution. However, since

under the null hypothesis its distribution is free of nuisance parameters, the techniques

of Monte Carlo tests can be used to calculate p-values efficiently (see for instance Dufour

and Khalaf (2001)).

3.1 Numerical Results

We now present some numerical results aiming at evaluating the performance of the

approximations suggested in Theorems 2 and 3. We start with Theorem 3 since the

approximation depends only on h (λ; θ).

Table 1 gives examples of exact (i.e. numerical), λN
0 , and approximate, λ̃0, solutions

to equation (7) for various values of b, q and cos2 θ. It shows that the approximation is

fairly accurate (even if q and b are as small as 1 and 10 respectively) when λ0 is positive,

but can be poor for negative values of λ0.

[TABLE 1 APPROXIMATELY HERE]

We now gives some numerical evidence concerning the approximation in Theorem

2. Table 2 gives the exact and approximate values of I (θ) when g (λ) = 1 and g (λ) =
√

2/π exp
{−λ2/2

}
for b = 19 and q = 2. Notice that for g (λ) = 1 the integral I (θ) can

be evaluated exactly as

I (θ) =
∫

λ>0
exp {−bh (λ; θ)} dλ = b−1

2F1

(
1, b; q; cos2 θ

)
(12)

where 2F1

(
1, b; q; cos2 θ

)
denotes Gauss hypergeometric function (e.g. Slater (1960)).

When g (λ) =
√

2/π exp
{−λ2/2

}
, we evaluate the integral numerically.
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The approximation is very accurate for both weighting functions despite the small

value of b considered and despite cos2 θ being close to q/b = 2/19 ' 0.105.

[TABLE 2 APPROXIMATELY HERE]

4 Further Remarks

In Section 3 we have discussed how the construction of WAP tests can be extended to

more general weighting functions g. One of the problems in the application of WAP tests

is the averaging over the partitions τ ∈ Υ because it requires the computation of several

F-tests. This problem is worsened by a large sample size because, as this increases, the

number of possible change-points also increases. In this Section we discuss possible ways

of overcoming this situation.

We have already noticed in Theorem 1 that the statistic LR0 is a ratio of quadratic

forms of the OLS residuals of the regression on y on X, and that the matrix AΥ in

the numerator needs to be evaluated only once. This property makes the LR0 test very

appealing.

In the more general case the sum over partitions cannot be avoided. However, equa-

tion (4) shows that the WAP test Sg,p is the expected value of I (θτ ), τ ∈ Υ. As such it

can be estimated by taking a sample of n observations I (θτ i) (occurring with probability

p (τ)), τ1, τ2, ..., τn, say, and computing the sample mean,

Ŝg,p = n−1
n∑

i=1

I (θτ i) .

The expected value of Ŝg,p equals Sg,p, and its variance is a decreasing function of n.

Therefore, by choosing n sufficiently large we can obtain a precise estimate of the Sg,p.

The computational burden can be reduced by choosing n smaller than the number of

partitions in Υ so that the number of F-tests to calculate is on average smaller than n.
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As an example of efficiency of this procedure consider 120 i.i.d observations yi ob-

tained as yi = β0 + (−1)i β1 + N (0, 1) with β0 = β1 = 0. We allow for one break at

5 ≤ t ≤ 116. The critical values for several WAP tests based on 10000 replications are

reported in Table 3. The second column of Table 3 contains the critical values calcu-

lated in the standard way, the third and forth contain the critical values for the same

test statistic when the sum over all possible change point is approximated as indicated

above. In this case we take n = 112 and n = 50 giving an average number of different

F-test statistics in each iteration approximately equal to, respectively, 69 and 17. The

approximation seems to perform well.

[TABLE 3 APPROXIMATELY HERE]

As an alternative to the above procedure, one could try to find optimality criteria

that would deliver a simple test statistic which does not require the evaluation of several

F test statistics. Nyblom (1989) suggests a locally most powerful test for parameter

constancy in model (1) with γ = 0 by assuming that β is a martingale process. A recent

development (cf. Carrasco (2004)) is based on an average model. That is one could

average y in equation (1) over all possible change-points and obtain

y = Xβ + Z̄γ + u

where

Z̄ =
∑

τ∈Υ

p (τ) Z (τ) ,

and test whether γ is zero or not using an F test. This procedure is not based on any

classical statistical criteria, and it may be difficult to justify both model averaging and

the optimality of the resulting test. However, its critical values are easily calculated,

and this is certainly an appealing property.
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5 Conclusions

This paper has studied WAP tests for structural change in a Gaussian linear regression

model. We have shown that the LR0 test is optimal for a large class of weighting functions

and is also easy to compute because it requires the evaluation of a quadratic form in

the vector of residuals only. This properties make the test very attractive since it is the

simpler test in the class of WAP tests considered, and has also good power properties.

We have also shown that WAP tests can be constructed for very general weighting

functions by means of uniform Laplace approximations. These perform very well even

for a small sample size. A discussion of ways to reduce the computational burden of

averaging over all possible changepoints is also given.

A Proofs

A.1 Proof of Theorem 1

Write

Sπ∞,p = lim
a→∞

∑

τ∈Υ

p (τ)
∫

λτ >0
exp

{
−1

2
(T − p) λτ

}

1F1

(
T − p

2
;
K

2
;
(T − p) λτ cos2 θτ

2

)
g′a (λτ ) dλτ

=
∑

τ∈Υ

p (τ)
∫

λτ >0
exp

{
−1

2
(T − p) λτ

}

1F1

(
T − p

2
;
K

2
;
(T − p) λτ cos2 θτ

2

)
lim
a→0

g′a (λτ ) dλτ .

The first part of the theorem follows from the fact that g′a (λτ ) = dga (θ) /dθ|θ=λτ
con-

verges to the derivative of a delta function δ (λτ ). The second part of the theorem follows

from the definition of cos2 θτ .

A.2 Proof of Corollary 1

The corollary follows from Theorem 1 and from Corollary 1 of Forchini (2002).
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A.3 Proof of Theorem 2

We could not find a reference for this result in the literature. However, since, it can be

easily obtained using the methods described in Chapter 9 of Bleistein and Handelsman

(1986), we give here an outline of the proof only.

Consider the integral of equation (5). Since the minimum of h (λ; θ) can be anywhere

in [0, +∞), it can be on the boundary, and this is the source of the problems.

Define a new variable of integration so that

h (λ; θ) = φ (t; γ) =
t2

2
+ γt

so that λ = 0 is mapped to t = 0, λ = +∞ is mapped to t = +∞. Choose γ so that

λ = λ0 is mapped to t = −γ, a critical point of φ (t; γ). Thus, we must have

h (λ0; θ) =
(−γ)2

2
+ γ (−γ) = −γ2

2

so that γ2 = −2h (λ0; λ0) (note that h (λ0; λ0) ≤ 0). The correct solution is γ =

−
√
−2h (λ0;λ0) if λ0 > 0 and γ =

√
−2h (λ0; λ0) if λ0 = 0. That is γ = νθ

√
−2h (λ0;λ0).

Since
dh (λ; θ)

dt
= h′ (λ; λ0)

dλ

dt
= t + γ

the Jacobian of the transformation λ → y is

dλ

dt
=

t + γ

h′ (λ; θ)
.

Note that as t → −γ the limit of the ratio must be calculated using l’Hospital rule

lim
t→−γ

dλ

dt
= lim

t→−γ

1
h′′ (λ; θ) dλ

dt

so that

lim
t→−γ

dλ

dt
=

1√
h′′ (λ0; θ)

.

Moreover,

lim
t→0

dλ

dt
=

γ

h′ (0; θ)
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if γ 6= 0 (and h′ (0;λ0) 6= 0). If γ = 0, we need to use l’Hospital rule again and obtain

lim
t→0

dλ

dt
=

1√
h′′ (0; θ0)

where cos2 θ0 = q/b.

We can write

I (θ) =
∫

t>0
exp

{
−b

(
t2

2
+ γt

)}
G (t; θ) dt

where

G (t; θ) = g (λ)
dλ

dt
= g (λ)

t + γ

h′ (λ; θ)
,

and

G (−γ;λ0) = lim
t→−γ

G (t;λ0) =
g (−γ)√
h′′ (λ0;λ0)

.

Write G (t; θ) as

G (t; θ) = a0 + a1t + t (t + γ) H (t; θ)

with

a0 = G (0; θ) =





g(0)γ√
h′(0;θ)

if cos2 θ < q/b

g(0)√
h′′(0;θ)

if cos2 θ ≥ q/b

a1 =
G (−γ; θ)− a0

−γ
=

G (−γ; θ)−G (0; θ)
−γ

=
g (0)

h′ (0; θ)
− g (λ0)

γ
√

h′′ (λ0; θ)

for λ > 0 and

lim
−γ→0

G (−γ; θ)−G (0; θ)
−γ

= G′ (0; θ) =
d

(
g(λ)√
h′′(λ;θ)

)

dt

∣∣∣∣∣∣∣∣
t=0

.

So

I (θ) = G (0;λ0)
∫

t>0
exp

{
−b

(
t2

2
+ γt

)}
dt

+
(

G (−γ; λ0)−G (0;λ0)
−γ

) ∫

t>0
exp

{
−b

(
t2

2
+ γt

)}
tdt

+R (b) (13)
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One can show, by integration by parts, that the reminder

R (b) =
∫

t>0
exp

{
−b

(
t2

2
+ γt

)}
t (t + γ) H (t; θ) dt

is asymptotically negligible. Moreover

∫

t>0
exp

{
−b

(
t2

2
+ γt

)}
dt =

√
2π

b
exp

{
bγ2

2

} (
1− Φ

(
γ
√

b
))

(14)

where

Φ (x) = (2π)−1/2
∫ x

−∞
exp

{
−z2

2

}
dz

is the CDF of the Standard normal distribution. Similarly

∫

t>0
exp

{
−b

(
t2

2
+ γt

)}
tdt =

√
2π

b
(−γ) exp

{
bγ2

2

} (
1− Φ

(
γ
√

b
))

+ b−1. (15)

Inserting (14) and (15) in (13) yields

I (θ) ∼ G (−γ; λ0)

√
2π

b
exp

{
bγ2

2

}(
1− Φ

(
γ
√

b
))

+
(

G (−γ; λ0)−G (0;λ0)
−γ

)
b−1

so rearranging,

I (θ) ∼ g (λ0)

√
2π

bh′′ (λ0; λ0)
exp

{
bγ2

2

} (
1− Φ

(
γ
√

b
))

+

(
g (0)

h′ (0; λ0)
− g (λ0)

γ
√

h′′ (λ0; λ0)

)
b−1

and the statement of the theorem follows.

A.4 Proof of Theorem 3

Before proving Theorem 3 we need to find an asymptotic expansion for h′ (λ; θ).

16



Lemma 1 The following expansion holds

q−1 ln (1F1 (−aq; q;−qx)) ∼ −1
2

(1 + x) +
1
2

√
(1 + x)2 + 4ax

−1
2

log (1 + a)− a log (2 (1 + a))

+
1
2

(1 + 2 a) log
(

1 + 2 a + x +
√

(1 + x)2 + 4ax

)

−1
2

log
(

1 + x + 2 a x +
√

(1 + x)2 + 4ax

)

and

d

dx
q−1 ln (1F1 (−aq; q;−qx)) ∼

− (1 + x) +
√

(1 + x)2 + 4ax

2x

Proof. The hypergeometric function y = 1F1 (−aq; q; t) satisfies the differential

equation:

ty′′ (t) + (q − t) y′ (t) + aqy (t) = 0 (16)

(e.g. equation (1.1.6) of Slater (1960)). By transforming t to t = −qx, and defining

w (x) = y (−qx), equation (16) can be written as

−q−1x
w′′ (x)
w (x)

− (1 + x)
w′ (x)
w (x)

+ aq = 0. (17)

By defining h (x) = q−1 ln (w (x)), one can write (17) in terms of h (x) as

[
a− x

[
h′ (x)

]2 − (1 + x)h′ (x)
]
q − xh′′ (x) = 0. (18)

The function h (x) solves equation (18) subject to the condition that it is analytic at

x = 0 and h (0) = 0. Thus we can replace the series h (x) =
∑∞

j=0 q−jPj (x), where

Pj (0) = 0 for all j = 0, 1, ..., in equation (18) and compare the coefficients of similar

powers of q. So equating the coefficient of q to zero gives

a− x
[
P ′

0 (x)
]2 − (1 + x) P ′

0 (x) = 0.

There are two solutions to the above differential equation, but only one satisfies P0 (0) =

0, corresponding to

P ′
0 (x) =

− (1 + x) +
√

(1 + x)2 + 4ax

2x
.
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Since h (x) is analytic, we have that h′ (x) ∼ P ′
0 (x), and this proves the lemma.

We can now prove Theorem 3. From (3) one obtains

h′ (λ; θ) = sin2 θ − cos2 θ
d

dx
q−1 ln {1F1 (−aq; q;−qx)}

∣∣∣∣
x=(1+a)λ cos2 θ

.

Using Lemma 1, it follows that

h′ (λ) ∼ sin2 θ − cos2 θ
− (1 + x) +

√
(1 + x)2 + 4ax

2x

∣∣∣∣∣∣
x=(1+a)λ cos2 θ

The statement of the Theorem follows easily.
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b = 10, q = 1 b = 50, q = 1
cos2 θ λ̃0 λN

0

.05 -0.053 -0.182

.10 0.000 0.000

.15 0.059 0.091

.20 0.125 0.169

.25 0.200 0.249

.30 0.286 0.339

.35 0.385 0.441

.40 0.500 0.559

.45 0.636 0.698

.50 0.800 0.864

.55 1.000 1.067

.60 1.250 1.319

.65 1.571 1.644

.70 2.000 2.075

.75 2.600 2.679

.80 3.500 3.583

.85 5.000 5.087

.90 8.000 8.091

.95 17.000 17.095

cos2 θ λ̃0 λN
0

.05 0.032 0.040

.10 0.089 0.099

.15 0.153 0.163

.20 0.225 0.236

.25 0.307 0.318

.30 0.400 0.412

.35 0.508 0.520

.40 0.633 0.646

.45 0.782 0.795

.50 0.960 0.973

.55 1.178 1.191

.60 1.450 1.464

.65 1.800 1.815

.70 2.267 2.282

.75 2.920 2.936

.80 3.900 3.917

.85 5.533 5.551

.90 8.800 8.818

.95 18.600 18.679

b = 20, q = 10 b = 50, q = 10
cos2 θ λ̃0 λN

0

.05 -0.474 -3.015

.10 -0.444 -1.472

.15 -0.412 -0.951

.20 -0.375 -0.683

.25 -0.333 -0.514

.30 -0.286 -0.391

.35 -0.231 -0.290

.40 -1.667 -0.197

.45 -0.091 -0.103

.50 0.000 0.000

.55 0.111 0.119

.60 0.250 0.265

.65 0.429 0.449

.70 0.667 0.691

.75 1.000 1.029

.80 1.500 1.533

.85 2.333 2.370

.90 4.000 4.041

.95 9.000 9.045

cos2 θ λ̃0 λN
0

.05 -0.158 -0.370

.10 -0.111 -0.159

.15 -0.059 -0.070

.20 0.000 0.000

.25 0.067 0.071

.30 0.143 0.149

.35 0.231 0.239

.40 0.333 0.343

.45 0.455 0.465

.50 0.600 0.611

.55 0.778 0.789

.60 0.100 1.013

.65 1.286 1.299

.70 1.667 1.680

.75 2.200 2.215

.80 3.000 3.016

.85 4.333 4.350

.90 7.000 7.018

.95 15.000 15.019

Table 1: Approximate and exact solutions of h′ (λ) = 0 for various values of b, q and
cos2 θ.

20



g (λ) 1
exp
n
−λ2

2

o
√

π/2

cos2 θ I (θ) IA (θ) IA (θ) /I (θ) I (θ) IA (θ) IA (θ) /I (θ)
0.01 0.058 0.058 0.998 0.046 0.046 1.000
0.02 0.064 0.064 0.995 0.051 0.051 1.000
0.03 0.071 0.071 0.993 0.056 0.056 0.999
0.04 0.079 0.079 0.991 0.063 0.063 0.998
0.05 0.089 0.088 0.990 0.070 0.070 0.998
0.06 0.100 0.099 0.989 0.079 0.079 0.998
0.07 0.112 0.111 0.989 0.089 0.089 0.999
0.08 0.127 0.126 0.989 0.101 0.101 1.000
0.09 0.145 0.144 0.990 0.114 0.115 1.000
0.10 0.166 0.164 0.992 0.130 0.131 1.000
0.11 0.190 0.189 0.993 0.149 0.150 1.010
0.12 0.219 0.218 0.994 0.172 0.174 1.010
0.13 0.253 0.252 0.996 0.198 0.201 1.010
0.14 0.295 0.294 0.997 0.230 0.234 1.020
0.15 0.344 0.343 0.999 0.268 0.273 1.020
0.16 0.403 0.403 1.000 0.313 0.320 1.020
0.17 0.475 0.475 1.000 0.368 0.377 1.030
0.18 0.562 0.563 1.000 0.434 0.446 1.030
0.19 0.668 0.669 1.000 0.513 0.529 1.030
0.20 0.797 0.799 1.000 0.610 0.631 1.030

Table 2: Approximate and exact value of the integral I (θ) for b = 19 and q = 2.

Standard Approx n=112 Approx n=50
avg-F 2.2310 2.2558 2.2553
exp-F∞ 3.7555 3.7491 3.7211
LR0 0.0366 0.0367 0.0367
LR∞ 36.7754 35.6337 34.8312

Table 3: Critical values for various test statistics based on 10000 replications. The
second column contains the critical values for the statistic calculated as an average over
all possible partitions. In the third and fourth columns the test statistic is approximated
by sampling over the possible change points with uniform weights with n=112 and n=50
respectively.
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