
JSS Journal of Statistical Software
April 2011, Volume 40, Issue 3. http://www.jstatsoft.org/

Dates and Times Made Easy with lubridate

Garrett Grolemund
Rice University

Hadley Wickham
Rice University

Abstract

This paper presents the lubridate package for R, which facilitates working with dates
and times. Date-times create various technical problems for the data analyst. The paper
highlights these problems and offers practical advice on how to solve them using lubridate.
The paper also introduces a conceptual framework for arithmetic with date-times in R.

Keywords: dates, times, time zones, daylight savings time, R.

1. Introduction

Date-time data can be frustrating to work with. Dates come in many different formats, which
makes recognizing and parsing them a challenge. Will our program recognize the format
that we have? If it does, we still face problems specific to date-times. How can we easily
extract components of the date-times, such as years, months, or seconds? How can we switch
between time zones, or compare times from places that use daylight savings time (DST) with
times from places that do not? Date-times create even more complications when we try to
do arithmetic with them. Conventions such as leap years and DST make it unclear what we
mean by “one day from now” or “exactly two years away.” Even leap seconds can disrupt a
seemingly simple calculation. This complexity affects other tasks too, such as constructing
sensible tick marks for plotting date-time data.

While base R (R Development Core Team 2011) handles some of these problems, the syntax it
uses can be confusing and difficult to remember. Moreover, the correct R code often changes
depending on the class of date-time object being used. lubridate acknowledges these problems
and makes it easier to work with date-time data in R. It also provides tools for manipulating
date-times in novel but useful ways. lubridate will enhance a user’s experience for any analysis
that includes date-time data. Specifically, lubridate helps users:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6340242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 Dates and Times Made Easy with lubridate

� Identify and parse date-time data, see Section 3.

� Extract and modify components of a date-time, such as years, months, days, hours,
minutes, and seconds, see Section 4.

� Perform accurate calculations with date-times and timespans, see Sections 5 and 6.

� Handle time zones and daylight savings time, see Sections 7 and 8.

lubridate uses an intuitive user interface inspired by the date libraries of object-oriented
programming languages. lubridate methods are compatible with a wide-range of common
date-time and time series objects. These include character strings, POSIXct, POSIXlt, Date,
chron (James and Hornik 2010), timeDate (Wuertz and Chalabi 2010a), zoo (Zeileis and
Grothendieck 2005), xts (Ryan and Ulrich 2010), its (Portfolio and Risk Advisory Group,
Commerzbank Securities 2009), tis (Hallman 2010), timeSeries (Wuertz and Chalabi 2010b),
fts (Armstrong 2009), and tseries (Trapletti and Hornik 2009) objects.

Note that lubridate overrides the + and - methods for POSIXt, Date, and difftime objects
in base R. This allows users to perform simple arithmetic on date-time objects with the new
timespan classes introduced by lubridate, but it does not alter the way R implements addition
and subtraction for non-lubridate objects.

lubridate introduces four new object classes based on the Java language Joda Time project
(Colebourne and O’Neill 2010). Joda Time introduces a conceptual model of the different
ways to measure timespans. Section 5 describes this model and explains how lubridate uses
it to perform easy and accurate arithmetic with dates in R.

This paper demonstrates the convenient tools provided in the lubridate package and ends with
a case study, which uses lubridate in a real life example. This paper describes
lubridate 0.2, which can be downloaded from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=lubridate. Development versions can be found at
http://github.com/hadley/lubridate.

2. Motivation

To see how lubridate simplifies things, consider a common scenario. Given a character string,
we would like to read it in as a date-time, extract the month, and change it to February
(i.e, 2). Table 1 shows two ways we could do this. On the left are the base R methods we
would use for these three tasks. On the right are the lubridate methods.

Now we will go a step further. In Table 2, we move our date back in time by one day and
display our new date in the Greenwich Meridian time zone (GMT). Again, base R methods
are shown on the left, lubridate methods on the right.

lubridate makes basic date-time manipulations much more straightforward. Plus, the same
lubridate methods work for most of the popular date-time object classes (Date, POSIXt,
chron, etc.), which is not always true for base R methods.

Table 3 provides a more complete comparison between lubridate methods and base R methods.
It shows how lubridate can simplify each of the common date-time tasks presented in the
article “Date and Time Classes in R” (Grothendieck and Petzoldt 2004). It also provides a
useful summary of lubridate methods.

http://CRAN.R-project.org/package=lubridate
http://github.com/hadley/lubridate

Journal of Statistical Software 3

Base R method lubridate method

date <- as.POSIXct("01-01-2010", date <- dmy("01-01-2010")

format = "%d-%m-%Y", tz = "UTC")

as.numeric(format(date, "%m")) or month(date)

as.POSIXlt(date)$month + 1

date <- as.POSIXct(format(date, month(date) <- 2

"%Y-2-%d"), tz = "UTC")

Table 1: lubridate provides a simple way to parse a date into R, extract the month value and
change it to February.

Base R method lubridate method

date <- seq(date, length = 2, date <- date - days(1)

by = "-1 day")[2]

as.POSIXct(format(as.POSIXct(date), with_tz(date, "GMT")

tz = "UTC"), tz = "GMT")

Table 2: lubridate easily displays a date one day earlier and in the GMT time zone.

3. Parsing date-times

We can read dates into R using the ymd() series of functions provided by lubridate. These
functions parse character strings into dates. The letters y, m, and d correspond to the year,
month, and day elements of a date-time. To read in a date, choose the function name that
matches the order of elements in your date-time object. For example, in the following date
the month element comes first, followed by the day and then the year. So we would use the
mdy() function:

R> mdy("12-01-2010")

[1] "2010-12-01 UTC"

The same character string can be parsed as January 12, 2001 by reversing the month and day
element with dmy().

R> dmy("12-01-2010")

[1] "2010-01-12 UTC"

The ydm() series of functions can also parse vectors of dates.

R> dmy(c("31.12.2010", "01.01.2011"))

4 Dates and Times Made Easy with lubridate
T

a
sk

lu
b
rid

ate
D
a
t
e

P
O
S
I
X
c
t

n
o
w

(sy
stem

tim
e

zo
n

e)
n
o
w
(
)

S
y
s
.
t
i
m
e
(
)

n
o
w

(G
M

T
)

n
o
w
(
"
G
M
T
"
)

S
y
s
.
D
a
t
e
(
)

o
rig

in
o
r
i
g
i
n

s
t
r
u
c
t
u
r
e
(
0
,
c
l
a
s
s

=
"
D
a
t
e
"
)

s
t
r
u
c
t
u
r
e
(
0
,
c
l
a
s
s

=
c
(
"
P
O
S
I
X
t
"
,

"
P
O
S
I
X
c
t
"
)
)

x
d

a
y
s

sin
ce

o
rig

in
o
r
i
g
i
n

+
d
a
y
s
(
x
)

s
t
r
u
c
t
u
r
e
(
f
l
o
o
r
(
x
)
,

c
l
a
s
s

=
"
D
a
t
e
"
)

s
t
r
u
c
t
u
r
e
(
x
*
2
4
*
6
0
*
6
0
,

c
l
a
s
s
=
c
(
"
P
O
S
I
X
t
"
,
"
P
O
S
I
X
c
t
"
)
)

n
ex

t
d

a
y

d
a
t
e

+
d
a
y
s
(
1
)

d
a
t
e

+
1

s
e
q
(
d
a
t
e
,

l
e
n
g
t
h
=

2
,
b
y

=
"
d
a
y
"
)
[
2
]

p
rev

io
u

s
d
a
y

d
a
t
e

-
d
a
y
s
(
1
)

d
a
t
e

-
1

s
e
q
(
d
a
t
e
,

l
e
n
g
t
h
=

2
,
b
y

=
"
-
1
d
a
y
"
)
[
2
]

D
S
T

a
n
d
tim

e
zo
n
es

x
d

a
y
s

sin
ce

d
a
te

(d
a
y

ex
a
ctly

2
4

h
o
u

rs)
d
a
t
e

+
d
d
a
y
s
(
x
)

s
e
q
(
d
a
t
e
,

l
e
n
g
t
h

=
2
,

b
y

=
p
a
s
t
e
(
x
,
"
d
a
y
"
)
)
[
2
]

(a
llo

w
in

g
fo

r
D

S
T

)
d
a
t
e

+
d
a
y
s
(
x
)

d
a
t
e

+
f
l
o
o
r
(
x
)

s
e
q
(
d
a
t
e
,

l
e
n
g
t
h

=
2
,

b
y

=
p
a
s
t
e
(
x
,
"
D
S
T
d
a
y
"
)
)
[
2
]

d
isp

la
y

d
a
te

in
n

ew
tim

e
zo

n
e

w
i
t
h
_
t
z
(
d
a
t
e
,

"
T
Z
"
)

a
s
.
P
O
S
I
X
c
t
(
f
o
r
m
a
t
(
a
s
.
P
O
S
I
X
c
t
(
d
a
t
e
)
,

t
z
=

"
T
Z
"
)
,

t
z
=

"
T
Z
"
)

k
eep

clo
ck

tim
e,

rep
la

ce
tim

e
zo

n
e

f
o
r
c
e
_
t
z
(
d
a
t
e
,

t
z

=
"
T
Z
"
)

E
xp

lo
rin

g
seq

u
en

ce
d
a
t
e

+
c
(
0
:
9
)

*
d
a
y
s
(
1
)

s
e
q
(
d
a
t
e
,
l
e
n
g
t
h
=

1
0
,

b
y
=

"
d
a
y
"
)

s
e
q
(
d
a
t
e
,
l
e
n
g
t
h

=
1
0
,
b
y

=
"
D
S
T
d
a
y
"
)

ev
ery

2
n

d
w

eek
d
a
t
e

+
c
(
0
:
2
)

*
w
e
e
k
s
(
2
)

s
e
q
(
d
a
t
e
,

l
e
n
g
t
h

=
3
,

b
y
=

"
2

w
e
e
k
"
)

s
e
q
(
d
a
t
e
,

l
e
n
g
t
h

=
3
,

b
y
=

"
2
w
e
e
k
"

fi
rst

d
a
y

o
f

m
o
n
th

f
l
o
o
r
_
d
a
t
e
(
d
a
t
e
,

"
m
o
n
t
h
"
)

a
s
.
D
a
t
e
(
f
o
r
m
a
t
(
d
a
t
e
,
"
%
Y
-
%
m
-
0
1
"
)
)

a
s
.
P
O
S
I
X
c
t
(
f
o
r
m
a
t
(
d
a
t
e
,
"
%
Y
-
%
m
-
0
1
"
)
)

ro
u
n

d
to

n
ea

rest
fi
rst

o
f

m
o
n
th

r
o
u
n
d
_
d
a
t
e
(
d
a
t
e
,
"
m
o
n
t
h
"
)

ex
tra

ct
y
ea

r
v
a
lu

e
y
e
a
r
(
d
a
t
e
)

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
a
t
e
,
"
%
Y
"
)
)

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
a
t
e
,
"
%
Y
"
)
)

ch
a
n

g
e

y
ea

r
v
a
lu

e
y
e
a
r
(
d
a
t
e
)

<
-
z

a
s
.
D
a
t
e
(
f
o
r
m
a
t
(
d
a
t
e
,

"
z
-
%
m
-
%
d
"
)
)

a
s
.
P
O
S
I
X
c
t
(
f
o
r
m
a
t
(
d
a
t
e
,

"
z
-
%
m
-
%
d
"
)
)

d
a
y

o
f

w
eek

w
d
a
y
(
d
a
t
e
)

#
S
u
n

=
1

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
a
t
e
,
"
%
w
"
)
)

#
S
u
n

=
0

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
a
t
e
,

"
%
w
"
)
)

#
S
u
n

=
0

d
a
y

o
f

y
ea

r
y
d
a
y
(
d
a
t
e
)

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
a
t
e
,

"
%
j
"
)
)

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
a
t
e
,
"
%
j
"
)
)

ex
p

ress
a
s

d
ecim

a
l

o
f

y
ea

r
d
e
c
i
m
a
l
_
d
a
t
e
(
d
a
t
e
)

P
a
rsin

g
d
a
tes

z
=
"
1
9
7
0
-
1
0
-
1
5
"

y
m
d
(
z
)

a
s
.
D
a
t
e
(
z
)

a
s
.
P
O
S
I
X
c
t
(
z
)

z
=
"
1
0
/
1
5
/
1
9
7
0
"

m
d
y
(
z
)

a
s
.
D
a
t
e
(
z
,
"
%
m
/
%
d
/
%
Y
"
)

a
s
.
P
O
S
I
X
c
t
(
s
t
r
p
t
i
m
e
(
z
,

"
%
m
/
%
d
/
%
Y
"
)
)

z
=
1
5
1
0
1
9
7
0

d
m
y
(
z
)

a
s
.
D
a
t
e
(
a
s
.
c
h
a
r
a
c
t
e
r
(
z
)
,

a
s
.
P
O
S
I
X
c
t
(
a
s
.
c
h
a
r
a
c
t
e
r
(
z
)
,
t
z

=
"
G
M
T
"
,

f
o
r
m
a
t
=

"
%
d
%
m
%
Y
"
)

f
o
r
m
a
t

=
"
%
d
%
m
%
Y
"
)

D
u
ra
tio

n
s
co
m
pa

riso
n

D
u

ra
tio

n
lu
b
rid

ate
B

a
se

R

1
seco

n
d

s
e
c
o
n
d
s
(
1
)

a
s
.
d
i
f
f
t
i
m
e
(
1
,
u
n
i
t

=
"
s
e
c
s
"
)

5
d
a
y
s,

3
h
o
u

rs
a
n

d
-

1
m

in
u

te
n
e
w
_
d
u
r
a
t
i
o
n
(
d
a
y

=
5
,

a
s
.
d
i
f
f
t
i
m
e
(
6
0

*
2
4

*
5

+
6
0

*
3
-

1
,

u
n
i
t
=

"
m
i
n
s
"
)

h
o
u
r

=
3
,

m
i
n
u
t
e

=
-
1
)

#
T
i
m
e

d
i
f
f
e
r
e
n
c
e

o
f

7
3
7
9

m
i
n
s

1
m

o
n
th

m
o
n
t
h
s
(
1
)

1
y
ea

r
y
e
a
r
s
(
1
)

T
ab

le
3:

lu
b
rid

ate
p
rov

id
es

a
sim

p
le

altern
ative

for
m

an
y

d
ate

an
d

tim
e

related
op

eration
s.

T
ab

le
ad

ap
ted

from
G

roth
en

d
ieck

an
d

P
etzold

t
(2

0
04).

Journal of Statistical Software 5

Order of elements in date-time Parse function

year, month, day ymd()

year, day, month ydm()

month, day, year mdy()

day, month, year dmy()

hour, minute hm()

hour, minute, second hms()

year, month, day, hour, minute, second ymd_hms()

Table 4: Parse function names are based on the order that years, months, and days appear
within the dates to be parsed.

[1] "2010-12-31 UTC" "2011-01-01 UTC"

These functions create a POSIXct date-time object that matches the date described by the
character string. The functions automatically recognize the separators commonly used to
record dates. These include: “-”, “/”, “.”, and “” (i.e., no separator). When a ymd() function
is applied to a vector of dates, lubridate will assume that all of the dates have the same
order and the same separators. ymd() type functions also exist for times recorded with hours,
minutes, and seconds. Hour, minute, and second measurements that are not accompanied by
a date will be parsed as period objects, which are a type of timespan object, see Section 5.4.
These functions make it simple to parse any date-time object that can be converted to a
character string. See Table 4 for a complete list of ymd() type parsing functions.

4. Manipulating date-times

Every date-time is a combination of different elements, each with its own value. For example,
most date-times include a year value, a month value, a day value and so on. Together these
elements specify the exact moment that the date-time refers to. We can easily extract each
element of a date-time with the accessor function that has its name, as shown in Table 5. For
example, if we save the current system time

R> date <- now()

[1] "2010-02-25 09:51:48 CST"

we can extract each of its elements. Note that this was the system time when this example
was written. now() will return a different date-time each time it is used.

R> year(date)

[1] 2010

R> minute(date)

6 Dates and Times Made Easy with lubridate

Date component Accessor

Year year()

Month month()

Week week()

Day of year yday()

Day of month mday()

Day of week wday()

Hour hour()

Minute minute()

Second second()

Time zone tz()

Table 5: Each date-time element can be extracted with its own accessor function.

[1] 51

For the month and weekday elements (wday), we can also specify whether we want to extract
the numerical value of the element, an abbreviation of the name of the month or weekday, or
the full name. For example,

R> month(date)

[1] 2

R> month(date, label = TRUE)

[1] Feb

R> month(date, label = TRUE, abbr = FALSE)

[1] February

R> wday(date, label = TRUE, abbr = FALSE)

[1] Thursday

We can also use any of the accessor functions to set the value of an element. This would also
change the moment that the date-time refers to. For example,

R> day(date) <- 5

[1] "2010-02-05 09:51:48 CST"

changes our date to the fifth day of the month. We can also set the elements to more
complicated values, e.g.,

Journal of Statistical Software 7

R> dates <- ymd_hms("2010-01-01 01:00:00", "2010-01-01 01:30:00")

R> minute(dates) <- mean(minute(dates))

[1] "2010-01-01 01:15:00 UTC" "2010-01-01 01:15:00 UTC"

Note that if we set an element to a larger value than it supports, the difference will roll over
into the next higher element. For example,

R> day(date) <- 30

[1] "2010-03-02 09:51:48 CST"

Setting the date elements provides one easy way to find the last day of a month. An even
easier method is described in Section 6.

R> day(date) <- 1

R> month(date) <- month(date) + 1

R> day(date) <- day(date) - 1

[1] "2010-03-31 09:51:48 CDT"

lubridate also provides an update method for date-times. This is useful if you want to change
multiple attributes at once or would like to create a modified copy instead of transforming in
place.

R> update(date, year = 2010, month = 1, day = 1)

[1] "2010-01-01 09:51:48 CST"

Finally, we can also change dates by adding or subtracting units of time from them. For
example, the methods below produce the same result.

R> hour(date) <- 12

[1] "2010-02-25 12:51:48 CST"

R> date <- date + hours(3)

[1] "2010-02-25 12:51:48 CST"

Notice that hours() (plural) is not the same function as hour() (singular). hours() creates
a new object that can be added or subtracted to a date-time. These objects are discussed in
the next section.

8 Dates and Times Made Easy with lubridate

5. Arithmetic with date-times

Arithmetic with date-times is more complicated than arithmetic with numbers, but it can
be done accurately and easily with lubridate. What complicates arithmetic with date-times?
Clock times are periodically re-calibrated to reflect astronomical conditions, such as the hour
of daylight or the Earth’s tilt on its axis relative to the sun. We know these re-calibrations as
daylight savings time, leap years, and leap seconds. Consider how one of these conventions
might complicate a simple addition task. If today were January 1st, 2010 and we wished to
know what day it would be one year from now, we could simply add 1 to the years element
of our date.

January 1st, 2010 + 1 year = January 1st, 2011

Alternatively, we could add 365 to the days element of our date because a year is equivalent
to 365 days.

January 1st, 2010 + 365 days = January 1st, 2011

Troubles arise if we try the same for January 1st, 2012. 2012 is a leap year, which means it
has an extra day. Our two approaches above now give us different answers because the length
of a year has changed.

January 1st, 2012 + 1 year = January 1st, 2013
January 1st, 2012 + 365 days = December 31st, 2012

At different moments in time, the lengths of months, weeks, days, hours, and even minutes
will also vary. We can consider these to be relative units of time; their length is relative to
when they occur. In contrast, seconds always have a consistent length. Hence, seconds are
exact units of time.

Researchers may be interested in exact lengths, relative lengths, or both. For example, the
speed of a physical object is most precisely measured in exact lengths. The opening bell of
the stock market is more easily modeled with relative lengths.

lubridate allows arithmetic with both relative and exact units by introducing four new time
related objects. These are instants, intervals, durations, and periods. These concepts are
borrowed from the Joda Time project (Colebourne and O’Neill 2010). Similar concepts for
instants, periods, and durations also appear in the C++ library Boost.Date Time (Garland
2011). lubridate provides helper functions, object classes and methods for using all four
concepts in the R language.

5.1. Instants

An instant is a specific moment in time, such as January 1st, 2012. We create an instant each
time we parse a date into R.

R> start_2012 <- ymd_hms("2012-01-01 12:00:00")

lubridate does not create a new class for instant objects. Instead, it recognizes any date-time
object that refers to a moment of time as an instant. We can test if an object is an instant
by using is.instant(). For example,

Journal of Statistical Software 9

R> is.instant(364)

[1] FALSE

R> is.instant(start_2012)

[1] TRUE

We can also capture the current time as an instant with now(), and the current day with
today().

5.2. Intervals

Intervals, durations, and periods are all ways of recording timespans. Of these, intervals are
the most simple. An interval is a span of time that occurs between two specific instants. The
length of an interval is never ambiguous, because we know when it occurs. Moreover, we can
calculate the exact length of any unit of time that occurs during it.lubridate introduces the
interval object class for modelling intervals.

We can create interval objects by subtracting two instants or by using the command
new_interval().

R> start_2011 <- ymd_hms("2011-01-01 12:00:00")

R> start_2010 <- ymd_hms("2010-01-01 12:00:00")

R> span <- start_2011 - start_2010

[1] 2010-01-01 12:00:00 -- 2011-01-01 12:00:00

We can access the start and end dates of an interval object with int_start() and int_end().
Intervals always begin at the date-time that occurs first and end at the date-time that occurs
last. Hence, intervals always have a positive length.

R> int_start(span)

[1] "2010-01-01 12:00:00 UTC"

R> int_end(span)

[1] "2011-01-01 12:00:00 UTC"

Unfortunately, since intervals are anchored to their start and end dates, they are not very
useful for date-time calculations. It only makes sense to add an interval to its start date or
to subtract it from its end date.

R> start_2010 + span

[1] "2011-01-01 12:00:00 UTC"

10 Dates and Times Made Easy with lubridate

Adding intervals to other date-times will not produce an error message. Instead lubridate will
coerce the interval to a duration object, which is like an interval but without the reference
dates. See Section 5.3.

R> start_2011 + span

coercing interval to duration

[1] "2012-01-01 12:00:00 UTC"

In most cases this will return the intended result, but accuracy can be ensured by first
explicitly converting the interval to either a duration or a period, as described in the next
two sections.

We can convert any other type of timespan to an interval by pairing it to a start date with
as.interval(). For example:

R> as.interval(difftime(start_2011, start_2010), ymd("2010-03-05"))

[1] 2010-03-05 -- 2011-03-05

5.3. Durations

If we remove the start and end dates from an interval, we will have a generic time span that
we can add to any date. But how should we measure this length of time? If we record the
time span in seconds, it will have an exact length since seconds always have the same length.
We call such time spans durations. Alternatively, we can record the time span in larger units,
such as minutes or years. Since the length of these units varies over time, the exact length of
the time span will depend on when it begins. These non-exact time spans are called periods
and will be discussed in the next section.

The length of a duration is invariant to leap years, leap seconds, and daylight savings time
because durations are measured in seconds. Hence, durations have consistent lengths and
can be easily compared to other durations. Durations are the appropriate object to use
when comparing time based attributes, such as speeds, rates, and lifetimes. difftime objects
from base R are one type of duration object. lubridate provides a second type: duration

class objects. These objects can be used with other date-time objects without worrying
about what units they are displayed in. A duration object can be created with the function
new_duration():

R> new_duration(60)

[1] 60s

For large durations, it becomes inconvenient to describe the length in seconds. For example,
not many people would recognize 31557600 seconds as the length of a standard year. For this
reason, large duration objects are followed in parentheses by an estimated length. Estimated
units are created using the following relationships. A minute is 60 seconds, an hour 3600
seconds, a day 86400, a week 604800, and a year 31557600 (365.25 days). Month units are

Journal of Statistical Software 11

not used because they are so variable. The estimates are only provided for convenience; the
underlying object is always recorded as a fixed number of seconds.

duration objects can be easily created with the helper functions dyears(), dweeks(), ddays(),
dhours(), dminutes(), and dseconds(). The d in the title stands for duration and distin-
guishes these objects from period objects, discussed in Section 5.4. Each object creates a
duration in seconds using the estimated relationships given above. The argument of each
function is the number of estimated units we wish to include in the duration. For example,

R> dminutes(1)

[1] 60s

R> dseconds(60)

[1] 60s

R> dminutes(2)

[1] 120s

R> 1:3 * dhours(1)

[1] 3600s (1h) 7200s (2h) 10800s (3h)

Durations can be added and subtracted to any instant object. For example,

R> start_2011 + dyears(1)

[1] "2012-01-01 12:00:00 UTC"

R> start_2012 <- ymd_hms("2012-01-01 12:00:00")

R> start_2012 + dyears(1)

[1] "2012-12-31 12:00:00 UTC"

Durations can also be added to or subtracted from intervals and other durations. For example,

R> dweeks(1) + ddays(6) + dhours(2) + dminutes(1.5) + dseconds(3)

[1] 1130493s (13.08d)

We can also create durations from interval and period objects using as.duration().

R> as.duration(span)

[1] 31536000s (365d)

12 Dates and Times Made Easy with lubridate

5.4. Periods

Periods record a time span in units larger than seconds, such as years, months, weeks, days,
hours, and minutes. For convenience, we can also create a period that only uses seconds, but
such a period would have the same properties as a duration. lubridate introduces the period

class to model periods. We construct period objects with the helper functions years(),
months(), weeks(), days(), hours(), minutes(), and seconds().

R> months(3)

[1] 3 months

R> months(3) + days(2)

[1] 3 months and 2 days

These functions do not contain a“d” in their name, because they do not create durations; they
no longer have consistent lengths (as measured in seconds). For example, months(2) always
has the length of two months even though the length of two months will change depending on
when the period begins. For this reason, we can not compute exactly how long a period will be
in seconds until we know when it occurs. However, we can still perform date-time calculations
with periods. When we add or subtract a period to an instant, the period becomes anchored
to the instant. The instant tells us when the period occurs, which allows us to calculate its
exact length in seconds.

As a result, we can use periods to accurately model clock times without knowing when events
such as leap seconds, leap days, and DST changes occur.

R> start_2012 + years(1)

[1] "2013-01-01 12:00:00 UTC"

vs.

R> start_2012 + dyears(1)

[1] "2012-12-31 12:00:00 UTC"

We can also convert other timespans to period objects with the function as.period().

R> as.period(span)

[1] 1 year

Periods can be added to instants, intervals, and other periods, but not to durations.

5.5. Division with timespans

We often wish to answer questions that involve dividing one timespan by another. For ex-
ample, “how many weeks are there between Halloween and Christmas?” or “how old is a

Journal of Statistical Software 13

person born on September 1, 1976?” Objects of each timespan class—interval, duration,
and period—can be divided by objects of the others. The results of these divisions varies
depending on the nature of the timespans involved. Modulo operators (i.e, %% and %/%) also
work between timespan classes.

To illustrate this, we make an interval that lasts from Halloween until Christmas.

R> halloween <- ymd("2010-10-31")

R> christmas <- ymd("2010-12-25")

R> interval <- new_interval(halloween, christmas)

[1] 2010-10-31 -- 2010-12-25

Since durations are an exact measurement of a timespan, we can divide this interval by a
duration to get an exact answer.

R> interval / dweeks(1)

[1] 7.857143

Intervals are also exact measures of timespans. Although it is more work, we could divide
an interval by another interval to get an exact answer. This gives the same answer as above
because lubridate automatically coerces interval objects in the denominator to duration

objects.

R> interval / new_interval(halloween, halloween + weeks(1))

interval denominator coerced to duration

[1] 7.857143

Division is not possible with periods. Since periods have inconsistent lengths, we can not
express the remainder as a decimal. For example, if we were to divide our interval by months,
the remainder would be 24 days.

R> interval \%\% months(1)

[1] 24 days

Should we calculate 24 days as 24/30 = 0.8 months since November has 30 days? Or should
we calculate 24 days as 24/31 = 0.77 months since December has 31 days? Both November
and December are included in our numerator. If we want an exact calculation, we should use
a duration instead of a period.

If we attempt to divide by a period object, lubridate will return a warning message and
automatically perform integer division: it returns the integer value equal to the number of
whole periods that occur in the timespan. This is equivalent to the %/% operator. As shown
above, we can retrieve the remainder using the %% operator.

R> interval / months(1)

14 Dates and Times Made Easy with lubridate

Instant Interval Duration Period

Instant N/A instant instant instant
Interval instant interval∗ interval interval
Duration instant interval duration period
Period instant interval period period

Table 6: Adding two date-time objects will create the above type of object. (∗ = A duration
if the intervals do not align.)

estimate only: convert periods to intervals for accuracy

[1] 1

R> interval %/% months(1)

[1] 1

In summary, arithmetic with date-times involves four types of objects: instants, intervals,
durations, and periods. lubridate creates new object classes for intervals, durations, and
periods. It recognizes that most common date-time classes, such as POSIXt and Date, refer
to instants. Table 6 describes which objects can be added to each other and what type of
object will result.

6. Rounding dates

Like numbers, date-times occur in order. This allows date-times to be rounded. lubridate
provides three methods that help perform this rounding: round_date(), floor_date(), and
ceiling_date(). The first argument of each function is the date-time or date-times to be
rounded. The second argument is the unit to round to. For example, we could round April
20, 2010 to the nearest day:

R> april20 <- ymd_hms("2010-04-20 11:33:29")

R> round_date(april20, "day")

[1] "2010-04-20 UTC"

or the nearest month.

R> round_date(april20, "month")

[1] "2010-05-01 UTC"

Notice that rounding a date-time to a unit sets the date to the start of that unit (e.g,
round_date(april20, "day") sets the hours, minutes, and seconds information to 00).

ceiling_date() provides a second simple way to find the last day of a month. Ceiling the
date to the next month and then subtract a day.

Journal of Statistical Software 15

R> ceiling_date(april20, "month") - days(1)

[1] "2010-04-30 UTC"

7. Time zones

Time zones give multiple names to the same instant. For example, “2010-03-26 11:53:24
CDT” and “2010-03-26 12:53:24 EDT” both describe the same instant. The first shows how
the instant is labeled in the United States’ central time zone (CDT). The second shows how the
same instant is labelled in the United States’ eastern time zone (EDT). Time zones complicate
date-time data but are useful for mapping clock time to local daylight conditions. When
working with instants, it is standard to give the clock time as it appears in the Coordinated
Universal time zone (UTC). This saves calculations but can be annoying if your computer
insists on translating times to your current time zone. It may also be inconvenient to discuss
clock times that occur in a place unrelated to the data.

lubridate eases the frustration caused by time zones in two ways. We can change the time
zone in which an instant is displayed by using the function with_tz(). This changes how the
clock time is displayed, but not the specific instant of time that is referred to. For example,

R> date

[1] "2010-01-01 09:51:48 CST"

R> with_tz(date, "UTC")

[1] "2010-01-01 15:51:48 UTC"

force_tz() does the opposite of with_tz(): it changes the actual instant of time saved in
the object, while keeping the displayed clock time the same. The new time zone value alerts
us to this change. For example, the code below moves us to a new instant that occurs 6 hours
earlier.

R> date

[1] "2010-01-01 09:51:48 CST"

R> force_tz(date, "UTC")

[1] "2010-01-01 09:51:48 UTC"

with_tz() and force_tz() only work with time zones recognized by your computer’s oper-
ating system. This list of time zones will vary between computers. See the base R help page
for Sys.timezone() for more information.

16 Dates and Times Made Easy with lubridate

8. Daylight savings time

In many parts of the world, the official clock time springs forward by one hour in the spring
and falls back one hour in the fall. For example, in Chicago, Illinois a change in daylight
savings time occurred at 2:00 AM on March 14, 2010. The last instant to occur before this
change was 2010-03-14 01:59:59 CST.

R> dst_time <- ymd_hms("2010-03-14 01:59:59")

R> dst_time <- force_tz(dst_time, "America/Chicago")

[1] "2010-03-14 01:59:59 CST"

One second later, Chicago clock times read

R> dst_time + dseconds(1)

[1] "2010-03-14 03:00:00 CDT"

It seems that we gained an extra hour during that second, which is how daylight savings time
works. We can completely avoid the changes in clock time caused by daylight savings times
by working with periods instead of durations. For example,

R> dst_time + hours(2)

[1] "2010-03-14 03:59:59 CDT"

displays the clock time that usually occurs two hours after 1:59:59 AM. When using periods,
we do not have to track DST changes because they will not affect our calculations. This will
prevent errors when we are trying to model events that depend on clock times, such as the
opening and closing bells of the New York Stock Exchange. Adding a duration would give us
the actual clock time that appeared exactly two hours later on March 14, 2010. This prevents
changes in clock time from interfering with exact measurements, such as the life times of a
light bulb, but will create surprises if clock times are important to our analysis.

R> dst_time + dhours(2)

[1] "2010-03-14 04:59:59 CDT"

If we ever inadvertently try to create an instant that occurs in the one hour “gap” between
2010-03-14 01:59:59 CST and 2010-03-14 03:00:00 CDT, lubridate will return NA since such
times are not available.

We can also avoid the complications created by daylight savings time by keeping our date-
times in a time zone such as “UTC”, which does not adopt daylight savings hours.

9. Case study 1

The next two sections will work through some techniques using lubridate. First, we will use
lubridate to calculate the dates of holidays. Then we will use lubridate to explore an example
data set (lakers).

Journal of Statistical Software 17

9.1. Thanksgiving

Some holidays, such as Thanksgiving (US) and Memorial Day (US) do not occur on fixed
dates. Instead, they are celebrated according to a common rule. For example, Thanksgiving
is celebrated on the fourth Thursday of November. To calculate when Thanksgiving will occur
in 2010, we can start with the first day of 2010.

R> date <- ymd("2010-01-01")

[1] "2010-01-01 UTC"

We can then add 10 months to our date, or directly set the date to November.

R> month(date) <- 11

[1] "2010-11-01 UTC"

We check which day of the week November 1st is.

R> wday(date, label = TRUE, abbr = FALSE)

[1] Monday

This implies November 4th will be the first Thursday of November.

R> date <- date + days(3)

[1] "2010-11-04 UTC"

R> wday(date, label = TRUE, abbr = FALSE)

[1] Thursday

Next, we add three weeks to get to the fourth Thursday in November, which will be Thanks-
giving.

R> date + weeks(3)

[1] "2010-11-25 UTC"

9.2. Memorial Day

Memorial day also occurs according to a rule; it falls on the last Monday of May. To calculate
the date of Memorial day, we can again start with the first of the year.

R> date <- ymd("2010-01-01")

18 Dates and Times Made Easy with lubridate

[1] "2010-01-01 UTC"

Next, we set the month to May.

R> month(date) <- 5

[1] "2010-05-01 UTC"

Now our holiday occurs in relation to the last day of the month instead of the first. We find
the last day of the month by rounding up to the next month and then subtracting a day.

R> date <- ceiling_date(date, "month") - days(1)

[1] "2010-05-31 UTC"

We can then check which day of the week May 31st falls on. It happens to be a Monday,
so we are done. If May 31st had been another day of the week, we could’ve subtracted an
appropriate number of days to get to the last Monday of May.

R> wday(date, label = TRUE, abbr = FALSE)

[1] Monday

10. Case study 2

The lakers data set contains play by play statistics of every major league basketball game
played by the Los Angeles Lakers during the 2008-2009 season. This data is from http://www.

basketballgeek.com/downloads/ (Parker 2010) and comes with the lubridate package. We
will explore the distribution of Lakers’ games throughout the year as well as the distribution
of plays within Lakers’ games. We choose to use the ggplot2 (Wickham 2009) package to
create our graphs.

The lakers data set comes with a date variable which records the date of each game. Using
the str() command, we see that R recognizes the dates as integers.

R> str(lakers$date)

int [1:34624] 20081028 20081028 20081028 ...

Before we can work with them as dates, we must parse them into R as date-time objects. The
dates appear to be arranged with their year element first, followed by the month element, and
then the day element. Hence, we should use the ymd() parsing function.

R> lakers$date <- ymd(lakers$date)

R> str(lakers$date)

http://www.basketballgeek.com/downloads/
http://www.basketballgeek.com/downloads/

Journal of Statistical Software 19

Figure 1: Home games and away games appear to occur in clusters.

POSIXct[1:34624], format: "2008-10-28" "2008-10-28" ...

R now recognizes the dates as POSIXct date-time objects. It will now treat them as date-times
in any functions that have POSIXct specific methods. For example, if we plot the occurrences
of home and away games throughout the season, our x axis will display date-time information
for the tick marks (Figure 1).

R> qplot(date, 0, data = lakers, colour = game_type)

Figure 1 shows that games are played continuously throughout the season with a few short
breaks. The frequency of games seems lower at the start of the season and games appear to
be grouped into clusters of home games and away games. The tick marks and breaks on the
x axis are automatically generated by the lubridate method pretty.dates().

Next we will examine how Lakers games are distributed throughout the week. We use the
wday() command to extract the day of the week of each date.

R> qplot(wday(date, label = TRUE, abbr = FALSE), data = lakers,

geom = "histogram")

The frequency of basketball games varies throughout the week (Figure 2). Surprisingly, the
highest number of games are played on Tuesdays.

Now we look at the games themselves. In particular, we look at the distribution of plays
throughout the game. The lakers data set lists the time that appeared on the game clock
for each play. These times begin at 12:00 at the beginning of each period and then count
down to 00:00, which marks the end of the period. The first two digits refer to the number
of minutes left in the period. The second two digits refer to the number of seconds.

The times have not been parsed as date-time data to R. It would be difficult to record the time
data as a date-time object because the data is incomplete: a minutes and seconds element

20 Dates and Times Made Easy with lubridate

Figure 2: More games occur on Tuesdays than any other day of the week.

are not sufficient to identify a unique instant of time. However, we can store the minutes
and seconds information as a period object, as defined in Section 5.4, using the ms() parse
function.

R> lakers$time <- ms(lakers$time)

Since periods have relative lengths, it is dangerous to compare them to each other. So we
should next convert our periods to durations, which have exact lengths.

R> lakers$time <- as.duration(lakers$time)

This allows us to directly compare different durations. It would also allow us to determine
exactly when each play occurred by adding the duration to the instant the game began.
(Unfortunately, the starting time for each game is not available in the data set). However, we
can still calculate when in each game each play occurred. Each period of play is 12 minutes
long and overtime—the 5th period—is 5 minutes long. At the start of each period, the game
clock begins counting down from 12:00. So to calculate how much play time elapses before
each play, we subtract the time that appears on the game clock from a duration of 12, 24,
36, 48, or 53 minutes (depending on the period of play). We now have a new duration that
shows exactly how far into the game each play occurred.

R> lakers$time <- dminutes(c(12, 24, 36, 48, 53)[lakers$period]) -

+ lakers$time

We can now plot the number of events over time within each game (Figure 3). We can plot
the time of each event as a duration, which will display the number of seconds into the game
each play occurred on the x axis,

Journal of Statistical Software 21

Figure 3: The graph on the left displays seconds on the x axis. The graph on the right uses
a more intuitive division with minutes.

R> qplot(time, data = lakers, geom = "histogram", binwidth = 60)

or we can take advantage of pretty.date() to make pretty tick marks by first transforming
each duration into a date-time. This helper function recognizes the most intuitive binning and
labeling of date-time data, which further enhances our graph. To change durations into date-
times we can just add them all to the same date-time. It does not matter which date we chose.
Since the range of our data occurs entirely within an hour, only the minutes information will
display in the graph.

R> lakers$minutes <- ymd("2008-01-01") + lakers$time

R> qplot(minutes, data = lakers, geom = "histogram", binwidth = 60)

We see that the number of plays peaks within each of the four periods and then plummets at
the beginning of the next period, Figure 3. The most plays occur in the last minute of the
game. Perhaps any shot is worth taking at this point or there’s less of an incentive not to
foul other players. Fewer plays occur in overtime, since not all games go to overtime.

Now lets look more closely at just one basketball game: the game played against the Boston
Celtics on Christmas of 2008. We can quickly model the amounts of time that occurred
between each shot attempt.

R> game1 <- lakers[lakers$date == ymd("20081225"),]

R> attempts <- game1[game1$etype == "shot",]

The waiting times between shots will be the timespan that occurs between each shot attempt.
Since we have recorded the time of each shot attempt as a duration (above), we can record
the differences by subtracting the two durations. This automatically creates a new duration
whose length is equal to the difference between the first two durations.

22 Dates and Times Made Easy with lubridate

Figure 4: Wait times between shot attempts rarely lasted more than 30 seconds.

R> attempts$wait <- c(attempts$time[1], diff(attempts$time))

R> qplot(as.integer(wait), data = attempts, geom = "histogram", binwidth = 2)

Rarely did 30 seconds go by without at least one shot attempt, but on occasion up to 50
seconds would pass without an attempt.

We can also examine changes in the score throughout the game. This reveals that though the
game was eventful, the Lakers maintained a lead for the most of the game, Figure 5. Note:
the necessary calculations are made simpler by the ddply() function from the plyr package,
which lubridate automatically loads.

R> game1_scores <- ddply(game1, "team", transform, score = cumsum(points))

R> game1_scores <- game1_scores[game1_scores$team != "OFF",]

R> qplot(ymd("2008-01-01") + time, score, data = game1_scores,

geom = "line", colour = team)

11. Conclusion

Date-times create technical difficulties that other types of data do not. They must be specifi-
cally identified as date-time data, which can be difficult due to the overabundance of date-time
classes. It can also be difficult to access and manipulate the individual pieces of data con-
tained within a date-time. Arithmetic with date-times is often appropriate, but must follow
different rules than arithmetic with ordinal numbers. Finally, date-related conventions such
as daylight savings time and time zones make it difficult to compare and recognize different
moments of time.

Base R handles many of these difficulties, but not all. Moreover, base R’s date-time methods
can be complicated and confusing. lubridate makes it to easier to work with date-time data

Journal of Statistical Software 23

Figure 5: The lead changed between the Lakers and Celtics numerous times during the game.

in R. The package provides a set of standard methods for most common date-time classes.
These methods make it simple to parse, manipulate, and perform calculations with date-time
objects. By implementing the time concepts pioneered by projects such as Joda Time and
Boost.Date Time, lubridate helps researchers perform precise calculations as well as model
tricky time-related processes. lubridate also makes it simple to switch between time zones
and to use or ignore daylight savings time.

Future work on the lubridate package will develop methods for handling partial dates and
for modeling recurrent events, such as stock market opening times, business days, or street
cleaning hours. In particular, we hope to create methods for R that work with reoccurring
temporal date patterns, which were introduced by Fowler (1997) and have been implemented
in Ruby by the runt project (Lipper 2008).

Acknowledgments

We would like to thank the National Science Foundation. This work was supported by the
NSF VIGRE Grant, number DMS-0739420.

References

Armstrong W (2009). fts: R Interface to tslib (A Time Series Library in C++). R package
version 0.7.6, URL http://CRAN.R-project.org/package=fts.

Colebourne S, O’Neill BS (2010). “Joda-Time – Java Date and Time API.” Release 1.6.2,
URL http://joda-time.sourceforge.net/.

http://CRAN.R-project.org/package=fts
http://joda-time.sourceforge.net/

24 Dates and Times Made Easy with lubridate

Fowler M (1997). “Recurring Events for Calendars.” URL http://martinfowler.com/

apsupp/recurring.pdf.

Garland J (2011). “Boost.Date Time – C++ library.” Release 1.46.1, URL http://www.

boost.org/.

Grothendieck G, Petzoldt T (2004). “Date and Time Classes in R.” R News, 4(1), 32.

Hallman J (2010). tis: Time Indexes and Time Indexed Series. R package version 1.12, URL
http://CRAN.R-project.org/package=tis.

James D, Hornik K (2010). chron: Chronological Objects which Can Handle Dates and
Times. R package version 2.3-35., URL http://CRAN.R-project.org/package=chron.

Lipper M (2008). “runt – Ruby Temporal Expressions.” Release 0.7.0, URL http://runt.

rubyforge.org/.

Parker RJ (2010). “Basketball Geek: Advancing Our Understanding of the Game of Basket-
ball.” URL http://www.basketballgeek.com/data/.

Portfolio and Risk Advisory Group, Commerzbank Securities (2009). its: Irregular Time
Series. R package version 1.1.8, URL http://CRAN.R-project.org/package=its.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Ryan JA, Ulrich JM (2010). xts: Extensible Time Series. R package version 0.7-1, URL
http://CRAN.R-project.org/package=xts.

Trapletti A, Hornik K (2009). tseries: Time Series Analysis and Computational Finance.
R package version 0.10-22., URL http://CRAN.R-project.org/package=tseries.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New
York.

Wuertz D, Chalabi Y (2010a). timeDate: Rmetrics – Chronological and Calendarical Objects.
R package version 2110.88, URL http://CRAN.R-project.org/package=timeDate.

Wuertz D, Chalabi Y (2010b). timeSeries: Rmetrics - Financial Time Series Objects.
R package version 2110.87, URL http://CRAN.R-project.org/package=timeSeries.

Zeileis A, Grothendieck G (2005). “zoo: S3 Infrastructure for Regular and Irregular Time
Series.” Journal of Statistical Software, 14(6), 1–27. URL http://www.jstatsoft.org/

v14/i06/.

http://martinfowler.com/apsupp/recurring.pdf
http://martinfowler.com/apsupp/recurring.pdf
http://www.boost.org/
http://www.boost.org/
http://CRAN.R-project.org/package=tis
http://CRAN.R-project.org/package=chron
http://runt.rubyforge.org/
http://runt.rubyforge.org/
http://www.basketballgeek.com/data/
http://CRAN.R-project.org/package=its
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=xts
http://CRAN.R-project.org/package=tseries
http://CRAN.R-project.org/package=timeDate
http://CRAN.R-project.org/package=timeSeries
http://www.jstatsoft.org/v14/i06/
http://www.jstatsoft.org/v14/i06/

Journal of Statistical Software 25

Affiliation:

Garrett Grolemund
Rice University
Houston, TX 77251-1892, United States of America
E-mail: grolemund@rice.edu

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 40, Issue 3 Submitted: 2010-07-23
April 2011 Accepted: 2010-11-29

mailto:grolemund@rice.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Motivation
	Parsing date-times
	Manipulating date-times
	Arithmetic with date-times
	Instants
	Intervals
	Durations
	Periods
	Division with timespans

	Rounding dates
	Time zones
	Daylight savings time
	Case study 1
	Thanksgiving
	Memorial Day

	Case study 2
	Conclusion

