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Abstract

Logistic regression provides a flexible framework for detecting various types of dif-
ferential item functioning (DIF). Previous efforts extended the framework by using item
response theory (IRT) based trait scores, and by employing an iterative process using
group–specific item parameters to account for DIF in the trait scores, analogous to pu-
rification approaches used in other DIF detection frameworks. The current investigation
advances the technique by developing a computational platform integrating both statis-
tical and IRT procedures into a single program. Furthermore, a Monte Carlo simulation
approach was incorporated to derive empirical criteria for various DIF statistics and ef-
fect size measures. For purposes of illustration, the procedure was applied to data from
a questionnaire of anxiety symptoms for detecting DIF associated with age from the
Patient–Reported Outcomes Measurement Information System.
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1. Introduction

Standardized tests and questionnaires are used in many settings, including education, psy-
chology, business, and medicine. Investigations across numerous disciplines have identified
respondent culture (more generally, any group membership irrelevant of the construct being
measured) as a potential source of systematic measurement variability in survey research (An-
dersen 1967). Systematic measurement variability can lead to a number of problems including
errors in hypothesis testing, flawed population forecasts, policy planning and implementation,
and misguided research on disparities (Perkins et al. 2006). Ensuring equivalent measurement
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is important prior to making comparisons among individuals or groups (Gregorich 2006).
Evaluations of item-level measurement equivalence have come to focus on DIF, defined as
different probabilities of success or endorsement across construct-irrelevant groups when con-
trolling for the underlying trait measured by the test (Camilli and Shepard 1994). There
are many other frameworks for DIF detection, including explanatory item response model
formulation (De Boeck and Wilson 2004), the multiple indicators multiple causes (MIMIC)
formulation (Jones 2006), and the SIBTEST framework (Shealy and Stout 1993). This paper
addresses the logistic regression framework, which provides a flexible model-based framework
for detecting various types of DIF (Swaminathan and Rogers 1990; Zumbo 1999).

Previous efforts extended the logistic regression DIF technique into a framework known as
difwithpar (Crane et al. 2006) by using IRT based trait estimates and employing an iterative
process of accounting for DIF in the trait estimate with the use of group-specific IRT item
parameters for items identified with DIF (Crane et al. 2006, 2007b,c, 2004). This framework
has been found to be facile at accounting for multiple sources of DIF and paying specific
attention to DIF impact. It is also able to address covariates with more than two categories,
rather than limiting to only focal and reference groups.

The difwithpar software includes user-specified flagging criteria (or detection thresholds) for
identifying items with DIF, and the developers have investigated the implications of different
choices for these flagging criteria (Crane et al. 2007c). Several values may be used for flagging
criteria in analyzing a single dataset, resulting in varying numbers of items identified with
DIF, but fairly consistent DIF impact for individuals and groups across different values for
the flagging criteria (Crane et al. 2007b). These observations suggest the need for empirical
identification of flagging criteria.

To date, while the difwithpar software is freely distributed on the web (type ssc install

difwithpar at the Stata prompt), it uses the proprietary software packages Stata (StataCorp.
2007) and PARSCALE (Muraki and Bock 2005). Recent developments of free IRT packages
for R (R Development Core Team 2010), such as eRm (Mair and Hatzinger 2007) and especially
the IRT/latent trait modeling package ltm (Rizopoulos 2006), suggested the possibility of
integrating the framework in a freeware platform. The current investigation advances the
difwithpar technique by creating a computational platform integrating both statistical and
IRT procedures into a single freeware program. Furthermore, we provide a mechanism to
evaluate statistical criteria proposed for detecting DIF using graphical approaches and Monte
Carlo simulations. The resulting R package lordif is available from the Comprehensive R
Archive Network at http://CRAN.R-project.org/package=lordif.

2. Logistic regression/IRT hybrid DIF detection method

2.1. Logistic regression DIF methods

Swaminathan and Rogers (1990) proposed the use of logistic regression in DIF detection for
dichotomous items. Several researchers have extended the technique for polytomous items
(French and Miller 1996; Miller and Spray 1993; Zumbo 1999). For polytomous items, the
proportional-odds logistic regression model (Agresti 1990) is used with the assumption that
the outcome variable is ordinal (as opposed to nominal). Let Ui denote a discrete random
variable representing the ordered item response to item i, and ui (= 0, 1, . . . ,mi − 1) denote

http://CRAN.R-project.org/package=lordif
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the actual response to item i with mi ordered response categories. Based on the proportional
odds assumption or the parallel regression assumption, a single set of regression coefficients is
estimated for all cumulative logits with varying intercepts (αk). For each item, an intercept-
only (null) model and three nested models are formed in hierarchy with additional explanatory
variables as follows:

Model 0 : logit P (ui ≥ k) = αk

Model 1 : logit P (ui ≥ k) = αk + β1 ∗ ability

Model 2 : logit P (ui ≥ k) = αk + β1 ∗ ability + β2 ∗ group

Model 3 : logit P (ui ≥ k) = αk + β1 ∗ ability + β2 ∗ group + β2 ∗ ability ∗ group,

where P (ui ≥ k) denotes the cumulative probabilities that the actual item response ui falls in
category k or higher. The term “ability” is used broadly here to represent the trait measured
by the test as either the observed sum score or a latent variable. Without loss of generality
the term “trait level” may be substituted in each case. In the remainder of this paper, we use
these terms somewhat interchangeably.

2.2. DIF detection

Testing for the presence of DIF (both uniform and non-uniform) under the logistic regression
framework is traditionally based on the likelihood ratio χ2 test (Swaminathan and Rogers
1990). DIF is classified as either uniform (if the effect is constant) or non-uniform (if the
effect varies conditional on the trait level). Uniform DIF may be tested by comparing the
log likelihood values for Models 1 and 2 (one degree of freedom, or df = 1), and non-uniform
DIF by Models 2 and 3 (df = 1). An overall test of “total DIF effect” is tenable by comparing
Models 1 and 3 (df = 2). The 2-df χ2 test was designed to maximize the ability of this
procedure to identify both uniform and non-uniform DIF and control the overall Type I error
rate. However, the component uniquely attributable to either uniform or non-uniform DIF
can be partitioned separately by the 1-df tests (Jodoin and Gierl 2001; Zumbo 1999).

The extension of this framework for multiple groups is also straightforward. The β2 and β3
terms from Models 2 and 3 are expanded to include binary indicator variables for all of the
groups except one. For both uniform (Model 1 vs. 2) and non-uniform DIF (Model 2 vs. 3)
twice the difference in log likelihoods is compared to a χ2 distribution with degrees of freedom
equal to the number of groups minus one.

2.3. DIF magnitude

Although the likelihood ratio test has been found to yield good Type I error control (Kim
and Cohen 1998), some researchers have reported good power but inflated Type I error under
the logistic regression likelihood ratio test (Li and Stout 1996; Rogers and Swaminathan
1993; Swaminathan and Rogers 1990). Because statistical power is dependent on sample size
(Cohen 1988), a trivial but non-zero difference in population parameters will be found to be
statistically significant given a large enough sample. In response to this concern, several effect
size measures have been used to quantify the magnitude of DIF (Crane et al. 2004; Jodoin
and Gierl 2001; Kim et al. 2007; Zumbo 1999). Zumbo (1999) suggested several pseudo R2

statistics as magnitude measures and guidelines for classifying DIF as negligible (< 0.13),
moderate (between 0.13 and 0.26), and large (> 0.26). Subsequent studies (Jodoin and Gierl
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2001; Kim et al. 2007), however, found the proposed thresholds to be too large, resulting
in under-identification of DIF. Kim et al. (2007) also found that the pseudo R2 measures
are closely related (with almost perfect rank order correlations) to some standardized impact
indices (Wainer 1993).

Jodoin and Gierl (2001) noted that the regression coefficients β2 and β3 can be used as
magnitude measures of uniform and non-uniform DIF, respectively. The difference in the β1
coefficient from Models 1 and 2 has also been used to identify items with uniform DIF (Crane
et al. 2004). Based on simulation studies in a different context (Maldonado and Greenland
1993), 10% differences in this coefficient from Models 1 and 2 was initially proposed as a
practically meaningful effect (Crane et al. 2004). Subsequent studies used lower thresholds
such as 5% and even 1% (Crane et al. 2007c).

2.4. Monte Carlo simulation approach to determining detection thresholds

Within the logistic regression DIF detection framework, there is considerable variability in
specific criteria recommended for determining whether items exhibit DIF. Several experts have
recommended magnitude measures with a plea towards “clinical relevance,” though specific
thresholds based on this plea are not clearly discernible. Some authors have recommended a
flexible, almost analog procedure in which the threshold used for a given parameter to identify
items with and without DIF is manipulated up and down, and the effect on DIF impact for
individuals or groups is evaluated (Crane et al. 2007c,a, 2010, 2008b,a; Gibbons et al. 2009).

Given the variety of DIF magnitude measures and detection criteria, a Monte Carlo simu-
lation approach may be useful. Two general approaches are feasible, one driven by Type I
error and another by Type II error. The Type I error approach involves generating multiple
datasets (of the same dimension as the real data) under the null hypothesis (i.e., no DIF),
preserving observed group differences in ability (trait level). Various magnitude measures are
computed repeatedly over the simulated datasets, from which the empirical distributions are
obtained. The researcher can then be guided by these empirical distributions when making
a determination with any particular magnitude measure whether items have DIF. The target
threshold to use in the real data is one where the empirical probability of identifying an item
as displaying DIF (i.e., false positives) is not greater than the preset nominal α level. The
Type II error approach, which is not implemented in lordif for the reasons provided below,
involves generating multiple datasets as before, preserving group differences. However, the
Type II error approach also involves introducing known DIF of varying magnitude, deemed
as minimally detectable (e.g., power ≥ 0.80), to a varying number of items. Again, the mag-
nitude measures are computed over the simulated datasets and their empirical distributions
are obtained. Reviewing the empirical distributions the researcher can determine a target
threshold to use in the real data. Unlike in the Type I error approach, the target threshold
corresponds to a typical value in the empirical distribution (e.g., the median) rather than an
extreme one that cuts off the tail end of the distribution. The choice of the magnitude of DIF
introduced and the specific items having DIF can affect the simulation outcome (Donoghue
et al. 1993) and hence makes it difficult to implement the Type II error approach in a general
simulation framework.

2.5. Iterative purification of the matching criterion

DIF refers to a difference in item performance between groups of respondents matched on
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the trait being measured. The matching criterion, the variable by which the respondents are
matched, is important in order to distinguish between differences in item functioning from
differences between groups (Dorans and Holland 1993). One of the potential limitations of
logistic regression DIF detection was the reliance on the observed sum score as the matching
criterion. As Millsap and Everson (1993) point out, the sum score is not a very good matching
criterion unless statistical properties of the Rasch model hold (e.g., equal discrimination power
for all items). Even if the Rasch model holds, using the sum score in a regression framework
may not be ideal because the relationship between the sum score and the Rasch trait score is
not linear, as evident in a test characteristic curve. In such situations, an IRT trait score is a
more reasonable choice for regression modeling (such as DIF detection in the ordinal logistic
regression framework) than an observed sum score (Crane et al. 2008a).

Another consideration for obtaining the matching criterion is related to purification. Zumbo
(1999) advocated purifying the matching criterion by recalculating it using only the items
that are identified as not having DIF. French and Maller (2007) reported that purification
was beneficial under certain conditions, although overall power and Type I error rates did not
substantially improve. Holland and Thayer (1988) suggested that the item under examination
should be included in the matching criterion even if it was identified as having DIF but
excluded from the criterion for all other items to reduce the Type I error rate. Zwick (1990)
also proved theoretically that excluding the studied item from the matching variable leads to
a bias (over detection) under the null condition.

Eliminating items found to have DIF is only one option for reducing the effect of DIF on the
trait estimates used for the matching criterion. Reise et al. (1993) pointed out that although
items with DIF measure differently in different groups, they are still measuring the same
underlying construct. This point is especially relevant in psychological measures where some
items can be considered crucial in measuring a certain construct (e.g., crying in measuring
depression), even if they are known to function differently between some demographic groups
(e.g., gender).

To address these issues, Crane et al. (2006) developed an iterative process to update trait
estimates using group-specific IRT item parameter estimates for items found to have DIF.
Specifically, each item with DIF is replaced by as many sparse items (response vectors) as
there are groups. For example, if there are two groups, A and B, two new sparse item
response vectors are formed to replace the original. In the first sparse item response vector,
the responses are the same as the original item for group A, and missing for group B. In the
second sparse item response vector, the pattern is reversed.

The non-DIF items have parameters estimated using data from the entire sample and are
often referred to as anchor items because they ensure that scores for individuals in all of the
groups are on the same metric. The group-specific items and the anchor items are used to
obtain trait estimates that account for DIF which in turn are then used in subsequent logistic
regression DIF analyses. This process is continued until the same set of items is found to
have DIF over successive iterations.

This algorithm has much to recommend it compared with more traditional purification ap-
proaches. First, it is possible for items to have false positive identification with DIF at an
early stage. Most traditional purification approaches would result in such an item being ex-
cluded from consideration for the matching criterion, even though in the subsequent iterations
it may be found to not have DIF. Second, by including all of the items in the trait estimate,
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the measurement precision using this approach will be better than that for trait estimates
that includes only a subset of the items. Finally, the iterative nature of this procedure avoids
the forward stepwise nature of some algorithms, such as that used in the multiple indicators
multiple causes framework (Jones 2006).

2.6. Fitting the graded response model

Unlike other IRT-based DIF detection methods focusing on tests of the equality of item
parameters across groups (Lord 1980; Raju et al. 2009; Thissen 2001), the main objective of
fitting an IRT model under lordif is to obtain IRT trait estimates to serve as the matching
criterion. Therefore, the choice of a specific IRT model is of little consequence in the current
application, because trait estimates for the same data based on different IRT models (e.g.,
graded response model vs. Generalized Partial Credit Model) are virtually interchangeable
(r > 0.99) (Cook 1999). However, the graded response model might be preferred in the
current context on the basis of its inherent connection to ordinal logistic regression. The
model assumes any response to item i, ui, can be scored into mi ordered categories, e.g.,
ui ∈ {0, 1, 2, . . . , (mi − 1)}. The model then defines (mi − 1) cumulative category response
functions as follows:

P ∗1 (θ) ≡ P (ui ≥ 1|θ) = {1 + exp[−ai(θ − bi1)]}−1

P ∗2 (θ) ≡ P (ui ≥ 2|θ) = {1 + exp[−ai(θ − bi2)]}−1

. . .

P ∗(mi−1)(θ) ≡ P (ui ≥ mi − 1|θ) = {1 + exp[−ai(θ − bi(mi−1)
)]}−1

where the item discrimination parameter ai is finite and positive, and the location parameters,
bi1 , bi2 , . . . , bi(mi−1)

, satisfy
bi1 < bi2 < . . . < bi(mi−1)

.

Further, bi0 ≡ −∞ and bimi
≡ ∞ such that P ∗0 = 1 and P ∗(mi)

= 0. Finally, for any response

category, ui ∈ {0, 1, . . . ,mi − 1}, the category response function can be expressed as

Pui(θ) = P ∗ui
(θ)− P ∗(ui+1)(θ) > 0.

2.7. Scale transformation

The impact of DIF on scores can be determined by comparing the initial trait score to the
final trait score that accounts for DIF. To compare scores, however, the IRT item parameter
estimates from the initial and final calibrations should be placed on the same metric. The
method developed by Stocking and Lord (1983) can be used to determine the appropriate
transformation. Using the non-DIF items as anchor items, the procedure can equate the
group-specific item parameter estimates from the final “matrix” calibration (M) to the metric
of the initial “single-group” calibration (S). The Stocking-Lord equating procedure finds
the linear transformation constants, A and B, that minimize the sum of squared differences
between the test characteristic curves (TCCs) based on J non-DIF items over a θ grid (e.g.,
−4 ≤ θ ≤ 4). The loss function (L) to be minimized can be expressed as follows:

L =

Q∑
q=1

[TCCS(θq)− TCCM (θq)]
2,
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TCCS(θq) =
J∑

i=1

∑
k∈ui

k · P (ui = k|θq, aiS , bi1S , bi2S , . . . , bi(mi−1)S
),

TCCM (θq) =

J∑
i=1

∑
k∈ui

k · P (ui = k|θq, a∗iM , b
∗
i1M

, b∗i2M
, . . . , b∗i(mi−1)M

),

a∗iM =
aiM
A
,

b∗i1M
= A · bi1M +B,

b∗i2M
= A · bi2M +B,

. . .

b∗i(mi−1)M
= A · bi(mi−1)M

+B,

where Q is the number of equi-spaced quadrature points over the θ grid, J is the number
of non-DIF items, aiS , bi1S , bi2S , . . . , bi(mi−1)S

are the single-group item parameter estimates
for the ith non-DIF item, and a∗iM , b

∗
i1M

, b∗i2M
, . . . , bi(mi−1)M

are the matrix calibration item

parameter estimates for the same item.

3. The lordif package

3.1. Overview

The lordif package is based on the difwithpar framework (Crane et al. 2006). We developed
the lordif package (available from the Comprehensive R Archive Network at http://CRAN.

R-project.org/package=lordif) to perform DIF detection with a flexible iterative hybrid
OLR/IRT framework. The lordif package is also able to perform OLR with sum scores
rather than IRT scores. lordif also incorporates a Monte Carlo simulation approach to derive
empirical threshold values for various DIF statistics and magnitude measures. The lordif
package generates DIF-free datasets of the same dimension as the empirical dataset using
the purified trait estimates and initial single-group item parameter estimates obtained from
the real data, preserving observed group differences and distributions. The user specifies the
number of replications (nr) and the Type I error rate (e.g., alpha = 0.01). The program
then applies the OLR/IRT procedure over the simulated DIF-free datasets and computes the
statistics and magnitude measures. Finally, the program identifies a threshold value that cuts
off the most extreme (α× 100)% of each of the statistics and magnitude measures.

The lordif package is built on two main packages: The ltm package (Rizopoulos 2006) to obtain
IRT item parameter estimates according to the graded response model (Samejima 1969) and
the Design package (Harrell Jr. 2009) for fitting (ordinal) logistic regression models. Both
the ltm and Design packages can handle binary outcome variables as a special case and hence
allow the lordif package to handle both dichotomous and polytomous items. The Design
package also handles a grouping variable with more than two levels (e.g., Black, Hispanic and
White) by automatically entering it into a model as a set of dummy variables.

http://CRAN.R-project.org/package=lordif
http://CRAN.R-project.org/package=lordif


8 lordif: IRT Hybrid Logistic Regression DIF in R

The lordif package allows the user to choose specific criteria and their associated thresholds
for declaring items to have uniform and non-uniform DIF. Items found displaying DIF are
recalibrated in appropriate subgroups to generate trait estimates that account for DIF. These
steps are repeated until the same items are identified with DIF on consecutive runs. The
program uses the Stocking and Lord (1983) equating procedure to place the group-specific
item parameter estimates onto the scale defined by the initial naive (i.e., no-DIF) run and
to facilitate evaluations of the impact on individual trait estimates on the same scale. Items
displaying no DIF serve as anchor items.

3.2. Algorithm

In what follows, we will describe the algorithm used in the lordif package in more detail.

1. Data preparation: Check for sparse cells (rarely observed response categories; de-
termined by a minimum cell count specified by the user (e.g., minCell = 5); col-
lapse/recode response categories as needed based on the minimum cell size requirement
specified.

2. IRT calibration: Fit the graded response model (using the grm function in ltm) to obtain
a single set of item parameters for all groups combined.

3. Trait estimation: Obtain trait (ability) estimates using the expected a posteriori (EAP)
estimator with omitted responses treated as not presented.

4. Logistic regression: Fit three (ordinal) logistic models (Models 1, 2 and 3) on each
item using the lrm function in Design (observe these are item-wise regressions); gen-
erate three likelihood-ratio χ2 statistics for comparing three nested logistic regression
models (Models 1 vs. 3, Models 1 vs. 2, and Models 2 vs. 3); compute three pseudo
R2 measures – Cox & Snell (Cox and Snell 1989), Nagelkerke (Nagelkerke 1991), and
McFadden (Menard 2000) – for three nested models and compute differences between
them; compute the absolute proportional change in point estimates for β1 from Model 1
to Model 2 as follows: |(β1 − β∗1)/β∗1 |, where β∗1 is the regression coefficient for the
matching criterion (ability) from Model 1 and β1 is the same term from Model 2.

5. Detecting DIF: Flag DIF items based on the detection criterion ("Chisqr", "R2", or
"Beta") and a corresponding flagging criterion specified by the user (e.g., alpha = 0.01

for criterion = "Chisqr"); for criterion = "Chisqr" an item is flagged if any one
of the three likelihood ratio χ2 statistics is significant (the 2-df test for non-uniform
DIF, χ2

13 , as a sole criterion may lack power if DIF is attributable primarily to uniform
DIF, although inflated Type I error might be of concern).

6. Sparse matrix: Treat DIF items as unique to each group and prepare a sparse response
matrix by splitting the response vector for each flagged item into a set of sparse vectors
containing responses for members of each group (e.g., males and females if DIF was
found related to gender). In other words, each DIF item is split into multiple sparse
variables such that each variable corresponds to the data of just one group and missing
for all other groups. Note that sparse matrices are to account for DIF in the trait
estimate; (ordinal) logistic regression DIF detection is performed on the original data
matrix.
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7. IRT recalibration: Refit the graded response model on the sparse matrix data and
obtain a single set of item parameter estimates for non-DIF items and group-specific
item parameter estimates for DIF items.

8. Scale transformation: Equate Stocking and Lord (1983) item parameter estimates from
the matrix calibration to the original (single-group) calibration by using non-DIF items
as anchor items (this step is necessary only when looking at DIF impact and can be
deferred until the iterative cycles have concluded).

9. Trait re-estimation: Obtain EAP trait (ability) estimates based on item parameter
estimates from the entire sample for items that did not have DIF and group-specific
item parameter estimates for items that had DIF.

10. Iterative cycle: Repeat Steps 4 through 9 until the same items are flagged for DIF or
a preset maximum number of iterations has been reached. Using the trait estimates
from the previous round that account for DIF detected to that point, (ordinal) logistic
regression DIF detection is repeated on all items including previously flagged items.

11. Monte Carlo simulation: Generate DIF-free datasets nr number of times (e.g., nr =

1000), using the final trait estimates accounting for DIF (Step 10) and the initial single-
group item parameter estimates (Step 2). Each simulated dataset contains the same
number of cases by group as the empirical dataset and reflects observed group differences
in trait estimates. For each simulated dataset, obtain trait (ability) estimates based on
the single-group item parameter estimates and run the OLR/IRT procedure. Compute
the DIF statistics and magnitude measures for each simulated dataset and store the re-
sults for all replications. Identify a threshold value for each statistic/magnitude measure
that cuts off the most extreme (defined by α) end of its cumulative distribution.

3.3. lordif vs. difwithpar

The lordif package differs in several ways from the previously developed difwithpar program.
Improvements include the use of the ltm package (Rizopoulos 2006) rather than the propri-
etary software PARSCALE (Muraki and Bock 2005) for IRT item parameter estimation. The
lordif package also includes the following important changes. First, lordif permits comparison
of Model 1 with Model 3, facilitating a single omnibus test of both uniform and non-uniform
DIF. Second, lordif automates the steps of DIF detection and subsequent IRT parameter
estimation in a single invocation of the iterative algorithm; whereas difwithpar performs a
single iteration and the user must continue the steps until the same items are identified on
subsequent runs. Third, lordif performs the Stocking-Lord equating (Stocking and Lord 1983)
that facilitates investigations of DIF impact on the same metric. Finally, and perhaps most
important, lordif implements the Monte Carlo procedures described previously to identify
empirically-based thresholds for DIF detection.

4. Illustration

To illustrate, the procedure was applied to a real dataset and the results were compared to
the standard sum-score based approach. We analyzed a dataset (N = 766) on a 29-item
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anxiety bank (Pilkonis et al. 2011, see appendix) for DIF related to age using data from the
Patient-Reported Outcomes Measurement Information System (PROMIS). PROMIS is an
NIH Roadmap initiative designed to improve patient-reported outcomes using state-of-the-
art psychometric methods (for detailed information, see http://www.nihpromis.org/). The
reference and focal groups were defined as younger (< 65; n = 555) and older (; n = 211),
respectively. All items shared the same rating scale with five response categories (Never,
Rarely, Sometimes, Often, and Always). The scale was constructed such that higher scores
mean higher levels of anxiety. The S−X2 model fit statistics (Kang and Chen 2008; Orlando
and Thissen 2003) were examined for the graded response model (Samejima 1969) using the
IRTFIT (Bjorner et al. 2006) macro program. All 29 items had adequate or better model fit
statistics (p > 0.05).

Running lordif requires a minimum level of competence in R, including reading external
datasets using R syntax submitted via a command line interface or a syntax file. In what
follows we present sample R code to demonstrate specifics of the interface with lordif and to
generate output for discussion in the subsequent section:

R> library("lordif")

R> data("Anxiety")

R> Age <- Anxiety$age

R> Resp <- Anxiety[paste("R", 1:29, sep = "")]

R> ageDIF <- lordif(Resp, Age, criterion = "Chisqr", alpha = 0.01,

+ minCell = 5)

R> print(ageDIF)

R> summary(ageDIF)

R> plot(ageDIF, labels = c("Younger (<65)", "Older (65+)"))

The library("lordif") command loads the lordif package (and other dependent packages)
into the R computing environment. The data("Anxiety") command loads the Anxiety
dataset containing 29 item response variables (named R1, R2, . . . , R29) and three binary de-
mographic indicators including the age group (0 = Younger and 1 = Older). The next two lines
of commands extract those variables from the dataset and create a vector for the age indicator
(Age) and a matrix for the item response variables (Resp). The lordif(Resp, Age, ...)

command performs the OLR/IRT DIF procedure on the data with specified options (details
provided below) and saves the output as ageDIF. The print(ageDIF) and summary(ageDIF)

commands generate basic and extended output, respectively. The plot(ageDIF) command
then takes the output (ageDIF) and generates diagnostic plots. An optional Monte Carlo
simulation procedure (and the corresponding print and summary methods) can be invoked
on the output (ageDIF) to obtain empirical threshold values by

R> ageMC <- montecarlo(ageDIF, alpha = 0.01, nr = 1000)

R> print(ageMC)

R> summary(ageMC)

Monte Carlo simulations generally require a large number of iterations and are computation-
ally intensive – the above simulation run took approximately 30 minutes on an Intel Core2
Duo CPU at 2.53GHz running Windows Vista. Finally, the empirical threshold values can be
displayed visually by

http://www.nihpromis.org/
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Figure 1: Trait distributions – younger (< 65) vs. older (65 and up). Note: This graph shows
smoothed histograms of the anxiety levels of older (dashed line) and younger (solid line) study
participants as measured by the PROMIS Anxiety scale (theta). There is broad overlap in
the distributions, though older individuals in general demonstrated lower levels of anxiety
than younger individuals.

R> plot(ageMC)

We used the likelihood ratio (LR) χ2 test (criterion = "Chisqr") as the detection criterion
at the α level of 0.01, and McFadden’s pseudo R2 (default) as the magnitude measure. With
a minimum cell count of 5, all items ended up with one or more response categories collapsed.
After recoding (done by lordif), four items ended up with four response categories, one item
had two categories, and the rest had three. Using these settings, lordif terminated in two
iterations flagging five items as displaying age-related DIF – #1 (“I felt fearful”), #9 (“I was
anxious if my normal routine was disturbed”), #11 (“I was easily startled”), #18 (“I worried
about other people’s reactions to me”), and #24 (“Many situations made me worry”). The
standard sum score-based method flagged the same items and one additional item – #7 (“I
felt upset”). The plot function in lordif shows (see Figure 1) the theta distributions for
the younger and older groups. Older people on average had lower mean scores than their
younger counterparts (−0.57 vs. 0.04). The plot function then displays four diagnostic plots
for each of the flagged items (see Figures 2–6). The top left plot in Figure 2 shows item true-
score functions based on group-specific item parameter estimates. The slope of the function
for the older group was substantially higher than that for the younger group, indicating
non-uniform DIF. The LR χ2 test for uniform DIF, comparing Model 1 and Model 2, was
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Figure 2: Graphical display of the item “I felt fearful” which shows non–uniform DIF with
respect to age. Note: This item retained three response categories (0, 1, and 2) from the origi-
nal five–point rating scale after collapsing the top three response categories due to sparseness.
The program by default uses a minimum of five cases per cell (the user can specify a different
minimum) in order to retain each response category. The upper–left graph shows the item
characteristic curves (ICCs) for the item for older (dashed curve) vs. younger (solid curve).
The upper–right graph shows the absolute difference between the ICCs for the two groups,
indicating that the difference is mainly at high levels of anxiety (theta). The lower–left graph
shows the item response functions for the two groups based on the demographic–specific item
parameter estimates (slope and category threshold values by group), which are also printed
on the graph. The lower–right graph shows the absolute difference between the ICCs (the
upper–right graph) weighted by the score distribution for the focal group, i.e., older individ-
uals (dashed curve in Figure 1), indicating minimal impact. See text for more details.

not significant (p = 0.42), whereas the 1-df test for comparing Model 2 and Model 3 was
significant (p = 0.0004). It is interesting to note that had the 2-df test (comparing Models
1 and 3) been used as the criterion for flagging, this item would not have been flagged at
α = 0.01 (p = 0.011).



Journal of Statistical Software 13

−4 −2 0 2 4

0.
0

0.
5

1.
0

1.
5

2.
0

Item True Score Functions − Item 9

theta

Ite
m

 S
co

re

Younger (<65)
Older (65+)

Pr(χ12
2 ,1)=2e−04,R12

2 =0.0094,∆(β1)=0.066

Pr(χ13
2 ,2)=0.001,R13

2 =0.0094

Pr(χ23
2 ,1)=0.9692,R23

2 =0

−4 −2 0 2 4

0.
0

0.
5

1.
0

1.
5

2.
0

Difference in Item True Score Functions

theta

Ite
m

 S
co

re

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Item Response Functions

theta

P
ro

ba
bi

lit
y

1.75, 0.23, 1.1

| |

1.46, −0.31, 1.1

| |

−4 −2 0 2 4

0.
0

0.
5

1.
0

1.
5

2.
0

Impact (Weighted by Density)

theta

S
iz

e

Figure 3: Graphical display of the item “I was anxious if my normal routine was disturbed”
which shows uniform DIF with respect to age. Note: See detailed comments accompanying
Figure 2. Here the differences between younger and older individuals appear to be at lower
anxiety levels.

The bottom left plot in Figure 2 juxtaposes the item response functions for younger and
older adults. The non-uniform component of DIF revealed by the LR χ2 test can also be
observed in the difference of the slope parameter estimates (3.04 vs. 1.95). Although there
was no significant uniform DIF, on close inspection the difference in the second category
threshold values (shown as hash marks immediately above the x-axis) for the two groups were
noticeable (1.21 vs. 1.77). For polytomous items, a single item-level index of DIF may not
provide adequate information concerning which response categories (or score levels) contribute
to the DIF effect. The combination of visual and model-based approaches in lordif provide
useful diagnostic information at the response category level, which can be systematically
investigated under the differential step functioning framework (Penfield 2007; Penfield et al.
2009).

The top right plot in Figure 2 presents the expected impact of DIF on scores as the absolute
difference between the item true–score functions (Kim et al. 2007). There is a difference in
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Figure 4: Graphical display of the item “I was easily startled” which shows uniform DIF
with respect to age. Note: See detailed comments accompanying Figure 2. Here the differ-
ences between younger and older individuals are across almost the entire spectrum of anxiety
measured by the test.

the item true–score functions peaking at approximately θ = 1.5, but the density–weighted
impact (shown in the bottom right plot) is negligible because few subjects have that trait
level in this population. When weighted by the focal group trait distribution the expected
impact became negligible, which is also apparent in the small McFadden’s pseudo R2 measures
(printed on the top left plot), i.e., R2

13 = 0.007 and R2
23 = 0.006. Figure 3 displays the plots

for item #9 (“I was anxious if my normal routine was disturbed”), which shows statistically
significant uniform DIF, Pr(χ2

12, 2) < 0.001. The LR χ2
13 was also significant; however, as

the LR χ2
23 was non–significant this result suggests the DIF was primarily uniform. The item

response functions suggest that uniform DIF was due to the first category threshold value for
the focal group being smaller than that for the reference group (−0.31 vs. +0.23). Figure 4
displays slightly stronger uniform DIF for item #11 (“I was easily startled”). Again, both
χ2
12 and χ2

13 were significant (p < 0.001) with non–significant χ2
23. McFadden’s R2 change

for uniform DIF was 0.009, which is considered a negligible effect size (Cohen 1988). The
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Figure 5: Graphical display of the item “I worried about other people’s reactions to me” which
shows uniform DIF with respect to age. Note: See detailed comments accompanying Figure 2.

item response functions show that the category threshold parameters for the focal group were
uniformly smaller than those for the reference group. Figure 5 displays another item with
uniform DIF, item #18 (“I worried about other people’s reactions to me”), but in the opposite
direction. The item true–score functions reveal that older people are prone to endorse the
item with higher categories compared to younger people with the same overall anxiety level.
The item response functions also show that the category threshold parameters for the focal
group were uniformly higher than they were for the reference group. Finally, Figure 6 displays
uniform DIF for item #24 (“Many situations made me worry”)–both χ2

12 and χ2
13 tests were

statistically significant (p < 0.001) with a non–significant χ2
23. However, the item response

functions (and the item parameter estimates) revealed a somewhat different diagnosis–the
difference in slope parameters (2.80 vs. 1.88) suggests non–uniform DIF.

The diagnostic plots for individual DIF items (see Figures 2 through 6) are followed in lordif
by two test–level plots. Figure 7 shows the impact of all of the DIF items on test characteristic
curves (TCCs). The left plot is based on item parameter estimates for all 29 items including
the group–specific parameter estimates for the five items identified with DIF. The plot on the
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Figure 6: Graphical display of the item “Many situations made me worry” displaying uniform
DIF with respect to age. Note: See detailed comments accompanying Figure 2.

right is based only on the group–specific parameter estimates. Although the impact shown in
the plot on the right is very small, the difference in the TCCs implies that older adults would
score slightly lower (less anxious) if age group–specific item parameter estimates were used
for scoring. When aggregated over all the items in the test (left plot) or over the subset of
items found to have DIF (right plot), differences in item characteristic curves (Figure 7) may
become negligibly small due to canceling of differences in opposite directions, which is what
appears to have happened here. However, it is possible for the impact on trait estimates to
remain.

For the impact at the individual score level, lordif compares the initial naive theta estimate
and the “purified” theta estimates from the final run accounting for DIF as shown in Figure 8.
Notice that the item parameter estimates from the final run were equated (using non–DIF
items as anchor items) to the initial, single–group calibration and not re–centered to 0.0 (see
Step 8), and hence the mean difference (“initial minus purified”) is not necessarily 0.0. This
is a modification from the original difwithpar framework (Crane et al. 2006). The Box–and–
Whisker plot on the left shows the median difference (over all examinees) is about 0.1 and
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Figure 7: Impact of DIF items on test characteristic curves. Note: These graphs show test
characteristic curves (TCCs) for younger and older individuals using demographic–specific
item parameter estimates. TCCs show the expected total scores for groups of items at each
anxiety level (theta). The graph on the left shows these curves for all of the items (both items
with and without DIF), while the graph on the right shows these curves for the subset of these
items found to have DIF. These curves suggest that at the overall test level there is minimal
difference in the total expected score at any anxiety level for older or younger individuals.

the differences ranged from −0.176 to +0.263 with a mean of 0.073. The scatter plot on
the right shows that the final theta estimates had a slightly larger standard deviation (1.122
vs. 1.056). The dotted horizontal reference line is drawn at the mean difference between the
initial and purified estimates (i.e., 0.073). With the inclusion of five items with group–specific
item parameters, scores at both extremes became slightly more extreme. Accounting for DIF
by using group–specific item parameters had negligible effects on individual scores. In the
absence of a clinical effect size, we labeled individual changes as “salient” if they exceeded the
median standard error (0.198) of the initial score. About 1.96% (15 of 766) of the subjects
had salient changes. About 0.52% (4 out of 766) had score changes larger than their initial
standard error estimates. Cohen’s effect size d for the difference between the two group means
(Younger minus Older) was nearly unchanged after identifying and accounting for DIF (from
0.544 to 0.561).

Table 1 shows the Monte Carlo threshold values for the statistics and magnitude measures by
item, based on nr = 1000 and alpha = 0.01. On average, the empirical threshold values for
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Figure 8: Individual–level DIF impact. Note: These graphs show the difference in score
between using scores that ignore DIF and those that account for DIF. The graph on the left
shows a box plot of these differences. The interquartile range, representing the middle 50% of
the differences (bound between the bottom and top of the shaded box), range roughly from
+0.03 to +0.12 with a median of approximately +0.10. In the graph on the right the same
difference scores are plotted against the initial scores ignoring DIF (“initial theta”), separately
for younger and older individuals. Guidelines are placed at 0.0 (solid line), i.e., no difference,
and the mean of the differences (dotted line). The positive values to the left of this graph
indicate that in almost all cases, accounting for DIF led to slightly lower scores (i.e., naive
score ignoring DIF minus score accounting for DIF > 0, so accounting for DIF score is less
than the naive score) for those with lower levels of anxiety, but this appears to be consistent
across older and younger individuals. The negative values to the right of this graph indicate
that for those with higher levels of anxiety, accounting for DIF led to slightly higher scores,
but this again was consistent across older and younger individuals.

the probability associated with the χ2 statistic were close to the nominal α level–the mean
probability threshold values across items were 0.010, 0.011, and 0.011 for χ2

12, χ
2
13, and χ2

23,
respectively. Figure 9 displays the probability thresholds for the three χ2 statistics by item.
The horizontal reference line is drawn at the nominal α level (i.e., 0.01). There is no indication
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no. Prob. Cox & Snell Nagelkerke McFadden
Item cat. χ2

12 χ2
13 χ2

23 R2
12 R2

13 R2
23 R2

12 R2
13 R2

23 R2
12 R2

13 R2
23 %∆β1

1 3 .010 .016 .008 .005 .007 .006 .007 .009 .008 .006 .008 .007 .035
2 3 .009 .014 .018 .005 .007 .005 .007 .009 .006 .006 .007 .005 .039
3 3 .008 .009 .010 .004 .005 .004 .005 .007 .005 .006 .008 .006 .032
4 4 .012 .009 .009 .004 .006 .004 .004 .006 .005 .004 .005 .004 .027
5 3 .011 .008 .007 .004 .006 .004 .005 .007 .005 .006 .009 .007 .035

6 3 .011 .014 .014 .004 .005 .003 .005 .006 .004 .005 .007 .005 .028
7 3 .015 .010 .009 .004 .006 .005 .005 .007 .005 .004 .006 .005 .030
8 3 .009 .008 .010 .005 .007 .005 .006 .009 .006 .005 .007 .005 .037
9 3 .014 .013 .009 .004 .006 .005 .005 .007 .006 .004 .006 .005 .034
10 3 .008 .016 .014 .003 .004 .003 .004 .005 .004 .006 .007 .005 .030

11 3 .005 .008 .011 .007 .009 .006 .008 .010 .007 .006 .007 .005 .043
12 3 .017 .018 .014 .004 .005 .004 .004 .006 .005 .004 .005 .004 .029
13 3 .009 .013 .017 .005 .006 .004 .005 .007 .005 .005 .007 .004 .038
14 3 .007 .007 .009 .005 .006 .004 .005 .007 .005 .005 .007 .004 .034
15 3 .008 .008 .006 .004 .005 .004 .004 .006 .005 .005 .008 .006 .031

16 3 .014 .013 .008 .004 .005 .004 .004 .006 .005 .004 .005 .004 .028
17 2 .006 .005 .005 .006 .008 .006 .010 .013 .010 .011 .015 .011 .054
18 4 .009 .009 .014 .005 .007 .004 .006 .007 .005 .004 .005 .003 .030
19 3 .007 .007 .005 .004 .005 .004 .005 .007 .005 .006 .009 .007 .028
20 3 .010 .007 .008 .003 .005 .003 .004 .006 .004 .005 .008 .006 .032

21 3 .009 .006 .009 .006 .009 .006 .007 .011 .007 .005 .008 .005 .041
22 3 .007 .011 .013 .004 .005 .003 .005 .006 .004 .005 .006 .004 .030
23 3 .004 .009 .014 .005 .006 .004 .006 .007 .004 .005 .006 .004 .034
24 4 .016 .012 .009 .004 .006 .004 .004 .006 .005 .003 .005 .004 .027
25 4 .010 .014 .013 .005 .006 .005 .005 .007 .005 .003 .004 .003 .034

26 3 .006 .009 .010 .005 .006 .004 .005 .006 .004 .005 .006 .004 .029
27 3 .016 .013 .020 .003 .005 .003 .004 .005 .004 .004 .006 .004 .025
28 3 .016 .011 .009 .003 .005 .004 .003 .005 .004 .004 .005 .004 .024
29 3 .012 .012 .009 .003 .004 .003 .004 .005 .004 .005 .007 .005 .025

Mean .010 .011 .011 .004 .006 .004 .005 .007 .005 .005 .007 .005 .032
SD .004 .003 .004 .001 .001 .001 .001 .002 .001 .001 .002 .002 .006

Table 1: Empirical threshold values from Monte Carlo simulations (nr = 1000, alpha =

0.01).

that the empirical threshold values are systematically deviated from the nominal level, which
is congruent with previous research showing that the Type I error rate is well controlled under
the likelihood ratio test (Kim and Cohen 1998).

Figure 10 presents the threshold values on pseudo R2 measures. As expected, data generated
under no DIF conditions produced negligibly small pseudo R2 measures, i.e., considerably
smaller than Cohen’s guideline for a small effect size (0.02). Although some fluctuations are
visible across items, the pseudo R2 thresholds were unmistakably smaller than any guidelines
for non–trivial effects. Unlike the ordinary least squares R2, pseudo R2 measures may lack
a reasonable interpretation. For instance, the Cox & Snell (Cox and Snell 1989) pseudo R2

measure cannot attain the value of 1 even if the model fits perfectly and residuals are zero
(Mittlböck and Schemper 1996). Although the Nagelkerke formula for pseudo R2 corrects the
scale issue, it may still lack an immediate interpretation (Mittlböck and Schemper 1999). Mc-
Fadden’s pseudo R2 measure, on the other hand, offers intuitively meaningful interpretations,
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Figure 9: Monte Carlo thresholds for χ2 probabilities (1,000 replications). Note: The graphs
show the probability values for each of the items (shown along the x–axis) associated with
the 99th quantile (cutting the largest 1% over 1,000 iterations) of the χ2 statistics generated
from Monte Carlo simulations under the no DIF condition (data shown in Table 1). The lines
connecting the data points are placed to show the fluctuation across items and not to imply
a series. The horizontal reference line is placed at the nominal alpha level (0.01).

e.g., proportional reduction in the −2 log–likelihood statistic. However, since the primary
interest in the current context is the change in the pseudo R2 measures between two nested
models, the scale issue may not be a serious concern. Although further study is needed, it
is interesting to note that the empirical thresholds based on Cox & Snell displayed the least
amount of variation across items (see Figure 10 and standard deviations at the bottom of
Table 1).

The threshold on proportionate β1 change was fairly consistent over items (mean= 0.0323,
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Figure 10: Monte Carlo thresholds for pseudo R2 (1,000 replications). Note: The graphs
show the pseudo R2 measures for each of the items (shown along the x–axis) corresponding to
the 99th quantile (cutting the largest 1% over 1,000 iterations) generated from Monte Carlo
simulations under the no DIF condition. The lines connecting the data points are placed to
show the fluctuation across items and not to imply a series.

SD= 0.0063). The maximum change across items was 0.0538 (i.e., about 5% change) and was
from item #17, which was also the item with the largest pseudo R2 measures (see Figure 11).
A 10% change in β1 (i.e., 0.1) has been used previously as the criterion for the presence of uni-
form DIF (Crane et al. 2004). The proportionate β1 change effect size is closely related to the
pseudo R2

12 measures (comparing Model 1 vs. Model 2). The correlation coefficients between
the three R2

12 measures and the proportionate β1 change thresholds across items were 0.855,
0.928, and 0.784 for Cox & Snell, Nagelkerke, and McFadden, respectively. The correlation
between Nagelkerke’s R2

12 and the proportionate β1 change effect size was especially high. It
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Figure 11: Monte Carlo thresholds for proportional beta change (1,000 replications). Note:
The graphs show the proportionate β1 change measures for each of the items (shown along
the x–axis) corresponding to the 99th quantile (cutting the largest 1% over 1,000 iterations)
generated from Monte Carlo simulations under the no DIF condition. The lines connecting
the data points are placed to show the fluctuation across items and not to imply a series.

is interesting to note that when the proportionate β1 change thresholds were linearly inter-
polated (based on the threshold values in Table 1), a 10% change in β1 is roughly equivalent
to 0.02 in Nagelkerke’s R2

12. Although the two effect size measures and associated flagging
criteria originated in different disciplines, they appear to be consistent in this context.

5. Conclusion

The lordif package is a powerful and flexible freeware platform for DIF detection. Ordinal
logistic regression (OLR) provides a flexible and robust framework for DIF detection, espe-
cially in conjunction with trait level scores from IRT as the matching criterion (Crane et al.
2006). This OLR/IRT hybrid approach implemented in lordif provides statistical criteria and
various magnitude measures for detecting and measuring uniform and non–uniform DIF. Fur-
thermore, the use of an IRT trait score in lieu of the traditional sum score makes this approach
more robust and applicable even when responses are missing by design, e.g., block–testing,
because unlike raw scores comparable IRT trait scores can be estimated based on different
sets of items. The lordif package also introduces Monte Carlo procedures to facilitate the
identification of reasonable detection thresholds to determine whether items have DIF based
on Type I error rates empirically found in the simulated data. This functionality was not
available in difwithpar (Crane et al. 2006).

A multitude of DIF detection techniques have been developed. However, very few are avail-
able as an integrated, non–proprietary application, and none offers the range of features of
lordif. Of the non–proprietary programs, DIFAS (Penfield 2005) and EZDIF (Waller 1998)
are based on the sum score. DIFAS implements a variety of DIF detection techniques based
on raw scores for both dichotomous and polytomous items. EZDIF only allows dichotomous
items, although it employs a two–stage purification process of the trait estimate. IRTLRDIF
(Thissen 2001) uses the IRT parameter invariance framework and directly tests the equality
of item parameters, but does not allow for empirical determination of DIF detection criteria.
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It should be noted that it is on the basis of its features that we recommended lordif; we have
not conducted any simulations to compare its findings with these programs.

In our illustration, five of 29 items were found to have modest levels of DIF related to age.
Findings were very similar between the standard sum score–based method and the iterative
hybrid OLR/IRT algorithm. The IRT model–based OLR approach provides a mechanism to
diagnose DIF in terms of the impact on IRT parameters. The impact of DIF on the TCC
was minimal, though some item characteristic curves (ICCs) clearly demonstrated differences.
When accounting for DIF, a very small percentage of the subjects had “salient” score changes.
This definition of salience is based on the median standard error of measurement (SEM) for
the scale. In this instance, the “scale” is an entire item bank with a relatively small median
SEM. When a minimal clinically important difference (MCID) is available for a scale, Crane
and colleagues recommend a similar approach, but use the MCID and refer to differences
beyond the MCID as “relevant” DIF impact (Crane et al. 2007b). While the MCID for the
PROMIS anxiety scale has yet to be determined, it will likely be larger than the value used to
indicate salience here (0.198). In that case, the proportion of subjects who will have relevant
DIF will be even smaller than that found to have salient DIF, further buttressing our view
that DIF related to age is negligible in this dataset.

The Monte Carlo simulation results confirmed that the likelihood ratio χ2 test maintains the
Type I error adequately in this dataset. Some pseudo R2 values varied across items, but overall
they were very small under simulations that assume no DIF. Some pseudo R2 values may vary
from item to item depending on the number of response categories and the distribution within
each response category (Menard 2000), so using a single pseudo R2 threshold may result in
varying power across items to detect DIF (Crane et al. 2007b). Monte Carlo simulations can
help inform the choice of reasonable thresholds. If a single threshold is to be used across all
items, it should be set above the highest value identified in Monte Carlo simulations. For
instance, the maximum pseudo R2 in Table 1 was 0.015, and thus a reasonable lower bound
that would avoid Type I errors might be 0.02, which interestingly corresponds to a small,
non–negligible effect size (Cohen 1988).

Subsequent development will be facilitated by the algorithm’s ability to account for DIF
using group specific item parameters. Future studies may focus on examining the potential
greater impact of DIF in a computer adaptive testing (CAT) framework, and developing a
CAT platform that can account for DIF in real time. It will also be interesting to compare
the OLR/IRT framework implemented in lordif to other DIF detection techniques based on
the IRT parameter invariance assumption, such as IRTLRDIF (Thissen 2001) and DFIT
(Raju et al. 2009). For instance, it will be interesting to see how those procedures would
diagnose item #24 (see Figure 6). As noted previously, this item displayed no non–uniform
DIF (p = 0.85); however, the slope parameter estimates appeared quite different (1.88 vs.
2.80).

In conclusion, in this paper we introduce lordif, a new freeware package for DIF detection that
combines IRT and ordinal logistic regression. The Monte Carlo simulation feature facilitates
empirical identification of detection thresholds, which may be helpful in a variety of settings.
Standard output graphical displays facilitate sophisticated understanding of the nature of and
impact of DIF. We demonstrated the use of the package on a real dataset, and found several
anxiety items to have DIF related to age, though they were associated with minimal DIF
impact.
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A. PROMIS Anxiety Bank

See Pilkonis et al. (2011). In the past 7 days . . .

1. I felt fearful

2. I felt frightened

3. It scared me when I felt nervous

4. I felt anxious

5. I felt like I needed help for my anxiety

6. I was concerned about my mental health

7. I felt upset

8. I had a racing or pounding heart

9. I was anxious if my normal routine was disturbed

10. I had sudden feelings of panic

11. I was easily startled

12. I had trouble paying attention

13. I avoided public places or activities

14. I felt fidgety

15. I felt something awful would happen

16. I felt worried

17. I felt terrified

18. I worried about other people’s reactions to me

19. I found it hard to focus on anything other than my anxiety

20. My worries overwhelmed me

21. I had twitching or trembling muscles

22. I felt nervous

23. I felt indecisive

24. Many situations made me worry

25. I had difficulty sleeping

26. I had trouble relaxing

27. I felt uneasy

28. I felt tense

29. I had difficulty calming down
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