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Abstract

The R package HGLMMM has been developed to fit generalized linear models with
random effects using the h-likelihood approach. The response variable is allowed to fol-
low a binomial, Poisson, Gaussian or gamma distribution. The distribution of random
effects can be specified as Gaussian, gamma, inverse-gamma or beta. Complex structures
as multi-membership design or multilevel designs can be handled. Further, dispersion
parameters of random components and the residual dispersion (overdispersion) can be
modeled as a function of covariates. Overdispersion parameter can be fixed or estimated.
Fixed effects in the mean structure can be estimated using extended likelihood or a first
order Laplace approximation to the marginal likelihood. Dispersion parameters are esti-
mated using first order adjusted profile likelihood.

Keywords: h-likelihood, complex designs, hierarchical generalized linear models, overdisper-
sion.

1. Introduction

In Nelder and Wedderburn (1972) the class of generalized linear models (GLM) was devel-
oped. This class of models allows for the response to follow a distribution from the expo-
nential family, extending modeling capabilities beyond the Gaussian response. In Henderson,
Kempthorne, Searle, and Krosigk (1959) the linear mixed model was suggested, which en-
abled to model correlation in the data. Further, it was extended to the generalized linear
mixed model (see e.g., Molenberghs and Verbeke 2005), where the response from an expo-
nential family is combined with normal random effects. In Lee and Nelder (1996) hierarchical
generalized linear models were described, which allows random effects to be not normally
distributed. Further Lee and Nelder (1996) proposed the extended likelihood rather than
the marginal likelihood to estimate the parameters. Later Lee and Nelder (2001) focused on

http://www.jstatsoft.org/


2 HGLMMM: Hierarchical Generalized Linear Models in R

the joint modelling of the mean and dispersion structure. This estimation technique relies
on the iterative weighted least squares (IWLS) algorithm, where fixed effects and random
effects are estimated using the extended likelihood, and dispersion parameters are obtained
by maximizing the adjusted profile likelihood. A subsequent adjustment of the algorithm was
proposed in Noh and Lee (2007) replacing the extended likelihood by the first order adjusted
profile likelihood as a criterion to estimate fixed effects in the mean structure.

The objective of this paper is to present the R (R Development Core Team 2011) pack-
age HGLMMM available from the Comprehensive R Archive Network at http://CRAN.

R-project.org/package=HGLMMM. The package runs under R version 2.9.0 or higher. This
package fits the class of generalized linear models with random effects. In the remainder of
the paper we first outline the h-likelihood approach to the estimation and statistical inference.
Next, we present the capabilities of the HGLMMM package on real-life datasets, described
in Lee, Nelder, and Pawitan (2006).

2. H-likelihood estimation and inference framework

Standard maximum likelihood estimation for models with random effects is based on the
marginal likelihood as objective function. The parameters are estimated by a marginal likeli-
hood procedure (MML) and their standard errors are computed from the inverse of the neg-
ative hessian matrix of the marginal likelihood. In the marginal likelihood approach random
effects v are integrated out and only fixed effects in the mean structure β and dispersion pa-
rameters λ are retained in the maximized function. For a mixed effects model the conditional
likelihood of the j-th (j = 1, . . . , ni) repeated observation on the i-th subject (i = 1, . . . , N),
i.e., yij , is given by fβ,λ(yij |vi). The likelihood of the i-th random effect is denoted as fλ(vi).
Note that λ contains dispersion parameters of the random components vi as well as the pa-
rameters describing the residual dispersion (overdispersion) of the response yij . The marginal
likelihood maximized in the MML procedure is given by

LM (β,λ|y) =
N∏
i=1

∫ ni∏
j=1

fβ,λ(yij |vi)fλ(vi)dvi. (1)

Maximizing LM or equivalently the log-likelihood `M = log(LM ) yields consistent estimates of
the fixed effects parameters. However, the problem lies in computing the integrated likelihood.
This may be a time-consuming task especially for complex models since it needs to be done for
each subject and each iteration. Further, if the MLE is determined with a Newton-Raphson
procedure then integrals need to be computed also for the first and second derivatives. It is
also important to fine tune the likelihood calculations, see e.g., Lesaffre and Spiessens (2001).

In Lee and Nelder (1996) another approach to estimating the parameters was proposed. These
authors argued to use the joint likelihood LE for the maximization, which is directly available
from the definition of the model. The joint likelihood, called also extended likelihood or h-
likelihood, is then maximized jointly with respect to v and β given dispersion parameters λ.
At the maximum, standard errors are obtained in the classical way. In the notation of above,
the extended likelihood is given by:

LE(β,λ,v|y,v) =

N∏
i=1

ni∏
j=1

fβ,λ(yij |vi)fλ(vi). (2)
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The logarithm of (2) is called the extended log-likelihood by Lee et al. (2006) and they denoted
its logarithm as h = log [LE(β,λ,v|y,v)]. We could say that this extended likelihood reflects
the hierarchical character of the data.

In the h-likelihood approach the estimates of dispersion parameters are determined by maxi-
mizing the adjusted profile likelihood introduced by Cox and Reid (1987). However, for some
models the approach of Lee and Nelder (1996) is not appropriate, therefore Noh and Lee
(2007) proposed to replace the joint likelihood as the estimation criterion for β with another
adjusted profile likelihood. The outline of this procedure is given in the next section.

2.1. Computing marginal MLEs using the h-likelihood approach

In some special cases, i.e., when the random effects are on the canonical scale (see e.g., Lee
et al. 2006 pp. 112–114), joint maximization of the extended log-likelihood h with respect
to all parameters (β,λ,v1, . . . ,vN ) is equivalent to maximizing the marginal likelihood with
respect to β,λ and taking the empirical Bayes (EB) estimates for v1, . . . ,vN . But, most
often the two maximization procedures are not equivalent.

Noh and Lee (2007) suggest in the general case to work with a Laplace approximation to
the marginal likelihood (1). Namely, the integral of the function k(x,y) exp [−ng(x,y)] with
respect to x can be approximated as follows:

∫
k(x,y) exp [−ng(x,y)] dx =

∣∣∣∣∣n
∂2g(x,y)
∂x>∂x

2π

∣∣∣∣∣
− 1

2

x=x̂

exp [−ng(x,y)] k(x,y)|x=x̂, (3)

with x̂ the value of x that maximizes −g(x,y). This is called the Laplace approximation of
the above integral (at x̂). More information on the Laplace approximation can be found in
e.g., Severini (2000, Section 2.11).

Taking in expression (3) k(x,y) = 1; exp [ng(x,y)] = exp [−h(θ,v)] whereby θ = (β,λ); v

representing the stacked vector of N random effects and finally n∂
2g(x,y)
∂x>∂x

= −∂2h(θ,v)
∂v>∂v

, leads
to

LM (β,λ|y) =

∫
exp [h(β,λ,v)] dv ≈

∣∣∣∣∣−
∂2h(β,λ,v)
∂v>∂v

2π

∣∣∣∣∣
− 1

2

v=v̂

exp [h(β,λ,v)] |v=v̂, (4)

with v̂ maximizing the extended likelihood for a given (starting) value of β and λ, i.e.,
v̂(β,λ). Note that the approximation improves when the number of observations per subject,
ni increases, which can be inferred from Severini (2000). Taking the logarithm of the previous
expression leads to the adjusted profile (log)-likelihood

pv(h) = h(β,λ,v)|v=v̂ − 0.5 log

∣∣∣∣D(h,v)

2π

∣∣∣∣
v=v̂

, (5)

withD(h,v) = −∂2h(β,λ,v)
∂v>∂v

. The term ‘adjusted profile likelihood’ is chosen since h(β,λ,v)|v=v̂

is a profile (log)-likelihood of β and λ and the second term in (5) is a correction term to ap-
proximate the marginal log-likelihood.

The next step in the iterative procedure is to maximize the adjusted profile (log-)likelihood
(5) with respect to β. Note that maximizing the profile log-likelihood h(β,λ,v)|v=v̂ to find
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the MLE of β is not appropriate since this is equivalent to joint maximization of h over β
and v which is most often invalid as seen above.

After obtaining β̂λ from maximization of (5) for a given dispersion component λ, the estima-
tion algorithm proceeds with estimation of λ. Another adjusted profile likelihood is used as
an objective function to find λ̂.

Let the marginal distribution of the data y be fβ,λ(y) (marginalized over v), i.e., the LHS
of expression (4) or its approximation, now seen as a probability density function (pdf) of
the data. Conditional on the sufficient statistics for β, i.e., β̂λ, (see Cox and Hinkley 1974,
p. 21), the (marginalized) distribution of the data can be derived from:

fλ(y|β̂λ) =
fβ,λ(y)

fβ,λ(β̂λ)
, (6)

where fβ,λ(β̂λ) is the distribution of β̂λ. One then applies the p-formula as derived by
Barndorff-Nielsen (1980, 1983), see also Pawitan (2001), to obtain in general the distribution
of the ML estimator. Namely,

fβ,λ(β̂λ) =

∣∣∣∣− 1

2π

∂2 log fβ,λ(y)

∂β>∂β

∣∣∣∣
1
2

β=β̂λ

fβ,λ(y)

fβ̂λ,λ
(y)

, (7)

where fβ̂λ,λ
(y) is the marginal profile likelihood of λ, i.e., log[fβ̂λ,λ

(y)] = `M (βλ,λ|y)|β=β̂λ
.

After substitution of expression (7) into (6) one obtains:

log
[
fλ(y|β̂λ)

]
= `M (βλ,λ|y)|β=β̂λ

− 0.5 log

∣∣∣∣D(`M ,β)

2π

∣∣∣∣
β=β̂λ

, (8)

with D(`M ,β) = − ∂2`M
∂β>∂β

. In the next step, one replaces everywhere the marginal log like-

lihood `M by the adjusted profile log-likelihood pv(h) evaluated in β = β̂λ. This results in:

log
[
fλ(y|β̂λ)

]
= h(β,λ,v)|β=β̂λ,v=v̂−0.5 log

∣∣∣∣D(h,v)

2π

∣∣∣∣
β=β̂λ,v=v̂

−0.5 log

∣∣∣∣D [pv(h),β]

2π

∣∣∣∣
β=β̂λ

.

(9)
Finally, in Appendix 4 of Lee and Nelder (2001) it is shown that the sum of the last two terms
in the above expression is equal to

−0.5 log

∣∣∣∣D [h, (β,v)]

2π

∣∣∣∣
β=β̂λ,v=v̂

,

with D [h, (β,v)] equal to

(
− ∂2h
∂β>∂β

− ∂2h
∂β>∂v

− ∂2h
∂v>∂β

− ∂2h
∂v>∂β

)
with dimensions equal to the sum of the

dimensions of two adjustment terms in (9). As a result one obtains the following adjusted
profile likelihood:

pβ,v(h) = h(β,λ,v)|β=β̂,v=v̂ − 0.5 log

∣∣∣∣D [h, (β,v)]

2π

∣∣∣∣
β=β̂,v=v̂

. (10)
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The latter adjusted profile likelihood is maximized with respect to λ to obtain λ̂. Note
that this objective function is “focussed” solely on the dispersion parameters. This offers an
extension of restricted maximum likelihood (REML) estimation and provides inference for
the class of generalized linear mixed models, see Noh and Lee (2007). We show below that in
the case of linear mixed models this function is exactly the restricted maximum likelihood.

2.2. The linear mixed model case

We illustrate the above estimation framework for the linear mixed model case. While in
general the above calculations are approximate, in this case they are exact. Some of the
expressions are based on the results shown in Harville (1977). The classical linear mixed
effects model assumes:

fβ,λe(yi|vi) = N (Xiβ +Zivi; Σi),

fλv(vi) = N (0; Λi).
(11)

The design matrix Xi contains fixed effects for the i-th subject, while Zi is a design matrix for
the random effects for the i-th subject. Matrices Σi and Λi determine the residual variance
of yi and the variance of random effects vi respectively. Note that we have split up λ into λe
and λv, the dispersion parameters pertaining to the residual variability Σi and random effects
variability Λi, thereby showing the role of each of the dispersion components. Denote by V
the total (over all subjects) marginal variance-covariance matrix V = ZΛZT +Σ, where X is
the design matrix for fixed effects obtained by stacking X1 to XN , Z = diag(Z1, . . . ,ZN ) is
the design matrix of random effects, Λ = diag(Λ1, . . . ,ΛN ) is the variance covariance matrix
of the random effects and Σ = diag(Σ1, . . . ,ΣN ) is the residual variance covariance matrix.

In this case the adjusted profile likelihood pv(h) becomes:

pv(h) = `M = −1

2
log |2πV| − 1

2
(Y −Xβ)>V−1(Y −Xβ), (12)

which is the expression for the marginal likelihood of a linear mixed model. Further, the
adjusted profile likelihood pv,β(h) is equal to:

pβ,v(h) = log[fλ(y|β̂λ)] = `M |β=β̂λ
− 0.5 log

∣∣∣∣X>V−1X

2π

∣∣∣∣ , (13)

which is exactly equal to the classical REML likelihood (see e.g., Verbeke and Molenberghs
2000) for the linear mixed model.

Note that maximization of (5) with respect to β and λ is actually the maximization of the
marginal likelihood computed by a classical Laplace approximation. In the above h-likelihood
procedure, estimation of β given λ is the same as with a classical Laplace approximation, but
the estimation of λ is essentially different. The h-likelihood procedure gives an elegant set of
IWLS equations for the estimation of the dispersion parameters, which possibly depend on
covariates.

2.3. Application to the hierarchical generalized linear models

The above theory is applied to generalized linear models with random effects. In this class of
models the assumed distribution of the response yij (conditional on random effects) belongs
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to the exponential family:

fβ,λe(yij) = exp

[
yijθij − b(θij)

λe
+ c(yij , λe)

]
. (14)

This distribution is combined with the distribution of the random component, which distri-
bution belongs to the family of conjugate Bayesian distributions for an exponential family,
i.e.,

fλv(vi) = exp [a1(λv)vi − a2(λv)b(vi) + c2(λv)] , (15)

which can be expressed as the distribution of a pseudo-response ψi as follows:

fλv(vi) = exp

[
ψivi − b(vi)

λv
+ c2(ψi, λv)

]
. (16)

In this class of models the response is allowed to follow a Gaussian, binomial, Poisson or
gamma distribution. Their corresponding conjugate Bayesian distributions are Gaussian,
beta, gamma and inverse-gamma, respectively. Note that both λv and λe are allowed to
depend on covariates.

2.4. Implementation in the HGLMMM package

In this section we document the use of the function HGLMfit, together with accompanying
functions HGLMLRTest, HGLMLikeDeriv and BootstrapEnvelopeHGLM. First we will describe
the use of the fitting function HGLMfit and explain the parameters used in the invocation of
the function. The following structure of the routine is used:

HGLMfit(DistResp = "Normal", DistRand = NULL, Link = NULL, LapFix = FALSE,

ODEst = NULL, ODEstVal = 0, formulaMain, formulaOD, formulaRand,

DataMain, DataRand, Offset = NULL, BinomialDen = NULL, StartBeta = NULL,

StartVs = NULL, StartRGamma = NULL, INFO = TRUE, DEBUG = FALSE,

na.action, contrasts = NULL, CONV = 1e-04)

Below we describe the parameters of the function HGLMfit together with the default values
in parenthesis.

DistResp ("Normal"): The distribution of the response as defined in (14) is set by the option
DistResp. The user can set it to: Binomial, Normal, Poisson or Gamma. Note that the name
of the distribution must start with a capital letter.

DistRand (no default): The next option DistRand specifies the distribution of the random
components and should be set as a vector of distribution names from the set: "Beta", "Gamma",
"IGamma" (inverse-gamma) and "Normal". For each random component one entry in the vec-
tor must be specified. Therefore for a model with two random effects, whereby the first random
effect has a normal distribution and the second random effect has a gamma distribution, you
should specify the vector c("Normal", "Gamma").

Link (canonical link): The link option is available for a gamma distribution of the response.
The choice is either "Log" or "Inverse". For the random variables of a "Binomial", "Normal"
or "Poisson" distribution only the default links are currently available, that is "Logit",
"Identity" and "Log", respectively.
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LapFix (FALSE): Having defined the structure of the model, i.e., (1) the distribution of the
response, (2) random effects and (3) the link, one has to specify in the option LapFix whether
the joint likelihood (2) will be used to estimate fixed effects in the mean structure of the
response model, or the effects will be estimated by the adjusted profile likelihood (5), which
is an approximation to the marginal likelihood. Set LapFix = TRUE for the adjusted profile
likelihood and LapFix = FALSE for the joint likelihood.

ODEst (likelihood-based analysis), ODEstVal (0): Next the option ODEst determines whether
the dispersion parameter λe in (14) will be estimated or held fixed. This is set to NULL by
default which implies for the "Poisson" and "Binomial" distribution for the response that
it is fixed. For the "Normal" and "Gamma" response, the default option is that it is estimated
from the data. Specifying ODEst = TRUE implies that λe is estimated, while it is fixed for
ODEst = FALSE. Further, the parameters ODEstVal specify either the starting values when λe
is estimated, or the values used in the estimation when λe is set fixed.

formulaMain: The option formulaMain requires a two-sided formula to be specified to deter-
mine the structure of the linear predictor of the response, e.g., Outcome ~ Fixed.Efffect.1

+ Fixed.Effect.2 + (1 | Subject.1). This specification sets Outcome as the response.
Further, in the above example it is specified that there are two fixed effects and a random
intercept with subject index Subject.1. Correlated random components are currently not al-
lowed, therefore a structure (1 + time | Subject.1) is not valid, instead (1 | Subject.1)

+ (time | Subject.1) needs to be entered.

formulaOD, formulaRand: Similarly formulaOD specifies the covariates in the residual disper-
sion (overdispersion) structure by a one sided formula e.g., ~ 1 + time. Further, formulaRand
requires a list of formulas determining the dependence of the dispersion parameters of the
random components on covariates. For a model with two random effects the following code
list(one = ~ 1 + mean.time, two = ~ 1) means that the dispersion parameter of the first
random component depends on the average time, while the dispersion parameter of the second
random component is constant (intercept only model).

DataMain, DataRand: The option DataMain determines which data frame to use for the esti-
mation, i.e., where the data for the mean model and residual dispersion is referred to. Likewise
DataRand is a list of data frames. They correspond to design matrices for the dispersion pa-
rameters of random effects. Therefore for each random effect specified in formulaMain, a
corresponding dataframe needs to be included.

Offset (1): In Poisson regression, an offset variable t is specified in the form log(µ/t) = η,
where η is a linear predictor and µ a mean modeled in the Poisson regression. Therefore it is
not necessary to log-transform t before entering in the model.

BinomialDen (1): In binomial regression one has to use option BinomialDen to specify the
denominator for the binomial distribution. Suppose you toss a coin ten times, then you
have 10 independent trials, and the denominator should then be 10. It is allowed that each
observation has a different denominator.

StartBeta (NULL), StartVs (NULL), StartRGamma (NULL): The three following options allow to
specify the starting values for fixed effects in the mean structure StartBeta, random effects in
the mean structure StartVs (which is a vector of values for all random components together)
and dispersion parameters StartRGamma. Note that starting values for the residual dispersion
(overdispersion) are supplied in ODEstVal. Recall that the overdispersion parameter may be
fixed or estimated by setting the option ODEst. When starting values are not supplied, for
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the intercept of the mean structure an appropriate sample mean of the response is used, and
zeros are used for the other parameters.

CONV (1e-04): Setting option CONV determines the criterion for convergence, which is com-
puted as the absolute difference between values of all estimated parameters in the previous
iteration and in the current iteration.

The function HGLMfit returns an object of class HGLM. We refer to the help file of the package
for the documentation of all elements of this list. The function HGLMLikeDeriv takes an
object of the class HGLM and returns gradient values for fixed effects in the mean structure and
dispersion parameters. The function HGLMLRTest compares two HGLM objects with respect to
h-likelihood values, marginal likelihood pv(h) and REML likelihood pβ,v(h). Likelihood ratio
tests are produced. Finally, the function BootstrapEnvelopeHGLM creates a qq-plot of the
standardized deviance residuals for the response together with bootstrap envelopes under the
assumption that the given model is correct. If the qq-plot falls within the envelopes we can
claim that the assumed distribution of the response is reasonable.

There are many packages/routines/programs for analysis of the hierarchical models. The
algorithm based on the h-likelihood approach offers a wider choice for the random effects
distributions. Further, dispersion components of random effects as well as an overdispersion
parameter can be modeled as a function of covariates. This is combined with relatively modest
computational requirements.

3. Analysis of examples

In this section we will present the analysis of the three data sets, also analyzed in Lee et al.
(2006), using the package HGLMMM.

3.1. Salamander data

In McCullagh and Nelder (1989) a dataset on salamander mating was presented. The de-
pendent variable represents the success of salamanders mating. There were 20 males and
20 females in each of the 3 experiments coming from the two populations called whiteside
(denoted by W) and roughbutt (denoted as R). Salamanders were paired for mating six times
with individuals of their own kind and from the other population. In total 360 observations
were generated. Denote as µijk the probability of successful mating. We will consider a
model with crossed-random effects (also known as a multi-membership model) to analyze this
dataset. The mean structure has the following expression:

log

(
µijk

1− µijk

)
= Intercept + TypeF + TypeM + TypeF ∗ TypeM + vi + vj , (17)

where TypeF is the type of female (R or W), TypeM is the type of male (R or W), while vi
are the random effects corresponding to males and vj are the random effects corresponding to
females. The following analyses were also performed in Lee et al. (2006, pp. 194–195). The
program below is used to fit this model. The design matrices for the dispersion components
of male and female random effects contain only an intercept and are created by the command
below:

R> RSal <- data.frame(int = rep(1, 60))
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The following program is invoked to perform the analysis:

R> modBin <- HGLMfit(DistResp = "Binomial", DistRand = c("Normal", "Normal"),

+ Link = "Logit", LapFix = TRUE, ODEst = FALSE, ODEstVal = 0,

+ formulaMain = Mate ~ TypeF + TypeM + TypeF * TypeM + (1 | Female) +

+ (1 | Male), formulaOD = ~ 1, formulaRand = list(one = ~ 1, two = ~ 1),

+ DataMain = salamander, DataRand = list(RSal, RSal),

+ BinomialDen = rep(1, 360), INFO = TRUE, DEBUG = FALSE)

A brief description of the model can be displayed by modBin, that uses the print method for
objects of class HGLM. Printing of the object modBin gives the following output:

===== HGLM Model Information =====

Response Distribution: Binomial

Random Effect 1 : Normal / Female

Random Effect 2 : Normal / Male

Link: Logit

Overdispersion Structure is Fixed

Estimation of fixed effects: Laplace Approximation

Dataset used: salamander

Model Equation:

Mate ~ TypeF + TypeM + TypeF * TypeM + (1 | Female) + (1 | Male)

Overdispersion Equation:

~1

Dispersion Equation(s):

Component 1 :~1

Component 2 :~1

The output gives information about the response distribution, the number of random effects,
their distribution and the subject index. Further, the link function is reported. Next, infor-
mation is contained whether overdispersion (residual dispersion) is fixed or estimated. The
method of estimating the fixed effects in the regression equation is reported, as well as the
model equation, the overdispersion equation and the dispersion equations.

The detailed results of the fit can be obtained by the command:

R> summary(modBin, V = TRUE)

If option V = TRUE is omitted, the results for the random effects are not printed (as in our
example). Output for our object modBin is as follows:

===== Fixed Coefficients - Mean Structure =====

Estimate Std. Error Z value Pr(>|Z|)

(Intercept) 1.0433 0.4036 2.585 0.00974 **

TypeFW -3.0055 0.5260 -5.714 1.10e-08 ***
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TypeMW -0.7290 0.4741 -1.538 0.12413

TypeFW:TypeMW 3.7137 0.5758 6.449 1.12e-10 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The above output gives summary of fixed effects in the mean structure.

===== Overdispersion Parameters Fixed =====

Fixed Value

(Intercept) 0

The overdispersion parameter is held fixed at 1, which is exp(0). Note that the parameters
reported for overdispersion and dispersion pertain to the logarithm of the parameters. The
output shown below reports values for the parameters in the dispersion structure of random
effects. To obtain the value of λv one again needs to exponentiate the reported estimate.

===== Dispersion Parameters Estimated =====

Dispersion Component: Female

Estimate Std. Error Z value Pr(>|Z|)

(Intercept) 0.3183 0.4459 0.714 0.475

Dispersion Component: Male

Estimate Std. Error Z value Pr(>|Z|)

(Intercept) 0.1863 0.4602 0.405 0.686

Finally the output shown below reports on the values of the extended likelihood (h-likelihood),
pv(h) which is denoted as marginal likelihood, pβ,v(h) REML likelihood, and the component
fβ,λ(yij |vi) C-likelihood.

===== Likelihood Functions Value =====

H-likelihood : -287.8858

Marginal likelihood: -209.3600

REML likelihood : -209.5131

C-likelihood : -136.2331

The h-likelihood should be used to select the random effects, the marginal likelihood is the
choice for the mean structure simplification, while REML likelihood can be used for inference
on the variance components. We obtain similar estimates as in Lee et al. (2006).

3.2. Cake data

The chocolate cakes preparation experiment was conducted at Iowa State College. Three
recipes for preparing the batter were compared. Cakes were prepared at 6 different baking
temperatures, which ranged from 175 up to 225 degrees Celsius. For each recipe 6 cakes were
prepared baked at different temperatures, therefore 18 cakes were baked all together and they
are referred to as replication. There were 15 replications, therefore in total 270 cakes were
baked. Further, in each replication there are 3 different recipes. To cope with such a design
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we include two random effects, vi representing the replication, and vij for the j-th recipe
within the replication. Finally eijk stands for the error term associated with each cake. The
linear predictor of the model is defined as follows:

ηijk = intercept + recipej + tempk + recipej · tempk + vi + vij , (18)

whereby i = 1, . . . , 15 refers to the replicate, j = 1, 2, 3 is the recipe and k =, 1 . . . , 6 to the
temperature. The analyzes presented can also be found in Lee et al. (2006, pp. 163–166). We
will consider two models. In the first model we consider the breaking angle as a normally
distributed response, while in the second model we assume that it has a gamma distribution.
Further, in both models we assume a normal distribution for both random effects vi and vij .
The following syntax is used for a gamma response model:

R> cake$repbatch <- 100 * cake$Replicate + cake$Batch

R> R1Cake <- data.frame(int = rep(1, 15))

R> R2Cake <- data.frame(int = rep(1, 45))

R> modCake2 <- HGLMfit(DistResp = "Gamma", DistRand = c("Normal", "Normal"),

+ Link = "Log", LapFix = FALSE, ODEst = TRUE, ODEstVal = 0,

+ formulaMain = Angle ~ as.factor(Recipe) + as.factor(Temperature) +

+ as.factor(Recipe) * as.factor(Temperature) + (1 | Replicate) +

+ (1 | repbatch), formulaOD = ~ 1, formulaRand = list(one = ~ 1,

+ two = ~ 1), DataMain = cake, DataRand = list(R1Cake, R2Cake),

+ Offset = NULL, INFO = TRUE, DEBUG = FALSE)

The estimated gamma model yields the following (marginal) likelihood value at maximum:

===== Likelihood Functions Value =====

H-likelihood : -676.3907

Marginal likelihood: -808.0586

REML likelihood : -848.9244

C-likelihood : -754.2644

The normal model yields a (marginal) likelihood value of −819.54. This value is lower than
for a gamma model, and thus preferable according to the AIC criterion. Following Lee and
Nelder (1998) we create the model checking plots for both models using the following code.
First some graphics manipulation parameters are set to control the layout of the graphs:

R> op <- par(mfrow = c(2, 2), oma = c(1, 1, 2, 1), mar = c(3, 3, 4, 1) + 1.2)

Next we copy the standardized deviance residuals as suggested by Lee et al. (2006, p. 52) from
the model object modCake2, and compute the linear predictor of the model, i.e., η together
with mean and transformed mean as indicated in Nelder (1990). This is done as follows:

R> res <- modCake2$Details$StdDevianceResidualY

R> xmat <- model.matrix(~ as.factor(Recipe) + as.factor(Temperature) +

+ as.factor(Recipe) * as.factor(Temperature), data = cake)

R> eta <- xmat %*% modCake2$Results$Beta

R> mu <- exp(eta)

R> mu <- log(mu)
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Figure 1: Cake data: Diagnostic plots for the gamma model.

After a few steps, standardized deviance residuals and absolute standardized deviance resid-
uals can be plotted against scaled fitted values, together with a loess curve. In addition a
qq-plot of these residuals and histogram are created.

The commands below produce scaled fitted values plot against residuals:

R> plot(mu, res, pch = 18, col = "black" xlab = "Scaled Fitted Values",

+ ylab = "Deviance Residuals")

R> los <- loess.smooth(mu, res, span = 1/2, degree = 1,

+ family = c("symmetric", "gaussian"), evaluation = 50)

R> lines(los$x, los$y, col = "black", lwd = 2)

Next, we create a plot of scaled fitted values against absolute residuals:

R> plot(mu, abs(res), pch = 18, col = "black", xlab = "Scaled Fitted Values",

+ ylab = "Absolute Deviance Residuals")

R> los <- loess.smooth(mu, abs(res), span = 1/2, degree = 1,

+ family = c("symmetric", "gaussian"), evaluation = 50)

R> lines(los$x,los$y, col = "black", lwd = 2)
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Figure 2: Cake data: Diagnostic plots for the final gamma model.

The qq-plot and histogram of residuals:

R> qqnorm(res, pch = 18)

R> abline(h = 0, v = 0)

R> abline(a = 0, b = 1, lty = 3)

R> breaks <- seq(-4, 4, by = 0.8)

R> hist(res, breaks = breaks, xlab = "Deviance Residuals",

+ main = "Histogram")

Additional commands provide a title:

R> par(op)

R> mtext("Diagnostics for Cake Model Gamma",

+ side = 3, line = 1.5, font = 2, cex = 2, col = "black")

R> par(op)

R> dev.off()

The above code produces the diagnostic plots for the gamma model presented in Figure 1.
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Further we fitted a gamma model without interaction recipej ∗ tempk and compared it with
the original model using the likelihood ratio test:

R> HGLMLRTest(modCake3, modCake2)

The following output is obtained:

H-likelihood of model 2 is higher

Marginal likelihood comparison:

LR test p-value: 0.5034955

LR test statistics: 9.304224

LR difference df: 10

REML likelihood comparison:

LR test p-value: NA

LR test statistics: 29.88638

LR difference df: 0

The chi-squared test statistics with 10 degrees of freedom indicate that there is not enough
evidence for the inclusion of the interaction term into the model (p value: 0.5). Therefore
the simplified model is our choice. According to the diagnostics plot on Figure 2 the model
seems to be fitting well. Lee et al. (2006) analyzed this data using linear mixed model for the
original, as well as the transformed response. They also indicated that the gamma model is
preferable by the AIC criterion.

3.3. Rat data

Thirty rats were treated with one of three chemotherapy drugs. White blood cell counts (W)
and red blood cell counts (R) were taken at each of four different time points. We perform the
same analysis as in Lee et al. (2006, pp. 224–229). We will focus here on quasi-Poisson model
with normal random effects. First we create the design matrix for the dispersion parameter
of the random component:

R> Rrat <- data.frame(WBC = tapply(rat$WhiteBloodCells, rat$Subject, mean),

+ RBC = tapply(rat$RedBloodCells, rat$Subject, mean))

The model can be fitted by:

R> modRat2 <- HGLMfit(DistResp = "Poisson", DistRand = c("Normal"),

+ Link = "Log", LapFix = FALSE, ODEst = TRUE, ODEstVal = 0,

+ formulaMain = Y ~ WhiteBloodCells + RedBloodCells + as.factor(Drug) +

+ (1 | Subject), formulaOD = ~ 1, formulaRand = list(

+ one = ~ WBC + I(WBC ^ 2)), DataMain = rat, DataRand = list(Rrat),

+ INFO = TRUE, DEBUG = FALSE)

The crucial option here is ODEst = TRUE, which requests a quasi-Poisson to be fitted instead
of a likelihood-based Poisson model. Note that a summary of the likelihood values is not
valid now, as we are not using a likelihood-based technique but extended quasi-likelihood is
invoked. By a similar manipulation as in Section 3.2, we ask for the diagnostic plots of the
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Figure 3: Rat data: Diagnostic plots for the quasi-Poisson model (residual component).

model. Figure 3 presents diagnostic plots for the quasi-Poisson model for the residual error
term (y|v), while Figure 4 gives diagnostics for the choice of the model for the dispersion of
the random term (v). The corresponding diagnostic plots were also presented by Lee et al.
(2006).

Figure 5 presents the qq-plot for the standardized deviance residuals for the Poisson model
(likelihood-based) of the same structure as the above quasi-Poisson model, together with 95%
bootstrap envelopes. Clearly the Poisson model does not fit well. The code to generate the
plot is the following:

R> modRat1 <- HGLMfit(DistResp = "Poisson", DistRand = c("Normal"),

+ Link = "Log", LapFix = FALSE, ODEst = FALSE, ODEstVal = 0,

+ formulaMain = Y ~ WhiteBloodCells + RedBloodCells + as.factor(Drug) +

+ (1 | Subject), formulaOD = ~ 1, formulaRand = ~ list(one = ~ 1),

+ DataMain = rat, DataRand = list(Rrat), INFO = TRUE, DEBUG = FALSE)

R> BootstrapEnvelopeHGLM(modRat1, 19, 9999)
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Figure 4: Rat data: Diagnostic plots for the quasi-Poisson model (dispersion of random
component).
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4. Alternative software for hierarchical data

The methods described in this paper are applied to model hierarchy in the outcomes (result-
ing in unobserved heterogeneity). There are numerous statistical programs and packages to
address this type of modeling. Here we would like to mention a few. Note that that is not
our intention to be exhaustive, but rather to focus on most popular programs and which we
are acquainted with.

First of all, to our knowledge prior to this R package the h-likelihood algorithms were im-
plemented only in GenStat (Payne, Murray, Harding, Baird, and Soutar 2009) software. The
capabilities of HGLMMM and GenStat h-likelihood methods are similar. Extra flexibility is
provided by HGLMMM by the ability to specify several random components, allowing for
a different distribution of each component. This is not available in the GenStat program.
On the other hand GenStat offers a second order Laplace approximation to estimate variance
components, which is not implemented in HGLMMM.

To analyze the salamander example the software needs to allow for a crossed random effects
design. Gaussian quadrature methods are not applicable in this case as the dimension of
integration is often too large. The R package lme4 (Bates, Mächler, and Bolker 2011) with the
function lmer allows for the analysis of this example with an ordinary Laplace approximation.
The advantage of using HGLMMM is the ability to include covariates in the dispersion part
of the model. This is not allowed in lmer. Packages lme4 and HGLMMM differ in the
way the dispersion parameters are estimated. The HGLMMM package uses the objective
function which is equivalent to the REML approach in linear mixed models. The package
lme4 is however faster and more efficient. Note that lme4 is a quite popular R package for the
analysis of longitudinal data. The salamander data can also be analyzed by the PQL method
of Breslow and Clayton (1993) as implemented e.g., in SAS (SAS Institute Inc. 2008) PROC

GLIMMIX, which allows the dispersion parameters to depend on categorical covariates.

In the cake example we analyzed the breaking angle of cakes assuming a normal distribution.
This analysis can be reproduced in the R package nlme (Pinheiro, Bates, DebRoy, Sarkar,
and The R Development Core Team 2011) or lme4 using a random effects model or a linear
model with correlated errors. Also the SAS procedures MIXED, NLMIXED or GLIMMIX can be
used. When the response follows a gamma distribution SAS procedures GLIMMIX and NLMIXED

can be used, but both of them assume the random effects follow a normal distribution. On
the other hand, in HGLMMM we easily combine non-normal responses with a non-normal
random effects distribution. Such a combination can be done in SAS PROC NLMIXED only by
using the trick of Liu and Yu (2008) and requires some additional programming. Finally,
note that SAS PROC NLMIXED is a likelihood-based procedure, while HGLMMM allows the
utilization of the extended quasi likelihood, with a overdispersion parameter varying with
covariates.

In the rat example an extended quasi likelihood analysis is presented on the number of cancer
cell colonies, with the variance of the random effect distribution depending on covariates.
Now it is difficult to find standard software which could repeat such an analysis. SAS PROC

GLIMMIX comes closest, allowing for overdispersion in Poisson distribution and the variance
of random effect to depend on a categorical covariate.

In summary, the package HGLMMM blends the distribution of the response from an expo-
nential family with a random effects distribution from the conjugate Bayesian distributions.
Further, difficult designs can be handled such as multi-membership designs or more than
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2-levels in the hierarchical models. On top of that one can put covariates in mean and
(over)dispersion structure. All of these features are not available in one package/software to
our knowledge. The limitation of HGLMMM is the necessity to assume independent random
components, this assumption can be relaxed in R packages lme4, nlme and SAS PROC MIXED,
NLMIXED, GLIMMIX.

5. Future improvements

In future work we would like to adapt the codes to use Matrix (Bates and Mächler 2011)
package to save memory and to avoid problems with large datasets. Different links for the
binomial response such as "Probit" and "CLogLog" need to be implemented as well. In
addition, future work will focus on the introduction of the correlation between random effects.
In Molas and Lesaffre (2010) the routines were extended to handle hurdle models for count
data.
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