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Abstract

We introduce an R package SPECIES for species richness or diversity estimation. This
package provides simple R functions to compute point and confidence interval estimates of
species number from a few nonparametric and semi-parametric methods. For the methods
based on nonparametric maximum likelihood estimation, the R functions are wrappers for
Fortran codes for better efficiency. All functions in this package are illustrated using real
data sets.
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1. Introduction

1.1. Species richness estimation problem

The species problem has a wide range of important applications spanning multiple disciplines
including ecology (Fisher et al. 1943; Boulinier et al. 1998), linguistics (Efron and Thisted
1976; McNeil 1973; Thisted and Efron 1987), numismatics (Stam 1987), and genomics (Mao
2002; Wang et al. 2005; Acinas et al. 2004; Hong et al. 2006). A typical species data set
contains a series of counts xi, i = 1, ..., D, recording the number of individuals observed from
a total of D distinct species in the sample. The counts data are often further summarized
into the frequency of frequencies data in the form of n = (n1, ..., nK) where nj =

∑D
i I{xi =

j} (I is the indicator function) is the number of species with j individuals observed, and
K = maxi xi is the maximum number of individuals observed from any single species. In the
following context, we shall reserve i for indexing the individual species, and j for the sample
species abundance. The total number of the distinct species N in the underlying population
is the parameter for estimation.
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1.2. Overview of this package

A rich literature exists on this problem. For an excellent review, we recommend
Bunge and Fitzpatrick (1993). There are a few well-known software tools available for com-
puting species diversity, including EstimateS (Colwell 2009), SPADE (Chao 2010) and ws2m
(Turner et al. 2003). These tools all offer a menu-driven interface to calculate the estimates
for a single data set, but none provides the functionality that allows users to calculate the
estimates repeatedly from the command line. This feature is appealing when one needs to
systematically investigate the behavior of different estimators using Monte-Carlo simulations.

Recently, several new methods have been developed based on nonparametric maximum like-
lihood (NPML) estimation (Norris and Pollock 1998; Wang and Lindsay 2005; Wang 2010).
These methods are competitive in performance while all complicated in computing. Therefore
it is highly desirable to integrate these methods into a software tool. The R (R Development
Core Team 2011) package SPECIES is a creation to this end, having seven main functions
including chao1984(), ChaoLee1992(), ChaoBunge(), jackknife(), unpmle(), pnpmle()

and pcg(), implementing the lower bound estimator by Chao (1984), two coverage-based
estimators by Chao and Lee (1992), the coverage-duplication estimator by Chao and Bunge
(2002), the Jackknife estimator by Burnham and Overton (1978, 1979), the unconditional
NPML estimator (NPMLE) by Norris and Pollock (1998), the penalized conditional NPMLE
by Wang and Lindsay (2005), and the the Poisson-Compound Gamma estimator by Wang
(2010) respectively. The SPECIES package is available from the the Comprehensive R Archive
Network at http://CRAN.R-project.org/package=SPECIES.

2. Methods and package functions

All functions in SPECIES require the input data to be summarized in the format of frequency
of frequencies. The input data, denoted as n, must be defined as a two-column matrix or data
frame, where the first column is j and the second column is nj for j = 1, ...,K, sorted in the
ascending order of j. The zero-frequencies (nj = 0) can be omitted from n. The following
example is the famous Malayan butterfly data (Fisher et al. 1943) stored in SPECIES:

R> library("SPECIES")

R> data("butterfly")

R> butterfly

j n_j

1 1 118

2 2 74

3 3 44

4 4 24

5 5 29

6 6 22

7 7 20

8 8 19

9 9 20

:

25 25 119

http://CRAN.R-project.org/package=SPECIES
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In this study, a total of D = 620 distinct butterfly species were observed, of which, 118 were
singletons. The frequency n25 denotes the collapsed count

∑
j≥25 nj . Other data sets stored

in SPECIES include the expressed sequence tag(EST) data (EST, Wang et al. 2005), the
microbial species data (microbial, Hong et al. 2006), the traffic data (traffic, Böhning and
Schön 2005), cottontail rabbits data (cottontail, Chao 1987) and the insects data (insects,
Burnham and Overton 1979).

The first three functions, chao1984(), ChaoLee1992(), and ChaoBunge(), implement multiple
methods contributed by Chao and co-authors:

chao1984(n, conf = 0.95),

ChaoLee1992(n, t = 10, method = "all", conf = 0.95),

ChaoBunge(n, t = 10, conf = 0.95).

The argument n is the input data as described above. The argument method in ChaoLee1992()

can be chosen as ACE or ACE-1 (Chao and Lee 1992). One can also specify method = "all"

(default) to compute both estimators. The argument t is an integer-valued cut-off that
defines the less abundant (j ≤ t) or more abundant species (j > t). The species data are
often extremely right skewed. The less abundant species are more informative in predicting
the number of the unseen species. The estimators ACE, ACE-1, and ChaoBunge are sensitive
to the choice of t. Avoiding an over-large t helps reduce the risk of extreme variance or bias.
The default value of t is 10 as suggested by the authors in their original papers. For the
confidence interval with a specified level by the argument conf (default 0.95), we used a
log-transformation procedure from Chao (1987) for better coverage.

Let D =
∑K

j=1 nj , and T =
∑K

j=1 j · nj . The chao1984 estimator is a lower-bound estimator
as follows:

N̂chao1984 = D + 2n21/n2. (1)

The estimator N̂chao1984 is simple, but typically biased downward as named (see a systematic
investigation in Wang and Lindsay 2005, or the traffic data example below). The ACE,
ACE-1, and ChaoBunge estimators are all based on a concept called coverage, denoted as C,
defined in Good (1953) as follows:

C =

N∑
i=1

piI(xi > 0), (2)

where pi is the relative abundance of species i, and xi = 0 if species i is not observed. The
term coverage measures the total abundance of observed species in the population. If the
species abundance pi is homogeneous across all species, then clearly N = D/C. An estimator
of the C from Good (1953) is Ĉ = 1− n1/T , resulting in the Good’s estimator

N̂G = D/Ĉ. (3)

Like N̂chao1984, the Good’s estimator N̂G is well known for under-estimation because natural
species populations are typically heterogeneous(Chao and Lee 1992). To account for the
heterogeneity of species abundance, Chao and Lee (1992) proposed two improved estimators
by estimating the coefficient of variation (CV) of pi. The resulting estimators are

N̂ACE =
D

Ĉ
+
T (1− Ĉ)

Ĉ
γ̂2, (4)
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N̂ACE−1 =
D

Ĉ
+
T (1− Ĉ)

Ĉ
γ̃2, (5)

where γ̂ and γ̃ are two estimators of CV. In particular the second provides further bias
correction beyond γ̂, but typically incurring larger variance of N̂ACE−1.

For the ChaoBunge method, a Gamma mixed Poisson model was assumed. Let θ = P(X ≥ 2).
An estimator of the duplication proportion θ̂ was proposed in Chao and Bunge (2002), giving
the following extrapolation estimator

N̂ChaoBunge =

K∑
j=2

nj/θ̂. (6)

The fourth function jackknife() computes the jackknife estimator by Burnham and Overton
(1978, 1979),

jackknife(n, k = 5, conf = 0.95).

The kth order jackknife estimator is

N̂Jk = D +
k∑

j=1

(−1)j+1

(
k

j

)
nj . (7)

The Jackknife order is used to balance bias and variance. A higher order corrects for more
bias, but causes larger variance as well. The Jackknife order is specified by the argument k

with a default value 5. This function also automatically computes the order using a step-wise
testing procedure from the above papers. The argument conf specifies the confidence level
not only for the confidence interval, but also for the critical value used for the step-wise Z
test to determine the order. If the specified order is larger than the obtained from the test,
then the latter is used in the output. If the test-selected order exceeds 10, the estimate at
k = 10 will be reported (which though rarely happens in practice).

The rest three functions unpmle(), pnpmle() and pcg() are three variants of the nonpara-
metric maximum likelihood based approaches under a Poisson mixture model. They were all
wrapped from Fortran codes for computing speed consideration. Suppose X follows a Pois-
son mixture distribution f(x;Q) where the mixing distribution is Q for the mean parameter.
Then n = (n1, ..., nK} follows a multinomial distribution with corresponding cell probabilities
f(j;Q), j = 1, ...,K. The resulting likelihood can be factored into two parts as follows:

L(N,Q;n) ∝
(
N

D

)
f(0;Q)N−D{1− f(0;Q)}D ×

∏
j>0

{
f(j;Q)

1− f(0;Q)

}nj

:= Lm × Lc, (8)

where Lm and Lc are referred to as the marginal and conditional likelihood respectively
(conditioning on that a species is observed, e.g., for nj ’s with j > 0).

The function unpmle() calculates the unconditional NPMLE of the species number from
Norris and Pollock (1998),

unpmle(n, t = 15, C = 0, method = "W-L", b = 200, seed = NULL, conf = 0.95,

dis = 1).
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In this approach, a pair of (N̂ , Q̂) is found to maximize the unconditional likelihood L(N,Q;n).
The argument t is the same cut-off as described in the ChaoLee1992() function with a default
value 15. We recommend to use t ≥ 10. The argument C ( = 1 or 0) specifies whether a
confidence interval should be calculated. Since there is no analytical form for the confidence
interval, a bootstrap confidence interval of level specified by argument conf is provided (Wang
2010). The arguments b and seed specify how many bootstrap samples to be generated, and
what seed to be used in random number generation for bootstrap respectively. If seed is not
specified, the R internal random seed is used. These two arguments are ignored if C = 0. The
argument method specifies which method to be used to find the unconditional NPMLE of N .
The first method is "N-P", in which an iterative algorithm by Böhning and Schön (2005) is
used. Sometimes this method can be extremely slow. Alternatively one can use the default
method "W-L" by Wang and Lindsay (2005), in which the approximate unconditional NPMLE
(with high precision) of Q is found from the following penalized likelihood:

logL ≈ logLc − 0.5 log{f(0;Q)}. (9)

The approximate method typically yields identical or nearly identical estimate as the exact
method, while it can be drastically faster (see illustrations below). The unconditional NPMLE
can be as extreme as ∞. If the point estimate progresses beyond 20 ·D within iterations, the
algorithm stops and reports the current point estimate. Otherwise the reported unconditional
NPMLE can be even more unstable. The last argument dis specifies whether the mixture
estimates should be output to the screen. Turning this off by setting dis = 0 allows to avoid
overflow of screen information in Monte-Carlo simulations.

To improve the stability of the NPML estimators, Wang and Lindsay (2005) proposed a
penalized NPMLE by applying a quadratic penalty function to the conditional likelihood.
This method is implemented in function pnpmle(),

pnpmle(n, t = 15, C = 0, b = 200, seed = NULL, conf = 0.95, dis = 1).

All the arguments are the same as described in unpmle().

The last function pcg() calculates the Poisson-compound Gamma estimator by Wang (2010),

pcg(n, t = 35, C = 0, alpha = c(1:10), b = 200, seed = NULL, conf = 0.95,

dis = 1).

This method was motivated by severe under-estimation observed from popular nonparametric
estimators due to interplay of inadequate sampling effort, large heterogeneity and skewness
(Wang and Lindsay 2005). Unlike unpmle or pnpmle method where the species abundance
distribution is estimated by a discrete distribution, a compound Gamma with a unified shape
parameter (α) is used in pcg method to bring more bias correction in targeted situations. The
unified shape parameter α is chosen by a cross-validation procedure on a grid specified by the
argument alpha to balance the bias and variance of the resulting estimates of zero-truncated
Poisson mixture probabilities. This function automatically appends α =∞ onto the grid for
cross-validation. We recommend to use a grid with α ≥ 1 to avoid extreme variability. The
other arguments are the same as defined in pnpmle() or unpmle(). We also recommend to
use a relatively larger t than the unpmle() or pnpmle() (default value is 35) since we are
fitting a continuous curve for Q. Caution should be taken if the last count in n, nK , is a
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collapsed count of species that have x ≥ K. For example, in the butterfly data from this
package, n25 stands for

∑
j≥25 nj , and therefore t ≤ 24 should be used.

3. Illustrations

In this section, we illustrate all main functions using the data sets from original publications.
If the result differs from the reported, it is explicitly pointed out below. We first illustrate
the chao1984() function using the cottontail rabbit data from Chao (1987, p. 787). This
data set was from a capture-recapture experiment. The species number estimation methods
also apply to this type of data.

R> library("SPECIES")

R> data("cottontail")

R> cottontail

j n_j

1 1 43

2 2 16

3 3 8

4 4 6

5 5 0

6 6 2

7 7 1

R> chao1984(cottontail)

$Nhat

[1] 134

$SE

[1] 24.02129

$CI

lb ub

[1,] 102 202

The reported point estimate and 95% confidence interval in Chao (1987) were 134 and
(103,202) respectively. The minor difference in the lower bound is probably due to rounding
error. As another illustration, we applied chao1984() to the Taxicab data from Sampling
scheme B.g in Table 1 of Chao (1987), the results are identical.

R> n = cbind(c(1:4), c(116, 48, 6, 2))

R> chao1984(n)

$Nhat

[1] 312
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$SE

[1] 35.02778

$CI

lb ub

[1,] 259 399

For jackknife() function, we illustrate it using the insects data analyzed in
Burnham and Overton (1979, p. 935) at k = 2 (note: n6 below is the collapsed count for
j ≥ 6).

R> data("insects")

R> insects

j n_j

1 1 50

2 2 20

3 3 11

4 4 6

5 5 5

6 6 32

R> jackknife(insects, k = 2)

$JackknifeOrder

[1] 2

$Nhat

[1] 204

$SE

[1] 17.32051

$CI

lb ub

[1,] 170 238

To further verify the authenticity of the function, I reproduced the Table 6 of
Burnham and Overton (1979, p. 935). The results are presented in Table 1.

Note the selected order based on the stepwise test is 2 at significance level 0.05. Therefore
if the user had specified a higher order, the output would still be the same, e.g., at order
= 2. We noticed that results in Table 1 are identical to the original results (with negligible
rounding errors) except for Tk and Pk at k = 1. Further work is need to figure out the cause
of this slight but apparent discrepancy. So far the author has not yet found any discrepancy
between the output from this function and the published reports in terms of point estimate
and standard error.
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k N̂Jk se(N̂Jk) Tk Pk

1 174 10.00 3.772 0.00016
2 204 17.32 1.784 0.0744
3 225 27.23 0.928 0.353
4 242 42.66 0.576 0.565
5 259 68.12 - -

Table 1: Reproduction of Table 6 of Burnham and Overton (1979, p. 935). The order k
jackknife estimate is denoted as N̂Jk, and se(N̂Jk) is its standard error . The test statistic Tk
is the Z-statistic and Pk is the two-sided p-value for testing order= k vs. order= k + 1.

We illustrate ChaoLee1992(), ChaoBunge(), unpmle(), and pnpmle() using the butterfly

data that was analyzed in Chao and Bunge (2002, Table 2, p. 535) and Wang and Lindsay
(2005, Table 2, p. 949).

R> data("butterfly")

R> ChaoLee1992(butterfly, t = 10, method = "all")

$Nhat

[1] 712 737

$SE

[1] 17.35141 23.93183

$CI

lb ub

ACE 680 748

ACE-1 693 787

R> ChaoBunge(butterfly, t = 10)

$Nhat

[1] 757

$SE

[1] 32.39362

$CI

lb ub

[1,] 698 826

R> unpmle(butterfly, t = 15, method = "N-P")

Method: Unconditional NPMLE method by Norris and Pollock 1996, 1998,

using algorithm by Bonhing and Schon 2005:
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MLE= 722

Estimated Poisson mixture components:

p= 1.107039 4.370269 9.584652

pi= 0.5693337 0.1878771 0.2427893

$Nhat

[1] 722

R> unpmle(butterfly, t = 15, method = "W-L", C = 1)

Method: Unconditional NPMLE method by Norris and Pollock 1996, 1998,

using algorithm by Wang and Lindsay 2005:

MLE= 722

Estimated Poisson mixture components:

p= 1.110267 4.378968 9.586036

pi= 0.5696068 0.1875711 0.242822

Start bootstrap 200 times:

......

$Nhat

[1] 722

$CI

lb ub

[1,] 688 920

R> pnpmle(butterfly, t = 15, C = 1)

Method: Penalized NPMLE method by Wang and Lindsay 2005.

MLE= 724

Estimated zero-truncated Poisson mixture components:

p= 1.090829 4.326313 9.57749

pi= 0.4675136 0.2317262 0.3007601

Start bootstrap 200 times:

......

$Nhat

[1] 724

$CI95

lb ub

[1,] 690 858
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For unpmle(), it took about 4 minutes to compute the bootstrap confidence interval based on
200 samples using the approximate method "W-L" on a Mac OSX machine with a 2.93 GHz
processor. The exact method "N-P" uses an algorithm by Böhning and Schön (2005), treating
the unobserved species as missing data. Its computing time depends on the fraction of the
missing information. For example, in the butterfly data, about 14% of the species were not
observed (based on the point estimate N̂ = 722). It took the exact method about 20 minutes
to finish 200 bootstrap estimates. In the traffic data below, about 83% of the species were
not observed. As a result it took about 2 hours to finish 200 bootstrap samples using the
exact method in contrast to about 4 minutes using the "W-L" method.

The pnpmle and pcg methods are both based on the conditional likelihood. The NPML
estimates (p and pi) from pnpmle() are the mean parameters and their respective weights in
the zero-truncated Poisson mixture. For pcg(), the output p and pi are the mean parameters
and their weights of the Gamma mixture in the zero-truncated Poisson-compound Gamma
model under the selected α model. The computing time for pnpmle() is typically a few
minutes based on 200 bootstrap samples. The pcg() procedure is much more computing
intensive because of a cross-validation procedure used in model selection. It is common to
take more than one hour for 200 bootstrap samples. We illustrate it with the traffic data,
which originally appeared in Simar (1976) and was reanalyzed recently by Böhning and Schön
(2005) and Wang (2010). Since the true N is known as 9461, we include all other estimators
for a comparison.

R> data("traffic")

R> traffic

j n_j

1 1 1317

2 2 239

3 3 42

4 4 14

5 5 4

6 6 4

7 7 1

R> chao1984(traffic)

$Nhat

[1] 5250

$SE

[1] 314.1841

$CI

lb ub

[1,] 4684 5919

R> ChaoLee1992(traffic, t = 7)
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$Nhat

[1] 5684 6788

$SE

[1] 363.7709 648.4647

$CI

lb ub

ACE 5031 6461

ACE-1 5665 8223

R> ChaoBunge(traffic, t = 7)

$Nhat

[1] -21023

$SE

[1] 29020.49

$CI

lb ub

[1,] -1659 -154706

R> jackknife(traffic)

$JackknifeOrder

[1] 5

$Nhat

[1] 6170

$SE

[1] 256.7645

$CI

lb ub

[1,] 5667 6673

R> Good = sum(traffic[, 2])/(1 - traffic[1, 2]/sum(traffic[, 1] *

+ traffic[, 2]))

R> Good

[1] 4623.612

R> unpmle(traffic, t = 7, C = 1)
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Method: Unconditional NPMLE method by Norris and Pollock 1996, 1998,

using algorithm by Wang and Lindsay 2005:

MLE= 5497

Estimated Poisson mixture components:

p= 0.3360416 2.549361

pi= 0.9851394 0.01486064

Start bootstrap 200 times:

......

$Nhat

[1] 5497

$CI

lb ub

[1,] 4948 17899

R> pnpmle(traffic, t = 7, C = 1)

Method: Penalized NPMLE method by Wang and Lindsay 2005.

MLE= 5496

Estimated zero-truncated Poisson mixture components:

p= 0.3360911 2.549769

pi= 0.9535588 0.04644124

Start bootstrap 200 times:

......

$Nhat

[1] 5496

$CI

lb ub

[1,] 4887 6895

R> pcg(traffic, C = 1, t = 35)

Method: Poisson-Compound Gamma method by Wang 2010.

Alpha grid used: 1 2 3 4 5 6 7 8 9 10 .

MLE= 6935

Selected alpha model: 3

Estimated Gamma components:
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p= 0.2624849 1.600614

pi= 0.9304468 0.06955318

Start bootstrap 200 times:

......

$Nhat

[1] 6935

$AlphaModel

[1] 3

$CI95

[1] 5059 13396

Clearly N is substantially under-estimated by most of the estimators except unpmle and pcg.
The negative estimate was observed for ChaoBunge method probably because the true species
abundance distribution deviated from the Gamma distribution assumed in this method (see
also Wang and Lindsay 2005 and Wang 2010).

4. Discussion

Many methods exist on the species problem. Most of the methods included in this package
feature robust behavior regardless of the true form of the species abundance distribution
Q. However, complexity in calculation poses challenges to ordinary users. For example,
although the ACE and ACE-1 estimators included in ChaoLee1992() both have analytical
forms, their standard error calculation can be very complicated. Likewise, computing the
NPML estimators can be intimidating to users that are unfamiliar with NPML estimation.
This package is hoped to facilitate the dissemination of these methods to ordinary users in
statistics and other disciplines.
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