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Abstract

We present two methods of calculating trimmed means without sorting the data in
O(n) time. The existing method implemented in major statistical packages relies on
sorting, which takes O(n log n) time. The proposed algorithm is based on the quickselect
algorithm for calculating order statistics with O(n) expected running time. It is an order
of magnitude faster than the existing method for large data sets.
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1. Introduction

Trimmed means are used very frequently in statistical sciences as robust estimates of location.
Trimmed means are much less sensitive to the outliers compared to the arithmetic mean. They
are also often used in image processing as filters. The α%-trimmed mean of x ∈ <n is the
quantity

TM (x) =
1

n− 2K

n−K∑
i=K+1

x(i), (1)

where x(i) are order statistics and K = [αn].

The current method of computation of a trimmed mean requires sorting the data, and its
complexity is O(n log n). This method based on sorting is implemented in major statistical
packages such as SAS, SPSS and R. For small to medium sized data sets the CPU time is
negligible. However for very large data sets n ≥ 105 the sort operation becomes a bottleneck.
Data sets of this size or larger are now common (analysis of internet traffic and microarray
data processing are two noteworthy examples).

In this note we draw attention to a little known fact that the sort operation can be avoided, by
using a simple alternative formula based on computation of order statistics, which can be done
in O(n) expected time using the quickselect algorithm (Sedgewick 1988; Press, Teukolsky,
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Vetterling, and Flannery 2002), or in O(n) worst case time using the median of medians
algorithm BFPRT (Blum, Floyd, Watt, Rive, and Tarjan 1973)1.

We propose two different algorithms to calculate trimmed means. The gain in numerical
performance is six to ten-fold as illustrated by our numerical experiments. Existing algorithms
can be modified very easily, and the source code in C++ is provided.

2. Computation of trimmed and Winsorized means

The following quantity is known as K-Winsorized mean,

WM (x) =
1

n

(
n−K∑

i=K+1

x(i) +K(x(K+1) + x(K))

)
. (2)

By comparing to (1), we can easily see that

TM (x) =
1

n− 2K

(
nWM (x)−K(x(K+1) + x(K))

)
. (3)

Suppose we have computed the order statistics x(K+1) and x(n−K) by using the quickselect
algorithm in O(n) time. Then we can compute the Winsorized mean without sorting, by
using

WM (x) =
1

n

(
n∑

i=1

min(max(xi, x(K+1)), x(n−K))

)
. (4)

The trimmed mean is then computed from WM also without sorting by (3).

For very large n ≥ 108 caution should be exercised when using (4) because of the roundoff
errors. The sum contains an extra 2K terms compared to (2) which may result in loss of
precision. In our experiments, when we used a 4-byte float type (in C language) to calculate
WM using (4), it lead to unacceptable loss of precision and resulted in values as twice as much
as the actual trimmed mean for n = 106. Of course, the use of double or extended numbers
easily solves this problem on CPUs, this is not the case when calculations are performed on
Graphic Processing Units (GPU).

General purpose GPUs, such as NVIDIA’s Tesla unit (NVIDIA Corporation 2008), allow one
to offload routine numerical calculations to a GPU device, which possesses several hundreds of
processor cores, and is capable of executing hundreds of thousands of threads in parallel. Many
modern software packages are capable to execute parts of their code on GPUs. Summation
is easily parallelized for GPUs by using a generic reduce operation using binary trees, see
NVIDIA Corporation (2007). However the use of extended precision in reduction on GPUs
bears a cost, as a working array of extended precision numbers of size n has to be used. Below
we present an alternative method, which does not use the extra terms in the sum (4).

Note that it would be incorrect to compute the trimmed mean similarly to (4) by replacing
the terms outside the range [x(K+1), x(n−K)] with zeroes. In that case the resulting expression
is not a trimmed mean, and is in fact a discontinuous function of the components of x.

1 We used an implementation of BFPRT from http://www.moonflare.com/code/select/index.php, and
the tests show that the simpler quickselect with O(n) average case complexity outperforms BFPRT by a factor
of four (for n = 3200 000).

http://www.moonflare.com/code/select/index.php
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Instead, let us compute the expression

S(x) =

n−K∑
i=K+1

x(i) (5)

in the following way

S(x) =
n∑

i=1

w(xi;x)xi, (6)

with

w(t;x) =


1 if x(K+1) < t < x(n−K),
a
b if t = x(K+1),
c
d if t = x(n−K),

0 otherwise,

where the integers a, b, c, d are computed as described below. Note that if no elements of x
coincide, there are no issues with computation and we let a = b = c = d = 1. A problem
occurs when some elements coincide. The multiplicity of the k-th order statistic is the number
of components of x equal to x(k).

Consider the numbers b− = count(xi < x(K+1)) and b = count(xi = x(K+1)), and similarly,
d− = count(xi < x(n−K)) and d = count(xi = x(n−K)). Then K + 1 = b− + p and n −K =
d− + q for some p ≤ K + 1, q ≤ n − K. Now if we take a = b − p + 1 = b − K + b− and
c = q = n−K − d−, we notice that the expressions (5) and (6) coincide.

The calculation of the numbers a, b, c, d above is done in O(n) operations when x(K+1) and
x(n−K) are known. Therefore the overall complexity of evaluating S in (6) is O(n).

Compared to the formula (3), there are less roundoff errors at an additional marginal cost.
In calculations we performed when using 4-byte floats, the loss of precision was ten times
smaller than in (3)–(4).

3. Numerical comparison

Let us now illustrate the advantages of the formulas based on (3) and (6) numerically. We
considered several data sets, generated as follows.

1. Uniform xi ∼ U(0, 1);

2. Normal xi ∼ N(0, 1);

3. Half-normal xi = |yi| and yi ∼ N(0, 1);

4. Beta xi ∼ β(2, 5);

5. Mixture 1, 80% of elements of xi chosen from N(0, 1) and 20% from N(100, 1);

6. Mixture 2, 80% of elements of xi chosen from half-normal N(0, 1) and 20% from
N(100, 1);

7. Mixture 3, 50% of elements of xi chosen from N(0, 1) and 50% from N(100, 1).
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n With sort Without sort by (6) Without sort by (3) Speedup

100 000 0.016 < 0.001 < 0.001 10

1 000 000 0.172 0.022 0.015 11.4

2 000 000 0.359 0.063 0.031 11.5

4 000 000 0.766 0.109 0.078 9.8

8 000 000 1.563 0.235 0.188 8.6

16 000 000 3.235 0.501 0.344 9.5

32 000 000 6.516 0.859 0.56 11.6

Table 1: Average cost of computation of TM (averaged over 7 data sets with different distri-
butions and over 10 instances of each data set) in seconds.

Calculations were performed on a Pentium IV 2.1 GHz workstation with 1 GB RAM. The
results were very similar for all different data sets and are averaged in Table 1.

In a separate series of experiments, we compared the CPU time when calculating multiple
trimmed means of smaller data sets n < 100 by formulas (6) and (3), and by using the
traditional sort operation. Here all methods have performed equally and there was no speedup.

4. Conclusion

We described two alternative algorithms to calculate trimmed means without using the sort
operation. The speedup is an order of magnitude on very large data sets n ≥ 105. The algo-
rithm based on Winsorized mean is faster, but requires care dealing with roundoff errors. The
proposed algorithms are easy to implement and incorporate into existing statistical packages.
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A. Source code

C++ source code for trimmed means based on (6). Note that the arrays in C are indexed from
0. The code below requires the quickselect procedure available from Press et al. (2002). n
is the length of the array x and K = [αn].

float Weighted(float x, float t1, float t2, float w1, float w2)

{

if(x<t2 && x>t1) return x;

if(x<t1) return 0;

if(x>t2) return 0;

if(x==t1) return w1*x;

return w2*x; // if(x==t2)

}

double TrimmedSum(float x[], int n, int K)

{

float w1, w2, OS1, OS2;

double t=0;

OS1=quickselect(x, n, K);

OS2=quickselect(x, n, n-K-1);

// compute weights

double a, b=0, c, d=0, dm=0, bm=0, r;

for(int i=0; i<n; i++){

r = x[i];

if(r < OS1) bm += 1;

else if(r == OS1) b += 1;

if(r < OS2) dm += 1;

else if(r == OS2) d += 1;

}

a = b + bm - K;

c = n - K - dm;

w1 = a/b;

w2 = c/d;

for(int i=0; i<n; i++)

t += Weighted(x[i], OS1, OS2, w1, w2);

return t;

}

double TrimmedMean(float x[], int n, int K)

{

return TrimmedSum(x,n,K)/(n-2*K);

}
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