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Abstract

We introduce a new MATLAB software package that implements several recently pro-
posed likelihood-based methods for sufficient dimension reduction. Current capabilities
include estimation of reduced subspaces with a fixed dimension d, as well as estimation
of d by use of likelihood-ratio testing, permutation testing and information criteria. The
methods are suitable for preprocessing data for both regression and classification. Imple-
mentations of related estimators are also available. Although the software is more oriented
to command-line operation, a graphical user interface is also provided for prototype com-
putations.
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1. Introduction

Many statistical problems deal with the study of the conditional distribution of a response Y
given a vector of predictors X ∈ Rp or with the relationship among a set of variables X in
different populations Y = 1, . . . . , h. When p is large, almost all of the methods used to study
these relationships include some type of dimension reduction for X. Principal components is
perhaps the dominant method of dimension reduction across the applied sciences, although
there are other established and recent statistical methods that can be used in these regression
settings, including partial least squares (Wold 1996; Helland 1990), projection pursuit (Huber
1985), and sparse methods based on the lasso (Tibshirani 1996). A new paradigm – called
sufficient dimension reduction (SDR) – has developed over the past two decades for studying
intrinsically low-dimensional regressions, often without requiring a pre-specified model. The
following definition provides a conceptual foundation for SDR and for the models and methods
for which we developed software tools.

Definition: (Cook 2007) A reduction R : Rp → Rq, q ≤ p, is sufficient for Y |X if it satisfies
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one of the following three statements:

(i) Inverse reduction, X|(Y,R(X)) ∼ X|R(X)

(ii) Forward reduction, Y |X ∼ Y |R(X)

(iii) Joint reduction, X Y |R(X)

where A|B refers to a random quantity A given a second random quantity B, indicates
independence and ∼ means identically distributed. The choice of a reductive paradigm de-
pends on the stochastic nature of X and Y . If the values of X are fixed by design, then
forward regression (ii) seems the natural choice. In discriminant analysis X|Y is a random
vector of features observed in one of a number of populations indexed by Y . In this case
inverse regression (i) is perhaps the only reasonable reductive route. The three statements in
the definition are equivalent when Y and X have a joint distribution (iii). In this last case
we are free to estimate a reduction inversely or jointly and then pass the estimated reduction
to the forward regression without additional structure.

Among the methods that fall under the SDR paradigm we can include sliced inverse regression
(SIR, Li 1991), sliced average variance estimation (SAVE, Cook and Weisberg 1991), para-
metric inverse regression (PIR, Bura and Cook 2001), minimum average variance estimation
(MAVE, Xia, Tong, Li, and Zhu 2002), contour regression (Li, Zha, and Chiaromonte 2005),
inverse regression estimation (Cook and Ni 2005), Fourier methods (Zhu and Zheng 2006),
and a variety of methods based on marginal moments like principal Hessian directions (Li
1992), iterative Hessian transformations (Cook and Li 2002), and directional regression (DR,
Li and Wang 2007).

Nearly all SDR methods restrict attention to the class of linear reductions, which can be
represented conveniently in terms of the projection PSX of X onto a subspace S ⊆ Rp.
If Y X|PSX then S is called a dimension-reduction subspace. Under mild conditions the
intersection of any two dimension reduction subspaces is again a dimension-reduction subspace
and that being so the central subspace SY |X, defined as the intersection of all dimension-
reduction subspaces, is taken as the inferential target (Cook 1994, 1998). A minimal sufficient
linear reduction is then of the form R(X) = α>X, where α is any basis for SY |X. Informally,
SDR methods pursue the estimation of the fewest linear combinations of the predictors that
contain all the regression information on the response. SIR uses a sample version of the first
conditional moment E(X|Y ) to construct such an estimator, while SAVE uses sample first
and second E(XX>|Y ) conditional moments. Although SIR and SAVE have found wide-
spread use in applications, both have well known limitations. In particular, the subspace Ssir

estimated by SIR is typically a proper subset of SY |X when the response surface is symmetric
about the origin. SAVE was developed in response to this limitation and it provides consistent
estimation of SY |X under regularity conditions (Li and Wang 2007; Shao, Cook, and Weisberg
2007), but its ability to detect linear trends is generally inferior to SIR’s. For these reasons,
SIR and SAVE have been used as complementary methods, with satisfactory results often
being obtained by informally combining their estimated directions (see, for example, Bura
and Pfeiffer 2003; Cook 2003; Ye and Weiss 2003; Li and Li 2004; Zhu, Ohtaki, and Li 2005;
Pardoe, Yin, and Cook 2007). Directional regression is a consistent estimator of SY |X under
the same conditions as SAVE.

In a series of recent articles, Cook (2007) and Cook and Forzani (2008, 2009a,b) took a
substantial step forward in the development of dimension reduction methods based on the
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first two conditional moments. The idea behind this new methodology is to estimate SY |X
via maximum likelihood. These likelihood-based estimators of SY |X are consistent under the
same conditions as SIR, DR and SAVE. Unlike those methods, however, a likelihood-based
objective function is employed to acquire the reduced dimensions, giving these methods

√
n

consistency and asymptotic efficiency at the assumed model, which is not a claimed attribute
for any previous method. The dimension d of SY |X can be estimated using likelihood ratio
testing (LRT) or an information criterion like Akaike’s information criterion (AIC) or Bayes
information criterion (BIC), and conditional independence hypotheses involving the predictors
can be tested straightforwardly. Furthermore, it was demonstrated both theoretically and
with simulations that these methods have good robustness properties, even under substantial
deviations of the error distribution from its nominal specification.

The goal of this article is to introduce software tools for these recently proposed likelihood-
based SDR methods. We have called the package LDR (likelihood-based dimension reduction)
and it runs under MATLAB (The MathWorks, Inc. 2009), which allows use of computational
tools developed outside of the statistics community. In particular, likelihood maximization
under some of the models discussed below requires optimization on a Grassmann manifold
G(d,p), which is the set of all d dimensional subspaces of Rp (Edelman, Arias, and Smith 1999).
Optimization on Grassmann manifolds is fairly common in some areas such as computer
science and signal processing, but is relatively rare in statistics. The software is oriented
to command-line operation and it is intended to provide an easy-to-use interface similar to
Weisberg’s dr package for R (Weisberg 2002, 2009). Fixed-dimension as well as dimension
selection tasks are supported, both for continuous and for categorical responses. Functions
to compute other estimators such as SIR, SAVE and DR are also provided.

The paper is organized as follows: In Section 2 we briefly review some theory concerning
likelihood-based SDR. In Section 3, we describe the main features of the software and then in
Section 4 we give examples of its use. Finally, we briefly describe how to use the graphical user
interface in Section 4.5. The package and the complete software documentation are available
along with this paper and from http://liliana.forzani.googlepages.com/ldr-package.

2. Likelihood-based SDR

The likelihood-based approach to SDR uses model-based inverse regression of X on Y to gain
reductive information for the forward regression of Y on X (see the previous Definition). We
assume that the data consist of n independent observations on (X, Y ), with X ∈ Rp, Y ∈ R,
n > p, and that X|(Y = y) ∼ N(µy,∆y). Then we can write

Xy := X|(Y = y) = µy + ε, (1)

where ε ∼ N(0,∆y), ∆y > 0. The goal is to find the maximum likelihood estimator (MLE)
for the central subspace, SY |X. Let d = dim(SY |X) and let α denote a p× d semi-orthogonal

matrix whose columns form a basis for SY |X, so Y |X ∼ Y |α>X. Likelihood-based methods
are designed to estimate SY |X = span(α) under different structures for the mean µy and the
covariance ∆y functions in model (1). These methods are summarized in the sections that
follow. In preparation, let M = span{µy − µ|y ∈ SY } ⊆ Rp, where SY denotes the sample
space of Y , let µ = E(X), and let â stand for the MLE of a parameter a.

http://liliana.forzani.googlepages.com/ldr-package
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2.1. Principal components (PC)

In this model, which was introduced by Cook (2007), it is assumed that the errors are isotropic,
∆y = σ2Ip. As a consequence of this structure, SY |X = M and therefore we have the

representation µy = µ+ανy, where νy ∈ Rd is unknown for all y ∈ SY . Under this setting,

the MLE of SY |X is the span of the first d eigenvectors of the sample covariance matrix Σ̃ of
X.

2.2. Isotropic principal fitted components (IPFC)

As in the PC model, it is assumed that the errors are isotropic. Consequently SY |X =M and
we can again represent the conditional means as µy = µ + ανy. However, following (Cook
2007), the coordinate vectors νy are now modeled as

νy = β{fy − E(fY )}, (2)

where fy ∈ Rr is a known vector-valued function of y with linearly independent elements and
β ∈ Rd×r, d ≤ min(r, p), is an unrestricted rank d matrix. The presence of E(fY ) in the
definition of νy is for ease of exposition and does not represent a restriction; only fy needs to
be specified in practice. For this model the MLE of SY |X is the span of the first d eigenvectors

of Σ̃fit, where Σ̃fit is the sample covariance matrix of the fitted vectors from the multivariate
linear regression of Xy on fy, including an intercept. When Y is categorical or slicing is used
to approximate the coordinates of νy with step functions,

Σ̃fit =
h∑

y=1

ny
n

(X̄y − X̄)(X̄y − X̄)>,

where X̄y the average predictor vector in slice y, X̄ =
∑

y(ny/n)X̄y is the overall average,
and h is the number of slices.

2.3. Structured principal fitted components (SPFC)

This model was introduced by Cook and Forzani (2009b). The coordinate vectors νy are
again modeled as in (2), but now a linear structure is used to model ∆ =

∑m
i=1 δiGi, where

m ≤ p(p + 1)/2, G1, . . . ,Gm are known real symmetric p × p linearly independent matrices
and the elements of δ = (δ1, . . . , δm)> are functionally independent. It is required also that
∆−1 have the same linear structure as ∆: ∆−1 =

∑m
i=1 siGi. To model a diagonal ∆ we

set Gi = eie
>
i , where ei ∈ Rp contains a 1 in the i-th position and zeros elsewhere. This

basic structure can be modified straightforwardly to allow for a diagonal ∆ with sets of equal
diagonal elements, and for a non-diagonal ∆ with equal off-diagonal entries and equal diagonal
entries. In the latter case, there are only two matrices G1 = Ip and G2 = ee>, where e ∈ Rp

has all elements equal to 1.

In this case the central subspace SY |X = ∆−1M and then µy = µ + ∆αβfy. The MLE for

SY |X is the span of the first d eigenvectors of ∆̂
−1

Σ̃ where ∆̂ indicates the MLE of ∆. The

MLE ∆̂ evidently does not have a closed-form representation and an iterative algorithm is
required for its computation; an algorithm was descried in (Cook and Forzani 2009b).
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2.4. Extended principal fitted components (EPFC)

In this version the coordinate vectors νy are again modeled like (2) so that µy = µ+ αβfy,

but now ∆ is modeled as ∆ = αΩα> + α0Ω0α
>
0 , where Ω ∈ Rd×d and Ω0 ∈ Rp−d,p−d are

positive definite matrices, (α,α0) is an orthogonal matrix, and still SY |X = span(α). Then
the MLE for SY |X maximizes over S(α) ∈ G(d,p), the Grassmann manifold, the log likelihood
function

Ld(α) = −np
2

(1 + log(2π))− n

2
log |Σ̃| − n

2
log |α>Σ̃

−1
α| − n

2
log |α>Σ̃resα|,

where Σ̃res = Σ̃− Σ̃fit with Σ̃fit defined in the IPFC model. See Cook (2007) for discussion.

2.5. Principal fitted components (PFC)

In this model, which was studied by Cook and Forzani (2009b) the coordinate vectors νy
are again modeled as in (2), but ∆ is now an unstructured positive definite matrix that is
functionally independent of y. The central subspace is again SY |X = ∆−1M and the MLE

of SY |X is the span of Σ̃
−1/2
res v, where the columns of v ∈ Rp×d are the first d eigenvectors of

Σ̃
−1/2
res Σ̃Σ̃

−1/2
res and Σ̃res was defined in the EPFC model.

2.6. Covariance reduction (CORE)

Covariance reduction addresses a rather different dimension reduction issue. Consider the
problem of characterizing the covariance matrices ∆y , y = 1, . . . , h, of a random vector
X observed in each of h normal populations. There is no interest in the population means
µy. The methodology reviewed here, which was proposed by Cook and Forzani (2008), is
based on reducing the sample covariance matrices to an informational core that is sufficient to
characterize the variance heterogeneity across the h populations. It may be a useful alternative
to the spectral modeling in many applications.

For this problem the central subspace, SY |X = span(α) is redefined to be the smallest subspace

satisfying ∆y = ∆ + P>α(∆y)(∆y −∆)Pα(∆y), where Pα(∆y) = α(α>∆yα)−1α>∆y is the
projection onto SY |X using the inner product defined by ∆y. We assume that the data consist
of ny independent observations of Xy, y = 1, . . . , h. Then the MLE of SY |X is the subspace
that maximizes over G(d,p) the log likelihood function

Ld(α) = c− n

2
log |∆̃|+ n

2
log |α>∆̃α| −

h∑
y=1

ny
2

log |α>∆̃yα|, (3)

where c is a constant depending only on p and ny, ∆̃y, y = 1, . . . , h, denotes the sample

covariance matrix from population y computed with divisor ny, and ∆̃ =
∑h

y=1(ny/n)∆̃y.

2.7. Likelihood acquired directions (LAD)

In this model, which was proposed by Cook and Forzani (2009a), we consider both a general
conditional covariance ∆y and a general mean µy. It requires a categorical response Y .
When the response is continuous or many-valued it is typical to follow (Li 1991) and replace
it with a categorical version constructed by partitioning its range into h slices. The central
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subspace SY |X = span(α) is the smallest subspace that satisfies the conditions (i) ∆y =

∆ +P>α(∆y)(∆y −∆)Pα(∆y) and (ii) span(α) ⊆∆−1span(µy −µ). Condition (i) is the same

as that encountered in the CORE model, while condition (ii) incorporates the conditional
means µy. Assume as before that the data consist of ny independent observations on Xy,
y = 1, . . . , h. Then the MLE for SY |X maximizes over span(α) ∈ G(d,p) the log likelihood
function

Ld(α) = −np
2

(1 + log(2π))− n

2
log |Σ̃|+ n

2
log |αΣ̃α| − 1

2

h∑
y=1

ny log |α∆̃yα| (4)

where ∆̃y is as defined in the CORE model.

The likelihood functions Ld(α) presented so far have a similar feel and depend on similar
quantities. They differ because of the structure placed on the conditional means µy and
conditional variances ∆y, and because of the dimension reduction target. For example, the
final terms in the likelihood functions for CORE (3) and LAD (4) are the same. The second
and third terms are similar, with CORE using ∆̃ and LAD using Σ̃. This difference arises
because LAD extracts dimension reduction information from both the sample means X̄y and
sample variances ∆̃y, while CORE uses information from just the sample variances. The
sample version Σ̃ = Σ̃fit + ∆̃ of the usual ANOVA identity VAR(X) = VAR(E(X|Y )) +
E(VAR(X|Y )) shows how information from the sample means X̄y enters Σ̃ via Σ̃fit.

2.8. Envelope models for multivariate linear regression (MLM)

The dimension reduction methodology described in this section is different from the previous
methods because it involves a multivariate response Y ∈ Rr and a multivariate predictor X ∈
Rp, assumed to be non-stochastic, that are related through the standard normal multivariate
linear model:

Y = β0 + βX + ε, (5)

where β0 ∈ Rr, β ∈ Rr×p and ε ∼ Nr(0,Σ). The number of responses r is often large
in modern applications of this model. In such situations the response vector may contain
irrelevant linear combinations whose conditional distribution does not change with X. It may
also contain redundant information characterized by Σ having relatively large eigenvectors.
Developed recently by Cook, Li, and Chiaromonte (2010), envelope models allow for the
possibility that such irrelevant or redundant information may be present in Y, and can yield
an MLE of β with substantially smaller variation that the usual MLE.

The redundant and irrelevant information in (5) can be characterized by using the reducing
subspaces of Σ. Let (Γ,Γ0) ∈ Rr×r be an orthogonal matrix, where the columns of Γ ∈ Rr×d

form a basis for the smallest reducing subspace of Σ that contains span(β), which is called
the Σ-envelope of span(β). Then the parameters in model (5) have the structure β = Γη,
and Σ = ΓΩΓ> + Γ0Ω0Γ

>
0 , where η ∈ Rd×r is an unconstrained coordinate matrix, and

Ω ∈ Rd×d and Ω0 ∈ Rr−d×r−d are positive definite matrices. The theory developed by Cook
et al. (2010) shows that substantial gains in efficiency are possible if the linear combinations
Γ>0 Y contain both the irrelevant and redundant information in Y.

Fitting with this parameter structure requires estimation of β0, span(Γ), η, Ω and Ω0. The
partially maximized log likelihood for estimating span(Γ) is similar to the objective function
for extended principal fitted components described in Section 2.4.
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3. Software overview

The software is organized to allow users to run different types of processing by calling just a few
interface functions. Several auxiliary tools are then internally called to perform computations
according to the options specified in those interface functions. As the main example, a single
function called ldr manages all methods for maximum likelihood estimation of the central
subspace. Arguments in this function specify the model to use, the response type – classified
broadly into (a) continuous and (b) discrete or categorical – and the protocol for choosing
the dimension d. This protocol allows d to be specified or estimated using an information
criterion, a likelihood-ratio test or in some cases a permutation test. Separate functions mlm

are used for the envelope methodology discussed in Section 2.8. In Section 4 we describe how
to use the software in detail.

The package is designed to run mainly from the command-line, but we have also built a
simple graphical user interface to make usage more intuitive and analysis more interactive.
Although the graphical interface does not currently provide all the features available from
the command-line based interface, it is powerful enough to run prototype computations using
standard values for some parameters of the models. A brief tutorial for using this interface is
given in Section 4.5.

Our implementation emphasizes easy-reading code over performance. It is mainly based
upon built-in functions in MATLAB and has been tested for compatibility starting up from
version 6.5 release 13. Nevertheless, some functions require the Statistics Toolbox as well.
The LDR package relies on the sg min (Lippert 2007) toolkit for gradient-based optimization
over Stiefel-Grassmann manifolds (Lippert and Edelman 2000). Some minor modifications
of sg min were necessary for this application and this modified version of sg min is available
with our package. The modifications are described in the documentation that comes with the
code.

3.1. Available methods

The LDR package offers an implementation of the models described in Section 2. SIR, SAVE
and DR are incorporated as separate MATLAB functions with the same names. SIR and SAVE
are available in Weisberg’s dr package, and DR is available from its authors (Li and Wang

Model AIC BIC LRT PERM

PC
SIR
SAVE
DR
IPFC X X X
SPFC X X X
EPFC X X X
PFC X X X
LAD X X X X
CORE X X X X

Table 1: Available models and testing criteria for d.
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2007). We have included basic implementations here in order to provide a more self-contained
environment for dimension reduction. We have also used a separate MATLAB function PC for
the PC model, since this model gives the same solution as the usual principal components
and we do not have a novel way to estimate d.

For the rest of the models, which are the primary focus of the LDR package, we have in-
corporated methods to estimate the central subspace, including estimation of its dimension
d. Available procedures for choosing d include information criteria such as AIC and BIC
(Burnham and Anderson 2002), likelihood-ratio testing, and permutation testing (Cook and
Yin 2001). Table 1 shows the available testing methods for each model. All of these functions
run both for continuous and categorical responses and share the common interface function
ldr.

4. Using the software

4.1. Methods for estimating the central subspace

Except for envelope models, a single function called ldr provides a unified interface for all di-
mension reduction methods based on maximum likelihood estimation of the central subspace.
Other methods such as SIR, SAVE, DR and PC are called from separate interface functions.
Their usage is very similar and is discussed briefly in this section.

To start using the software, set the current directory to the package’s location in your disk
and type setpaths. This command adds all the directories in the package to the MATLAB
path, so that all functions there become available for computation.

The data should be read and stored. From now on, let Y ∈ Rn denote a vector containing the
response and let X ∈ Rn×p denote the matrix of the predictors. Interface functions like ldr

have workspace variables as arguments and do not allow managing data files directly. Despite
several procedures for reading data being already available in MATLAB, they usually do not
provide support for data files with headers. For that purpose, we have included functions
loadDATA and getDATA. A detailed description of these commands is available through the
software documentation.

Five arguments are mandatory when calling the ldr function and they must be provided
in the order that follows: (i) the response vector Y; (ii) the matrix of predictors X; (iii) an
identifier for the model to be used, such as ‘PFC’ or ‘epfc’; (iv) the type of response, which
may be ‘cont’ or ‘disc’ depending on whether Y is continuous (many-valued) or discrete
which includes categorical; and (v) the dimension d of the central subspace or an identifier
such as ‘BIC’ for an estimation method along with any necessary argument. Acronyms
previously introduced in Section 2 have been used to identify the available models. Identifiers
for estimation of d are ‘AIC’ for Akaike’s information criterion, ‘BIC’ for Bayes information
criterion, ‘LRT’ for likelihood-ratio test and ‘PERM’ for permutation test. Matching is case-
insensitive, so you can type either ‘LRT’ or ‘lrt’. The identifiers ‘LRT’ and ‘PERM’ should
be followed by a test level, typically .01 or .05.

Outputs are the same for all models and they are: (i) the coordinates of the projection of the
predictors onto the estimated central subspace, i.e. α>X; (ii) a matrix whose columns are
the estimated basis vectors for the central subspace; i.e. α; (iii) the maximum value of the
log likelihood; and the (iv) the estimated dimension in case a criterion for d was used.
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Depending on the model, additional and optional arguments can be given. As an example,
to slice a continuous response into ten slices for processing data under the LAD model, an
additional string ‘nslices’ and the value 10 should be added to the arguments. In this case,
a call to the function ldr should look like:

>> [WX,W,L,d] = ldr(Y, X, 'LAD', 'cont', 'aic', 'nslices', 10);

where WX is the projection of the predictors onto the estimated central subspace, W is a matrix
whose columns are the estimated basis vectors for the central subspace, L is the maximum
value of the log likelihood and d is the dimension of the central subspace estimated by using
Akaike’s information criterion.

Methods such as EPFC, LAD and CORE require a starting basis for the central subspace prior
to iteration. We determine the starting basis internally by searching over several estimators
like SIR, SAVE, DR, PLS and PC and selecting the one that gives the largest value of the
likelihood. Nevertheless, in some cases an external starting basis may be useful. A starting
basis can be supplied by adding the text string ‘initval’ followed by a matrix whose column
form a starting basis. Iterative estimation of the central subspace is carried out using the
sg min package. All the available parameters in this toolkit have been retained as optional
inputs in LDR. In addition, the maximum number of iterations can be specified. By default,
computation will stop after 1000 iterations if convergence has not been achieved. It should
be noted that, since all the starting values we use are

√
n consistent estimators, the answer

after one iteration is asymptotically as efficient as the MLE. The previous call to LAD with
an initial basis B ∈ Rp×d for the central subspace and with no more than 100 iterations would
look like

>> [WX,W,f,d] = ldr(Y, X, 'LAD', 'cont', 'aic', 'nslices', 10, ...

'initval', B, 'maxiter', 100);

A list of the remaining optional arguments and their identifiers is given in Table 2. The
optional commands may be given in any order.

4.2. Example with Y categorical

To further illustrate how to use the package, consider the problem of studying classification
of hand-written digits. In this case the response is the digit Y = {0, 1, . . . , 9}, which is
treated as categorical. The 44 subjects were asked to write 250 random digits. Each digit
yields a 16-dimensional feature vector, consisting of 8 pairs of randomly sampled two- di-
mensional locations on the digit. The 44 subjects were divided into two groups of size 30
and 14, in which the first formed the training set with sample size 7, 494 and the second
formed the test set with sample size 3, 498. The data set is available from the machine
learning repository at the University of California at Irvine (ftp://ftp.ics.uci.edu/pub/
machine-learning-databases/pendigits).

We focus on dimension reduction of the 16-dimensional feature vectors for the training set,
which may serve as a preparatory step for developing an efficient classifier. For clarity, we
consider only the digits 0, 6 and 9, so for this example Y = {0, 6, 9}. The reduced data set
comprises 2,219 cases. The data are stored in the text file digits.txt where the first column
takes values 1, 2 or 3 indicating if the observation corresponds to a 0, 6 or 9 respectively. We
first load the response vector and the predictors by typing:

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/pendigits
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/pendigits
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Model Input Description Default value

SIR ‘nslices’ Number of slices for continuous response
preprocessing.

5 slices.

SAVE ‘nslices’ Number of slices for continuous response
preprocessing.

5 slices.

DR ‘nslices’ Number of slices for continuous response
preprocessing.

5 slices.

IPFC ‘fy’ Basis for regression. A matrix must be
given after this output.

Polynomial basis of
degree r = max{3, d+
1}.

‘alpha’ Confidence level for likelihood ratio test. 0.05

SPFC ‘fy’ Basis for regression. A matrix must be
given after this output.

Polynomial basis of
degree r = max{3, d+
1}.

‘alpha’ Confidence level for likelihood ratio test. 0.05

PFC ‘fy’ Basis for regression. A matrix must be
given after this output.

Polynomial basis of
degree r = max{3, d+
1}.

‘alpha’ Confidence level for likelihood ratio test. 0.05

EPFC ‘fy’ Basis for regression. A matrix must be
given after this output.

Polynomial basis of
degree r = max{3, d+
1}.

‘alpha’ Confidence level for likelihood ratio test. 0.05
‘initval’ Starting basis for central subspace esti-

mation.
See text for details.

‘maxiter’ Maximum number of iterations. 10000

see sg min Several optional inputs for optimization. ‘prcg’, ‘euclidean’

LAD ‘nslices’ Number of slices for continuous response
preprocessing.

5 slices.

‘alpha’ Confidence level for likelihood ratio test
and permutation test.

0.05

‘npermute’ Permutations for permutation test. 500 permutations.
‘initval’ Starting basis for central subspace esti-

mation.
See text for details.

‘maxiter’ Maximum number of iterations. 10000

see sg min Several optional inputs for optimization. ‘prcg’, ‘euclidean’

CORE ‘nslices’ Number of slices for continuous response
preprocessing.

5 slices.

‘alpha’ Confidence level for likelihood ratio test
and permutation test.

0.05

‘npermute’ Permutations for permutation test. 500 permutations.
‘initval’ Starting basis for central subspace esti-

mation.
See text for details.

‘maxiter’ Maximum number of iterations. 10000

see sg min Several optional inputs for optimization. ‘prcg’, ‘euclidean’

Table 2: Additional/optional inputs for available models.
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Figure 1: Plot of the two reduced LAD predictors with points marked to indicate the digit.

>> data = load('digits.txt');

>> Y = data(:, 1);

>> X = data(:, 2:end);

We next fit the LAD model X|(y = y) ∼ N(µy,∆y) looking for d = 2 linear combinations of
the predictors:

>> [WX,W] = ldr(Y, X, 'LAD', 'disc', 2);

Here we used default options for optimization. The reduced predictors WX can be used later
to get an efficient classifier. W is a basis for the estimated central subspace. To plot results,
we can call the provided function plotDR as:

>> plotDR(WX, Y, 'disc', 'LAD');

This plots the two new reduced predictors WX using different colors to indicate if the response
is 0, 6 or 9, as shown in Figure 1.

The function plotDR behaves like standard MATLAB plotting functions. For instance, a
second call to plotDR will overwrite the first plot, unless the MATLAB command for a new
figure has been issued. To carry out a similar analysis for variance differences only we should
use the CORE model and replace ‘LAD’ with ‘CORE’ in the statements above. To apply
CORE with d = 1, the statement should be

>> [WX,W,f,d] = ldr(Y, X, 'CORE', 'disc', 1)
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CORE−1

Analysis using CORE model

Figure 2: Histograms of the reduced CORE predictor by digit.

and the corresponding plot

>> plotDR(WX, Y, 'disc', 'CORE');

is the histogram of the predictors by digit shown in Figure 2.

If we allow the means µy to be different but constrain the covariance matrices ∆y to be
the same, then we are under the PFC model. Suppose we want to estimate d assuming the
PFC model. We should then include a command like ‘lrt’, ‘AIC’, ‘BIC’ or ‘perm’ in the
MATLAB statement:

>> [WX,W,f,d] = ldr(Y, X, 'PFC', 'disc', 'AIC')

will give d = 2, the number of dimensions that PFC indicates are necessary for reduction
without loss of information using the AIC criterion. The plotting command is analogous to
the other cases.

Under the same PFC model we could test to see if the covariance matrix of X|Y is diagonal.
In such a case using diagonal structure could give a more efficient estimator. The lrt can be
obtained from the command

>> testdiag4pfc(Y, X, 'disc', .05);

The answer returned for these data is 0, meaning that the null hypothesis is clearly rejected.
Nevertheless, for illustration the command to fit PFC with a diagonal covariance matix is
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>> [WX,W,f,d] = ldr(Y, X, 'SPFC', 'disc', 'BIC');

where we are using BIC to find the dimension of the central subspace.

The EPFC model is also a particular case of PFC. But here it is assumed that the central
subspace is an invariant subspace of the covariance matrix (see Section 2.4). The MATLAB
command is the same but we should change ‘SPFC’ to ‘EPFC’.

When using SIR, SAVE, DR or PC the dimension d should be given, as no estimation method
for d is currently available in the LDR package. If we choose d = 2, corresponding commands
are

>> [WX,W] = SIR(Y, X, 'disc', 2);

>> [WX,W] = SAVE(Y, X, 'disc', 2);

>> [WX,W] = DR(Y, X, 'disc', 2);

The plot command plotDR is the same as before.

4.3. Example with Y continuous

Processing data with continuous responses is analogous, but it often allows for additional
arguments. For illustration, consider the Naphthalene data. These data consist of 80 obser-
vations from an experiment to study the effects of three process variables in the vapor phase
oxidation of naphthalene (Franklin, Pinchbeck, and Popper 1956). The data are stored in
nap.txt. The response is the percentage conversion of naphthalene to naphthoquinone, and
the three predictors are air to naphthalene ratio, contact time and bed temperature. Although
there are only three predictors in this regression, dimension reduction may still be useful for
visualization (Cook 1998).

Suppose you have already loaded your continuous data into workspace variables Y and X as
(the complete script and data are available along with the paper and within the LDR package
in the directory papers/JSS_example):

>> data = load('nap.txt');

>> X = data(:, [4 5 9]);

>> Y = data(:, 12);

The models LAD and CORE treat the response as categorical and therefore require the
continuous response Y to be sliced (if not provided, 5 is the default number of slices.) To
estimate under the LAD model using 6 slices and d = 1 we would use a statement such as

>> [WX,W,f,d] = ldr(Y, X, 'LAD', 'cont', 1, 'nslices', 10);

To plot the response Y versus the new predictor WX we use

>> plotDR(Y, WX, 'cont', 'LAD');

The result is shown in Figure 3. The dimension d could be estimated via likelihood ratio
testing with level 5% by using the command

>> [WX,W,f,d] = ldr(Y, X, 'LAD', 'cont', 'lrt', 'nslices', 5, 'alpha', 0.05);
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Figure 3: Plot of the continuous response Y vs the reduced predictor using LAD method for
the nap data.

Similarly, to estimate d with 5% permutation test using 500 permutations use the command

>> [WX,W,f,d] = ldr(Y, X, 'LAD', 'cont', 'perm', 'nslices', 5, ...

'alpha', 0.05, 'npermute', 500);

Permutation tests can take a while to run.

These arguments are inappropriate for models like IPFC, SPFC, EPFC and PFC since they
do not use slicing but instead deal directly with Y as continuous. Therefore a basis fy for the
regression of X on Y should be supplied as an n × r matrix, say FY, with rows f>y . Here n
denotes the sample size and r denotes the dimension of the basis to be considered. In this
package we provide an auxiliary function get_fy that returns fy as a polynomial of order r,
for a given r. A call to the PFC model, for example, should look like:

>> FY = get_fy(Y, 2);

>> [WX,W,f,d] = ldr(Y, X, 'PFC', 'cont', 'bic', 'fy', FY);

where we have told the software to use a second-order polynomial for the regression of X on
Y and we are also estimating d using the Bayes information criterion. The dimension chosen
under this method is d = 1. The result WX of dimension 1 can be consider as the new predictor
and the command

>> plotDR(Y, WX, 'cont', 'PFC');
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will give the plot of the response Y versus the new predictor WX.

Further examples of how to use the software are provided in the papers folder within LDR.
They reproduce results and figures published when introducing the methods discussed in
Section 2 and can be used to explore the main features in the package.

4.4. Envelope models

The basic command for computing an estimated basis G of span(Γ) in the envelope model
(2.8) is [GX, G, L, dhat] = mlm_fit(Y, X, dim), where dim stands for the dimension of
the envelope. The essential output consists of the estimate G of Γ, the value L of the log
likelihood at the MLE and the estimated dimension dhat of the envelope. GX is an exploratory
quantity and not used routinely in this application. The following options are available for
dim: If dim is set to an integer d, eg., mlm_fit(Y, X, 2), then dhat = d and the envelope
model is fitted with the specified dimension. If dim is set to ‘aic’ or ‘bic’ then the indicated
information criterion is used to estimate d. These commands may take a long time, depending
on the size of the regression. If dim is set to the pair ‘lrt’,.05, eg. mlm_fit(Y, X, ’lrt’,

.05), then likelihood ratio testing at level .05 is used to estimate d.

The following commands are available following the initial fit that produces G.

� [betaem, eta, Omega, Omega0, S1, S2] = mlm_empars(Y, X, G) returns the esti-
mated parameters from the fit of the envelope model. betaem = G x eta is the esti-
mated coefficient matrix Omega and Omega0 are the estimates of Ω and Ω0, S1 is the
estimate of ΓΩΓ> and S2 is the estimate of Γ0Ω0Γ

>
0 .

� mlm_emses(Y, X, G) returns the matrix of standard errors of the elements betaem from
the fit of the envelope model.

� mlm_seratios(Y, X, G) returns the matrix of ratios of standard errors of the full model
and envelope model estimates of β. The ratios are (standard error for the full model) /
(standard error for the envelope model).

Other commands are documented in the folder mlm that comes with the MATLAB code.

4.5. Using the graphical user interface

The graphical user interface (GUI) is expected to provide an easy-to-use tool to perform small
prototype tasks using the functions available in the package. Figure 4 shows the layout of the
interface with its main controls. The GUI is started by typing demo in the command window,
provided the current directory is the LDR folder. Once it has been loaded, data analysis using
the GUI typically follows a sequence of steps:

1. Load data by clicking on the LOAD DATA (1) button and then follow the dialog box to
find the desired data file.

2. Set the response variable and the predictors by clicking on the set Y and set X but-
tons (2).

3. Specify the type of the response according to the data by choosing the right option in
the popup menu (4). For continuous responses, you should also give the number of slices
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Figure 4: Lay out of the graphical user interface for the LDR package. (1) Press to open
a dialog-box to search for a data file; (2) press to set the response and the predictors for
the analysis; (3) press to sequentially display scatter plots for a given variable, set in the
axes popups; (4) specify if the response is continuous or discrete; (5) edit text to pass basic
parameters for processing; (6) choose the method to be applied; (7) choose the dimension
of the subspace to look for, or a method to infer it; (8) press to select predictors and apply
the dimension reduction method; (9) press to open a dialog-box to save the obtained results;
(10) press to clear stored results; (11) look at brief comments and warnings; (12) choose the
variable to plot in each axis; (13) plot of results.

for the slicing procedure in the editable text box (5) if you plan to apply methods such
as LAD, CORE, SIR, SAVE or DR.

4. Select the dimension of the reduced subspace or choose an estimation method from the
popup (7). Currently, the GUI allows only d = 1, 2, 3. The available estimation methods
include all those listed in Table 1. Some estimation methods, in particular permutation
tests, take a long computation time and can freeze the GUI for awhile.

5. Start the computation by clicking the RUN button (8).

By default, processing data with the GUI returns only results through plots. Nevertheless,
you can check the Show results option to allow the program to print results on the command
window and you can save results as text files by clicking on the SAVE RESULTS button (9).
When you do so, you are first asked to select what results you want to save. All analysis
performed so far are listed and you can choose as many as you like. For each selection,
you are allowed to save two files. The first one contains the response plus the transformed
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predictors, while the second one contains only the generating vectors for the reduced subspace.
You can skip saving either of them by clicking on the Cancel button in the respective save
dialog.

After the data are loaded, the popups (12) below the figure axes get filled with identifiers
for each column in the data file. You can get scatter plots of pairs of variables by selecting
one of them in the popup corresponding to the vertical axis and the other one in the popup
menu related to the horizontal axis. For a sequential display of scatter plots for some given
variable, you can instead set the related identifier in one of these popups and then click on
the Scatter plots button (3). You can then move through the scatter plots by clicking the
up and down buttons placed below the Scatter plots button.

5. Conclusion

This paper introduces new software for sufficient dimension reduction based on maximum
likelihood estimation of the central subspace. MATLAB implementation of these methods
allows easy integration of complex optimization tools and provides a flexible environment
for graphics capabilities and further model development. Scripts are given to reproduce all
published results concerning the methods discussed above, in agreement with the reproducible
research philosophy. We plan to continue adding methods to the package and to finish code
verification for full compatibility with the OCTAVE programming language in order to provide
tools suitable to run under GNU software.
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