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Abstract

In this paper, we develop a two-country world di¤erential game model with a
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1 Introduction

Controlling the emission of environment-damaging pollution caused by increased economic

activity has received a considerable attention in the �eld of environmental economics.

Given that the pollution function is increasing in the output of the industry, we have the

usual trade-o¤ between the price e¤ect and the negative externality. If we restrict the

output the environment is cleaner but the price is higher.

International trade is playing an important role in expanding global economic activities

and there is an increasing amount of literature regarding trade and the environment in

trade theory1. However, there are not too many contributions regarding the e¤ects of

trade liberalization in a dynamic context. What creates negative externality is the stock

of pollution not just the current emission of pollution. Thus, we need a dynamic model

to study the environmental e¤ect of trade liberalization due to the fact that pollution is

accumulated over time. Fujiwara (2009) investigates the e¤ects of free trade on global

stock of pollution using a two country di¤erential game model. We develop a two-country

world di¤erential game model, where there is a polluting �rm in each country, to derive the

open-loop and feedback equilibria of the game between �rms in case of autarchy, unilateral

and bilateral trade when there is transportation cost and also a Pigouvian tax is introduced

to reduce damaging emissions.

Most of the existing contributions in the �eld of environmental economics examine the

existence of Pigouvian taxation aimed at inducing �rms to reduce damaging emissions

directly2 or indirectly3. Accordingly, the common approach to deal with this problem in

all of these studies is to derive the �rst best, where a social planner chooses a welfare

maximizing production plan, and introduce corrective taxes to induce pro�t-seeking �rms

to produce at socially optimum level. In our study, the game between social planners

is not technically solvable. As a result, it is not possible to outline the social optimum.

However, we �gure out the market equilibrium and determine which one of the three cases

of bilateral trade, unilateral trade or autarchy is the equilibrium of the game between

two �rms according to the transportation cost and Pigouvian tax quantity. Then, we

1See Copeland and Taylor (2003), Antweiler et al. (2001), inter alia.
2See Bergstrom et al. (1981), Karp and Livernois (1992, 1994), Benchekroun and Long (1998, 2002)

and Tsur and Zemel (2008).
3To this regard, see Downing and White (1986), Milliman and Prince (1989), Damania (1996), Chiou

and Hu (2001) and Tsur and Zemel (2002), Dragone et al. (2009).
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determine the extent of tax amount for various quantities of negative externality to which

social welfare coincides with market equilibrium.

The remainder of the paper is structured as follows. Section 2 constructs a basic model.

Section 3 brie�y outlines the static version of the game. In section 4, the di¤erential game

is illustrated and the open-loop and feedback equilibria under autarchy, unilateral and

bilateral trade are characterized. Pro�ts and social welfares are assessed in section 5.

Section 6 concludes the paper.

2 The Setup

There are two similar countries, indexed by i = 1; 2. In each country there is a �rm which

produces a single output. Firms supply a homogenous good and their productions, qi,

have two parts:

qi = qii + qij; i; j = 1; 2 and j 6= i;

where qii and qij denote the amounts of output produced by �rm i and consumes in

domestic market and is exported to the other country, respectively. It is obvious that the

second part becomes zero if there isn�t any export.

Exporting �rm must pay an iceberg transportation cost which depends on the amount

of export. In our setting, m 2 (0; 1] captures the e¤ect of transportation cost. If there is
no transportation cost, m is equal to one. Therefore, the inverse demand function in each

country is

pi = a� (qii +mqji); i; j = 1; 2 and j 6= i;

where qji is the amount of goods which is exported by the �rm j into country i.

Technology is the same for both �rms and production takes place at constant returns

to scale (CRS), with a constant marginal cost c. It is summarized by the cost function

Ci = cqi(t). Hence, �rm i�s instantaneous pro�ts are

�i (t) = pi (t) qii (t) + pj (t) (mqij (t))� cqi (t) :

The production of the �nal output creates a negative externality in the form of polluting

emissions��ow E(t) = Q(t), which increases the stock of pollution, Z. Pollution is accu-

mulated over time and is transboundary. The accumulation process of the world pollutant
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follows:
_Z (t) =

2P
i=1

qi (t)� kZ (t) ; k > 0; (1)

where k is the natural puri�cation rate of the pollutant.

The stock of pollution lowers the consumer surplus by the following rule:

CSi (t) =
(qii (t) +mqji (t))

2

2
� hZ (t)

2

2
; h > 0;

where h measures the e¤ect of negative externality on consumers. However, the instanta-

neous social welfare in each country is the aggregate amount of �rm�s pro�ts and consumer

surplus:

SWi (t) = �i (t) + CSi (t) . (2)

By knowing this setting, we are deriving �rms�pro�t equilibria in autarchy, unilateral and

bilateral trade. We will compare these pro�ts as well as social welfares to obtain the trade

strategy from the viewpoints of the both, the social planner and the �rms.

3 The Static Problem

As a preliminary step, in this section, we consider the static Cournot game in order to

examine the case where �rms maximize their pro�t functions without taking into account

the negative externality because of the lack of corrective tax. We consider the game in

�gure 1 in which �rms make their trade strategy decision, where �Ai , �
T
i (�

NT
i ) and �BTi

denote the optimal pro�t of �rm i in the case of autarchy, trade (not trade) in unilateral

and bilateral trade, respectively.

Figure 1: The game between two �rms when they decide to trade (T) or not (NT).

In autarchy case, there is no trade between the two countries and each �rm is monopolist

in its own country with the optimal quantity level of (a� c) =2. In the unilateral and
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bilateral trade where �rms play under Cournot competition, the equilibrium amount of

outputs is summarized in lemma 1 and 2.

Lemma 1 The equilibrium amounts of �rms� output in unilateral trade under (static)

Cournot competition are

qTii =
a� c
2
; qTij =

(a+ c)m� 2c
3m2

;

qNTjj =
(a� 2c)m+ c

3m
:

Proof. The maximization problem of trading and not trading �rms are

�Ti = max
qii;qij

(a� qii)qii + (a� qjj �mqij)(mqij)� c(qii + qij); (3)

�NTj = max
qjj
(a� qjj �mqij)qjj � cqjj; (4)

with the following necessary conditions (FOCs):

@�Ti
@qii

= a� 2qii � c = 0; (5)

@�Ti
@qij

= am�mqjj � 2m2qij � c = 0; (6)

@�NTi
@qjj

= a� 2qjj �mqij � c = 0: (7)

Consequently, the resulting levels of individual output are

qTii =
a� c
2
; qTij =

(a+ c)m� 2c
3m2

; qNTjj =
(a� 2c)m+ c

3m
:

Lemma 2 The equilibrium amounts of �rms� output in bilateral trade under (static)

Cournot competition are

qBTii =
(a� 2c)m+ c

3m
; qBTij =

(a+ c)m� 2c
3m2

:

Proof. The maximization problem of �rms in case of bilateral trade, which is the same

for both because of symmetry, would be

�BTi = max
qii;qij

(a� qii �mqji)qii + (a� qjj �mqij)(mqij)� c(qii + qij): (8)
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The �rst order conditions of this problem w.r.t. controls are

@�BTi
@qii

= a� 2qii �mqji � c = 0; (9)

@�BTi
@qij

= am�mqjj � 2m2qij � c = 0; (10)

which leads to this solution:

qBTii =
(a� 2c)m+ c

3m
; qBTij =

(a+ c)m� 2c
3m2

:

Comparing the corresponding pro�ts on autarchy, unilateral and bilateral trade, it is

clear that �Ti > �
A
i , �

BT
i > �NTi and �Ai > �

BT
i . Therefore:

Proposition 1 Under the static framework trade is dominant strategy for both �rms and

(�BT1 ; �BT2 ) is the Nash equilibrium of the game where �rms decide to trade or not. This

is a prisoner�s dilemma game.

Proof. This follows from equilibrium in autarchy and lemmas 1 and 2.

Now, we are interested in welfare comparison across the four cases which is summarized

in:

Corollary 1 Under the static framework bilateral trade is Pareto e¢ cient if

h <
k2m2(5am+ c(17m� 22))

4(m� 2)(c(4 +m(�4 + 7m))� am(2 + 5m)) ; (11)

which coincides the equilibrium of the �rms�game. Otherwise, social welfare has the most

amount in the case of autarchy.

Proof. By plugging qii, qij, qjj and qji into the stationary condition _Z = 0, the steady

state stock of pollution is obtained which in turn can be plugged into (2) in order to get

social welfare amounts in autarchy, unilateral and bilateral trade. Comparing the acquired

welfares, we obtain the inequality.

Corollary 2 The less transportation cost is, the more bilateral trade is socially preferable.
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Proof. The right hand side of the inequality (11) is increasing in m which means in order

for bilateral trade becomes socially e¢ cient, h can have a larger value when transportation

cost decreases. This concludes the proof.

However, trade liberalization would increase �rms�output which has two contradictory

e¤ects on consumer surplus. Output increase, on the one hand, would directly raise con-

sumer surplus, on the other hand, increases the stock of pollution which in turn reduces

consumer surplus. Now, if inequality (11) holds or in the other words h is small enough,

pollution increment does not reduce the consumer surplus that much and consumers will

bene�t from output enlargement. But, we know that most of the time h is not su¢ ciently

small.

4 The Dynamic Game

As it is said before, the production of �nal output creates a cross-boundary negative exter-

nality which is accumulated over time and follows the dynamic (1). Now, by introducing a

corrective (Pigouvian) tax, in quadratic form, the �rms are forced to internalize the nega-

tive externality of pollution in a dynamic framework. Therefore, the �rm i�s optimization

problem is formulated as:

max
qi
�i �

Z 1

0

e�rt
h
pi qii + pj (mqij)� c (qii + qij)�

s

2
Z2
i
dt; (12)

subject to (1) and Z(0) = Z0. Parameter r > 0 is a constant rate of discount common

to all �rms and parameter s is a policy instrument that policy maker by manipulating it

modi�es taxation. This taxation is not the same if �rms play open-loop or feedback.

In the remainder of this section, the problem is solved for the open-loop equilibrium

and feedback equilibrium as well.

4.1 Open-Loop Solution

Here we characterize the open-loop equilibria of the three cases, starting with the autarchy

which is the simplest one because there is only one supplier in each country.

Proposition 2 At the open-loop Nash equilibrium under autarky, the steady state levels

of the price and the individual output are

pOLAi = a� qOLAii ; qOLAii =
k(a� c)(k + r)
2(k(k + r) + s)

;
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where OLA denotes the open-loop equilibrium at autarchy. Such a steady state is saddle

point stable.

Proof. The Hamiltonian equation of �rm i is:

HA
i (t) = e��t

n
qii(t) (a� qii (t)� c)�

s

2
Z2(t) (13)

+ �i(t) [qii(t) + qjj(t)� kZ(t)]
o
;

where �i(t) = �i (t) e
�t and �i (t) is the co-state variable associated with Z(t). Consider

the �rst-order condition w.r.t. qii(t):

@HA
i (t)

@qii(t)
= a� 2qii (t)� c+ �i(t) = 0: (14)

This yields the optimal open-loop output for the �rm i as follows4:

qii (t) =

�
1
2
(a� c+ �i(t)) if a > c� �i(t);

0 otherwise.
(15)

The adjoint equation for the optimum is

@�i(t)

@t
= r�i(t)�

@HA
i (t)

@Z(t)
= (k + r)�i(t) + sZ (t) ; (16)

and the associated transversality condition is

lim
t!1

�i (t) :Z (t) = 0:

Di¤erentiating (15), using (16) and symmetry assumption, we obtain

dq (t)

dt
� _q (t) =

1

2
[(k + r)�(t) + sZ (t)] : (17)

From (14), we know

�(t) = �a+ 2q (t) + c:

By substituting this into (17), we have

_q (t) = �1
2
[(k + r) (a� 2q (t)� c)� sZ (t)] : (18)

Therefore, the dynamic system can be rewritten in matrix form as follows:�
_q
_Z

�
=

�
k + r s

2

2 �k

� �
q
Z

�
+

�
�1
2
(k + r) (a� c)

0

�
: (19)

4In the remainder, we consider the positive solution.
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Since the determinant of the above two-by-two matrix is negative, the equilibrium point

is a saddle, with

pOLAi = a� qOLAii ; qOLAii =
k(a� c)(k + r)
2(k(k + r) + s)

:

Proposition 3 At the open-loop Nash equilibrium under unilateral trade, the steady state

levels of the price and the individual outputs are

pOLTi = a� qOLTii ; pOLNTj = a� qOLNTjj �mqOLTij ;

qOLTii =
3km2(a� c)(k + r) + a(m� 2)(m� 1)s
6km2(k + r) + (4 +m(7m� 4))s ; (20)

qOLTij =
2k(c(m� 2) + am)(k + r) + 4a(m� 1)s

6km2(k + r) + (4 +m(7m� 4))s ;

qOLNTjj =
2km(am+ c� 2cm)(k + r)� a(m2 +m� 2)s

6km2(k + r) + (4 +m(�4 + 7m))s ;

where OLT and OLNT denote the open-loop equilibrium in unilateral trade for trading

and not trading �rms, respectively. Such a steady state is saddle point stable.

Proof. In unilateral trade, only one �rm exports. The Hamiltonian for the trading and

not trading �rms are

HT
i (t) = e��t

nh
pi(t)qii(t) + pj(t)mqij � cqi �

s

2
Z2(t)

i
(21)

+ �i(t) [qii(t) + qij(t) + qjj(t)� kZ(t)]
o
;

HNT
j (t) = e��t

nh
pj(t)qjj � cqj �

s

2
Z2(t)

i
(22)

+ �j(t) [qii(t) + qij(t) + qjj(t)� kZ(t)]
o
:

The �rst-order necessary conditions w.r.t. control variables, adjoint equations and associ-

ated transversality conditions for the optimum are

@HT
i (t)

@qii(t)
= a� 2qii (t)� c+ �i(t) = 0; (23)

@HT
i (t)

@qij(t)
= am� 2m2qij (t)�mqjj (t)� c+ �i(t) = 0; (24)

@HNT
i (t)

@qjj(t)
= a� 2qjj (t)�mqij (t)� c+ �j(t) = 0; (25)
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@�i(t)

@t
= r�i(t)�

@HT
i (t)

@Z(t)
= (k + r)�i(t) + sZ (t) ; (26)

@�j(t)

@t
= r�j(t)�

@HNT
j (t)

@Z(t)
= (k + r)�j(t) + sZ (t) ; (27)

lim
t!1

�i (t) :Z (t) = 0; lim
t!1

�j (t) :Z (t) = 0:

Di¤erentiating FOCs w.r.t. time and using adjoint equations we obtain the following

control dynamical system:8<:
_qii (t) = �1

2
[(k + r) (a� 2qii (t)� c)� sZ (t)] ;

_qij (t) = � 1
3m2 [(k + r) (m (a� 3mqij (t) + c)� 2c)� s (2�m)Z (t)] ;

_qjj (t) = � 1
3m
[(k + r) (am� 3mqjj (t)� c(2m� 1))� s(2m� 1)Z (t)] :

(28)

Solving (28) together with (1), yields the stable steady state equilibrium point in (20).

Proposition 4 At the open-loop Nash equilibrium under bilateral trade, the steady state

levels of the price and the individual outputs are

pOLBTi = a� qOLBTii �mqOLBTji ;

qOLBTii =
km(am+ c� 2cm)(k + r) + 2a(1�m)s

3km2(k + r) + 4(m(m� 1) + 1)s ; (29)

qOLBTij =
k(c(m� 2) + am)(k + r) + 2a(m� 1)s
3km2(k + r) + 4(m(m� 1) + 1)s :

where OLBT denotes the open-loop equilibrium at bilateral trade. Such a steady state is

saddle point stable.

Proof. As mentioned before, the two �rms and two countries are symmetric. Then, the

Hamiltonian function of each �rm in bilateral trade is

HBT
i (t) = e��t

nh
pi(t)qii(t) + pj(t)mqij � cqi �

s

2
Z2(t)

i
(30)

+ �i(t) [qii(t) + qij(t) + qjj(t)� qji(t)� kZ(t)]
o
:

Considering the �rst-order conditions, adjoint equations and associated transversality con-

ditions:
@HBT

i (t)

@qii(t)
= a� 2qii (t)�mqji (t)� c+ �i(t) = 0;

@HBT
i (t)

@qij(t)
= m (a� 2mqij (t)� qjj (t))� c+ �i(t) = 0;
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@�i(t)

@t
= r�i(t)�

@HBT
i (t)

@Z(t)
= (k + r)�i(t) + sZ (t) ;

lim
t!1

�i (t) :Z (t) = 0;

yields the dynamics of �rm i�s controls:�
_qii (t) = � 1

3m
[(k + r) (am� 3mqii (t)� c(2m� 1))� s(2m� 1)Z (t)] ;

_qij (t) = � 1
3m2 [(k + r) (m (a� 3mqij (t) + c)� 2c)� s (2�m)Z (t)] :

(31)

Solving (31) accompanied by the dynamics of �rm j�s control variables and (1), fully

characterizes the stable steady state equilibrium point in (29).

4.2 Feedback Solution

Here, we characterize a subgame perfect Cournot equilibrium in Markov strategies where

�rms employ pollution dependent decision rules when maximizing their discounted pro�t.

Therefore, changes in the stock of pollution stimulate responses, through Pigouvian tax,

by all players that are re�ected in their quantity choices.

Proposition 5 At the feedback Nash equilibrium under autarky, the steady state levels of

the price and the individual output are

pFAi = a� qFAii ; qFAii =
1

2

�
a� c+ eAZ + fA

�
;

where FA denotes the feedback equilibrium at autarchy and

eA =
1

3

�
2k + r �

p
(2k + r)2 + 6s

�
;

fA =
2(a� c)eA

2(k + r)� 3eA :

Proof. The Bellman equation of �rm i in autarchy is

rVi (Z (t)) = max
qii(t)

n
qii(t) [pi(t)� c]�

s

2
Z2(t) (32)

+
@Vi (Z (t))

@Z (t)
[qii(t) + qjj(t)� kZ(t)]

�
;

where Vi (Z (t)) is the value function of �rm i. Given the linear quadratic form of the

maximand, we assume the quadratic value function:

Vi (Z) =
ei
2
Z2 + fiZ + gi; (33)
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so that
@Vi (Z)

@Z
= eiZ + fi: (34)

where ei, fi and gi are unknown coe¢ cients and the indication of time is omitted to ease

the exposition. Taking the FOC w.r.t. qii and using (34), we obtain:

qFAii =
1

2

�
a� c+ eAZ + fA

�
; pFAi = a� qFAii ; (35)

where eA and fA can be calculated by using (35) and rewriting (32) as follows:

�1Z
2 + �2Z + �3 = 0; (36)

where

�1 =
1

4

�
e(3eA � 4k � 2r)� 2s

�
; (37)

�2 =
1

4

�
4eA(a� c) + 2fA(3eA � 2 (k + r))

�
; (38)

�3 =
1

4

�
(a� c)2 + fA(4 (a� c) + 3fA)� 4gAr

�
: (39)

Equation (36) is satis�ed if expressions (37)-(39) are simultaneously zero. This results to

the following solution:

eA =
1

3

�
2k + r �

p
(2k + r)2 + 6s

�
;

fA =
2(a� c)eA

2(k + r)� 3eA :

Proposition 6 At the feedback Nash equilibrium under unilateral trade, the steady state

levels of the prices and the individual outputs are

pFTi = a� qFTii ; pFNTj = a� qFNTjj �mqFTij ;

qFTii =
1

2

�
a� c+ eTZFT + fT

�
;

qFTij =
(2�m)(eTZFT + fT � c) + am

3m2
;

qFNTjj =
c+m(a� 2c) + (2m� 1)(eTZFT + fT )

3m
;
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where FT and FNT denote the feedback equilibrium in unilateral trade for trading and

not trading �rm and

eT =
9m2(2k + r)� 3

p
9m4(2k + r)2 + 2m2(16 +m(37m� 28))s
16 +m(37m� 28) ;

fT =
eT (c(16 +m(25m� 22))� am(11m+ 8))
eT (16 +m(37m� 28))� 18m2(k + r)

:

Proof. The Bellman equations of trading and not trading �rms in unilateral trade are5:

rVi (Z (t)) = max
qi(t)

nh
pi(t)qii(t) + pj(t)mqij � cqi �

s

2
Z2(t)

i
(40)

+
@Vi (Z (t))

@Z (t)
[qii(t) + qij(t) + qjj(t)� kZ(t)]

�
;

rVj (Z (t)) = max
qj(t)

nh
pj(t)qjj � cqj �

s

2
Z2(t)

i
(41)

+
@Vj (Z (t))

@Z (t)
[qii(t) + qij(t) + qjj(t)� kZ(t)]

�
;

with the same value function form that was introduced before. Taking the FOCs w.r.t.

controls and using (34), we obtain:

qFTii =
1

2

�
a� c+ eTZFT + fT

�
; (42)

qFTij =
1

2m2

�
am� c+ eTZFT + fT �mqFNTjj

�
; (43)

qFNTjj =
1

2

�
a� c+ eTZFT + fT �mqFTij

�
: (44)

By solving (43) and (44) simultaneously, the amounts of qFTij and qFNTjj is taken. Using

these and rewriting (40) or (41) as (36) and as the same procedure as the previous proof,

we can calculate eT and fT .

Proposition 7 At the feedback Nash equilibrium under bilateral trade, the steady state

levels of the price and the individual outputs are

pFBTi = a� qFBTii �mqFBTji ;

qFBTii =
c+m(a� 2c) + (fBT + eBT z)(2m� 1)

3m
;

5We omit the full calculations but they are available upon request.

12



qFBTij =
(2�m)(eBTZFBT + fBT � c) + am

3m2
;

ZFBT =
2(am(m+ 1) + 2(fBT � c)(m(m� 1) + 1))

3km2 � 4eBT (m(m� 1) + 1) ;

where FBT denotes the feedback equilibrium in bilateral trade and

eBT =
9m2(2k + r)�

p
81m4(2k + r)2 + 36m2(22� 28m+ 22m2)s

2(22� 28m+ 22m2)
;

fBT =
eBT (m2(5a� 16c) +m(5a+ 22c)� 16c)
9m2(k + r)� eBT (22� 28m+ 22m2)

:

Proof. When there is trade between two countries, the Bellman equation of �rm i is

rVi (Z (t)) = max
qi(t)

nh
pi(t)qii(t) + pj(t)mqij � cqi �

s

2
Z2(t)

i
(45)

+
@Vi (Z (t))

@Z (t)
[qii(t) + qij(t) + qjj(t)� qji(t)� kZ(t)]

�
:

Taking the �rst order necessary conditions and using the similar procedure with the pre-

vious proofs leads to �nd the Nash equilibrium of the game in bilateral trade6.

Remark 8 The parameter m must be belong to (m
¯
; 1] in which m

¯
is

-
2c

a+ c
in the static game,

-
2ck(k + r) + 2as

k(a+ c)(k + r) + 2as
in the open-loop equilibrium,

- the positive root of k (f � c) (2�m) + a (km+ 2e (1�m)) = 0 in the feedback equilibrium where
(e; f) is equal to

�
eT ; fT

�
and

�
eBT ; fBT

�
for unilateral and bilateral trade,respectively,

otherwise �rms do not have an incentive to trade due to high transportation cost. This

results from the condition qij > 0.

Corollary 3 In the dynamic equilibria, the maximum acceptable transportation cost de-

creases when s increases and in the limit when s goes to in�nity, it must be zero.

Proof. Di¤erentiating m
¯
, illustrated in remark 8, in the open-loop and the feedback equi-

libria w.r.t. s we found that @m¯
@s
> 0. Thus, increasing s leads to increasing the minimum

acceptable value of m or in the other word lowering the maximum rate of tranpostation

cost by which trade is doable.

6The full calculations are available upon request.
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Figure 2: (a) Pro�t comparison according to the level of transportation cost and tax rate
under the feedback information; (b) welfare comparison according to the level of negative
externality and tax rate under the open-loop information

5 Pro�t and Welfare Assessment

In this section, by using equilibrium values, we compare �rms�pro�ts in autarchy, unilateral

and bilateral trade to determine the equilibrium of the game between �rms where they

decide to trade or not, in the open-loop and in the feedback solutions. In addition, we will

look into the case which leads to the e¢ cient level of social welfare.

Because of having too many parameters, comparing the results is di¢ cult. Therefore,

we use a numerical analysis to assess the pro�ts and welfares in the three cases for the

open-loop and the feedback equilibria, respectively. In our setting, the parameters a; c; k

and r are given and in the remainder we assume that they have de�nite and plausible

values of 10; 0; 0:5 and 0:05, respectively.

In �gure 2a, the pro�ts of �rms in di¤erent cases, under open-loop equilibria, is com-

pared according to the amounts of transportation cost and Pigouvian tax. As it can be seen

in this �gure, the equilibrium of the game illustrated in �gure 1 depends on the amounts

of m and s. In the region below the curve, trade is dominant strategy for both �rms which

leads to the equilibrium
�
�OLBT1 ; �OLBT2

�
and due to the fact that in this region the pro�t

of �rms in autarchy is greater than bilateral trade, this game is a prisoner�s dilemma. In

the region above the curve, the condition of remark 8 is not satis�ed. Therefore, non of

them choose trade strategy and
�
�OLA1 ; �OLA2

�
is the equilibrium of the game.

Figure 2b depicts the regions that conditioned on the value of parameters h, s and

14



Figure 3: (a) Pro�t comparison according to the level of transportation cost and tax rate
under the feedback information; (b) welfare comparison according to the level of negative
externality and tax rate under the feedback information

m bilateral trade (autarchy) becomes the preferable case from the social welfare point of

view. In this �gure, for m = 1, the solid line divides the region of parameters h and s into

two areas where in the upper region bilateral trade is socially preferable and in the lower

area autarchy. The dashed line does the same but for m =m
¯
. For any other amount of m

we have an analogous boderline between the solid and the dash lines. As it can be seen

in the �gure, when m decreases the area where bilateral trade is socially e¢ cient shrinks.

However, depending on the amount of existing h, policy maker can determine tax rate in

such a way that either bilateral trade or autarchy become socially e¢ cient.

Figure 3a compares the pro�ts of �rms in di¤erent cases according to the amounts of

transportation cost and Pigouvian tax for feedback information. As it can be seen in this

�gure, in region I, wherem is close to one and s is not too large, trade is dominant strategy

for both �rms which leads to the equilibrium
�
�FBT1 ; �FBT2

�
. In this region the pro�t of

�rms in autarchy is greater than bilateral trade, therefore, this equilibrium is not pareto

e¢ cient. In region II, there is not any unique equilibrium and �rms play a chicken game.

If �rms play simultaneously, they make a systematic mistake to reach the equilibrium, and

if they play sequentially, the problem is who plays �rst and gains the enormous bene�ts of

the trade. In the last region, III, because of high transportation cost, trade is not possible

and autarchy is the equilibrium.

In �gure 3b, it is shown that which one of the three cases (autarchy, unilateral and
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bilateral trade) is socially e¢ cient according to the amounts of negative externality and

corrective tax rate. Similar to �gure 2b the solid line is for m = 1 and the dashed line

is for m =m
¯
. In the region above the curves, bilateral trade is e¢ cient from the social

planner point of view. In the other region autarchy is socially e¢ cient. Note that in some

situations unilateral trade can be the e¢ cient case socially. It means that if what one

country gains is more than what the other looses, over all, they gain. But this makes a

huge coordination problem. The problem is that which country accepts not to sell to the

other country. In this case, there should be a side payment. Hence, unilateral trade is

very hard to sustain.

However, if the social planner makes a deal about taxation, he makes a deal about s

as well and this deal is di¤erent if he knows �rms are playing open-loop equilibrium or

feedback equilibrium.

Consequently, if �rms play under the open-loop strategies, in order for the socially

e¢ cient equilibrium coincides with the market equilibrium, according to the amounts of h

and m,social planner must determine s in a way that it characterizes a point in the lower

(upper) region of �gure 2a and the uper (lower) region in �gure 2b. The most e¢ cient

point for the welfare (if it is applicable) takes place on the dividing curves (depended on

m) in �gure 2b.

If �rms play under the feedback rule, bilateral trade can be the most preferable case

if social planner can determine the tax rate, according to the amounts of h and m, in a

way that it characterizes a point in region I of �gure 3a and the upper region in �gure 3b.

Otherwise, he must choose s such that the equilibrium characterizes a point in region III

of �gure 3a and the lower region in �gure 3b where autarchy is the preferable case.

However, it is not clear to social planners whether �rms are playing open-loop or

feedback. Considering the �gure 2, if social planners assume that �rms are playing under

open-loop equilibrium and they determine s in order to induce bilateral trade, they may

face an unexpected outcome. Because if �rms are playing feedback instead of open-loop,

autarchy may be welfare improving provided that the point places in the region above

the curve in �gure 2b and below the curve in �gure 3b. Therefore, to avoid this problem

policy makers must determine s for any given exogenous pair of (h; s) to satisfy the stricter

constraint.
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6 Concluding Remarks

In this paper, we have theoretically addressed e¤ects of trade liberalization in a two country

world di¤erential polluting oligopoly game. We found out when �rms decide to trade or

not, if the transportation cost is not too large, under the open-loop information they

play a prisoner�s dilemma in which trade is the dominant strategy for both otherwise

they play autarchy. In order for trade to be dominant strategy in feedback information,

the Pigouvian tax and transportation cost must have relatively lower values. For larger

amounts of transportation cost and corrective tax, the equilibrium can be unilateral trade

or autarchy.

By comparing social welfares in autarchy, unilateral and bilateral trade, we showed

that, depending on the e¤ects of negative externality on consumer and the transportation

cost, policy maker can determine the amount of Pigouvian tax so that market equilibrium

coincides with socially e¢ cient equilibrium. This taxation is di¤erent if �rms are playing

open-loop equilibrium as compare to the feedback equilibrium.

References

[1] Antweiler, W., B.R. Copeland and M.S. Taylor (2001). Is free trade good for the

environment? American Economic Review, 91, 877-908.

[2] Benchekroun, H. and N.V. Long (1998). E¢ ciency inducing taxation for polluting

oligopolists. Journal of Public Economics, 70, 325-342.

[3] Benchekroun, H. and N.V. Long (2002). On the multiplicity of e¢ ciencyinducing tax

rules. Economics Letters, 76, 331-336.

[4] Bergstrom T.C, J.G. Cross and R.C. Porter (1981). E¢ ciency-Inducing Taxation for

a Monopolistically Supplied Depletable Resource, Journal of Public Economics, 15,

23-32.

[5] Chiou, J.-R. and J.-L. Hu (2001). Environmental research joint ventures under emis-

sion taxes. Environmental and Resource Economics, 21, 129-46.

[6] Copeland BR, Taylor MS (2003) Trade and the environment: theory and evidence.

Princeton University Press, Princeton.

17



[7] Damania, D. (1996). Pollution taxes and pollution abatement in an oligopoly su-

pergame. Journal of Environmental Economics and Management, 30, 323-36.

[8] Dockner EJ, N.V. Long (1993) International pollution control: cooperative versus

noncooperative strategies.J Environ Econ Manage 25:13�29.

[9] Dockner EJ, Jorgensen S, Long NV, Sorger G (2000). Di¤erential games in economics

and management science. Cambridge University Press, Cambridge.

[10] Downing, P.B. and L.J. White (1986). Innovation in pollution control. Journal of

Environmental Economics and Management, 8, 225-71.

[11] Dragone, D., L. Lambertini, G. Leitmann and A. Palestini (2010). A Stochastic Opti-

mal Control Model of Pollution Abatement. Nonlinear Dynamics and System Theory,

10(2), 117-124.

[12] Dragone, D., L. Lambertini, and A. Palestini (2008). The incentive to invest in

environmental-friendly technologies: dynamics makes a di¤erence. wp DSE 658-2009.

[13] Dragone, D., L. Lambertini, and A. Palestini (2009). Regulating Environmental Ex-

ternalities through Public Firms: A Di¤erential Game. Working Paper.

[14] Fujiwara, K., (2009). Why environmentalists resist trade liberalization, Environmental

and Resource Economics 44, 71�84.

[15] Karp, L. and J. Livernois (1992). On e¢ ciency-inducing taxation for a non-renewable

resource monopolist. Journal of Public Economics, 49, (2), 219-239.

[16] Karp, L. and J. Livernois (1994). Using automatic tax changes to control pollution

emissions. Journal of Environmental Economics and Management, 27, 38-48.

[17] Lambertini, L. and A. Mantovani (2008). Collusion Helps Abate Environmental Pol-

lution: A Dynamic Approach. in M. J. Chung, P. Misra and H. Shim (eds), Preprints

of the 17th IFAC World Congress (Seoul, Korea, July 6-11 2008), IFAC.

[18] Milliman, S.R. and R. Prince (1989). Firm incentives to promote technological change

in pollution control. Journal of Environmental Economics and Management, 17, 247-

65.

18



[19] Rubio SJ, Casino B (2002) A note on cooperative and noncooperative strategies in

international pollution control. Resour Energy Econ 24:261�271.

[20] Tsur, Y. and A. Zemel (2002). The regulation of environmental innovations. Journal

of Environmental Economics and Management, 44, 242-60.

[21] Tsur, Y. and A. Zemel (2008). Regulating environmental threats. Environmental and

Resource Economics, 39, 297-310.

19



 


