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Abstract

In longitudinal studies of disease, patients can experience several events across a follow-
up period. Analysis of such studies can be successfully performed by multi-state models.
In the multi-state framework, issues of interest include the study of the relationship be-
tween covariates and disease evolution, estimation of transition probabilities, and survival
rates. This paper introduces p3state.msm, a software application for R which performs
inference in an illness-death model. It describes the capabilities of the program for esti-
mating semi-parametric regression models and for implementing nonparametric estimators
for several quantities. The main feature of the package is its ability for obtaining non-
Markov estimates for the transition probabilities. Moreover, the methods can also be used
in progressive three-state models. In such a model, estimators for other quantities, such
as the bivariate distribution function (for sequentially ordered events), are also given. The
software is illustrated using data from the Stanford Heart Transplant Study.

Keywords: Kaplan-Meier estimator, Markov process, multi-state model, proportional hazards
model.

1. Introduction

In many medical studies, patients may experience several events. Analysis in such studies is
often performed using multi-state models (Andersen, Borgan, Gill, and Keiding 1993; Meira-
Machado, Cadarso-Suárez, de Uña-Álvarez, and Andersen 2009). These models are very useful
for describing event-history data, affording a better understanding of the disease process, and
leading to a better knowledge of the evolution of the disease over time. Issues of interest
include the estimation of transition probabilities, survival rates or assessing the effects of
individual risk factors.

Although the mortality model for survival analysis can be considered the simplest multi-
state model, the scope of multi-state models provides a rich framework for handling complex
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Figure 1: Progressive three-state model.
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Figure 2: Illness-death model. 
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Figure 2: Illness-death model.

situations that involve more than two states and a number of possible transitions among them.
The most common models in the literature include: the progressive three-state model depicted
in Figure 1; and the illness-death model, also known as the disability model (Figure 2). These
models can be used to study the effect of binary time-dependent covariates, such as the
appearance of “recurrence” in a breast cancer study (Cadarso-Suárez, Meira-Machado, Kneib,
and Gude 2010), “bleeding episodes” in patients with liver cirrhosis (Andersen, Esbjerg, and
Sørensen 2000), or “transplantation” in heart diseases (Meira-Machado et al. 2009).

More examples of multi-state models can be found in books by Andersen et al. (1993)
and Hougaard (2000), or in papers by Hougaard (1999) and Putter, Fiocco, and Geskus
(2007).

Despite its potential, multi-state modeling is not used by practitioners as frequently as other
survival analysis techniques. It is our belief that lack of knowledge of available software and
non-implementation of the new methodologies in user-friendly software are probably respon-
sible for this neglect. One important contribution to this issue was given by the R/S-PLUS
survival package (Therneau and Lumley 2010). Thanks to this package, survival analysis is no
longer limited to Kaplan-Meier curves and simple Cox models. Indeed, this package enables
users to implement the methods introduced by Therneau and Grambsch (2000) for modeling
multi-state survival data. In R (R Development Core Team 2010), multi-state regression can
also be performed using the msm package by Christopher Jackson (continuous-time Markov
and hidden Markov multi-state models; Jackson (2011)) and mstate (de Wreede, Fiocco,
and Putter 2010, 2011). The changeLOS package Wangler, Beyersmann, and Schumacher
(2006) implements the Aalen–Johansen estimator (Aalen and Johansen 1978) for general
multi-state models, and the etm package Allignol, Schumacher, and Beyersmann (2011) has
recently enabled the transition matrix to be computed, along with a covariance estimator.
Meira-Machado, Cadarso-Suárez, and de Uña-Álvarez (2007) developed a software package
called tdc.msm (available from http://www.mct.uminho.pt/lmachado/Rlibrary) to analyze
multi-state survival data. This software may be used to fit the time-dependent Cox regres-
sion model but also several multi-state regression models in continuous time. Advantages of
this software include the same data input for fitting the different models while providing the
corresponding numerical and graphical outputs.

This paper describes the R-based p3state.msm (available from the Comprehensive R Archive
Network at http://CRAN.R-project.org/package=p3state.msm) package’s capabilities for

http://www.mct.uminho.pt/lmachado/Rlibrary
http://CRAN.R-project.org/package=p3state.msm
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analyzing survival data from an illness-death model. It extends existing semi-parametric
regression capabilities included in many statistical software programs, such as R, S-PLUS,
SAS, etc. Moreover, p3state.msm enables several quantities of interest to be estimated, such
as transition probabilities, bivariate distribution function, etc. In addition, the current version
of p3state.msm can also be used to draw inferences in the progressive three-state model
depicted in Figure 1. This software can be used to fit the time-dependent Cox regression
model (TDCM) as well as semi-parametric Cox proportional hazard regression models (Cox
1972) to all permitted transitions, by decoupling the whole process into various survival
models (Cox Markov Model, CMM, and Cox semi-Markov Model, CSMM, Andersen et al.
2000). Numerical and graphical output for all methods can be easily obtained.

Regression (Cox-like) models can be fitted using, e.g., the tdc.msm software, and estimation
of the Aalen-Johansen (Markov) estimator can be computed using the etm package. However,
in the absence of the Markov property, without our software, appropriate methods for the
computation of the transition probabilities would still be lacking. Moreover, in the progres-
sive three-state model the package p3state.msm also provides other summary measures that
greatly helps to understand the disease process.

The following section provides a brief introduction to the methodological background. No-
tation is introduced and nonparametric estimators for bivariate distribution function and
transition probabilities are presented. Regression methods based on semi-parametric Cox re-
gression models are also discussed. An overview of the use of p3state.msm is given in Section 3
and an example of its application in Section 4. A discussion is in Section 5.

2. Methodological background

Multi-state processes are characterized through transition probabilities between states h and
j, which are expressed for s ≤ t as

phj(s, t) = p (X(t) = j|X(s) = h,Hs−)

where Hs−(σ−algebra) denotes the history of the process, which is generated and consists of
the observation of the process over the interval [0, s); or through transition intensities, which
are expressed as

αhj(t) = lim
∆t→0

phj(t, t+ ∆t)/∆t

representing the instantaneous hazard of progression to state j conditionally on occupying
state h, and which are assumed to exist.

A number of possible models for the transition rates have been studied. These include: time-
homogeneity; the Markov assumption; and the semi-Markov assumption.

This section will focus on the estimation of transition probabilities for the illness-death
model (Meira-Machado, de Uña-Álvarez, and Cadarso-Suárez 2006). These estimators also
apply to the case of the progressive three-state model, since this model can be viewed as a
particular case of the illness-death model where no transitions are observed on disease-free
mortality transition (1 → 3). For the progressive three-state model, estimators are also de-
rived for the bivariate distribution function of the pair of gap times and for the distribution
of the second gap time (de Uña-Álvarez and Meira-Machado 2008). The idea behind the
proposed estimators is using the Kaplan-Meier estimator pertaining to the distribution of
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the total time to weight the data. The estimators for the transition probabilities can be re-
garded as an alternative to Aalen-Johansen estimators since they do not rely on the Markov
assumption.

2.1. The illness-death model

Consider the illness-death model depicted in Figure 2. Let {X(t), t ≥ 0, X(0) = 1} denote
the underlying stochastic process, where X(t) denotes the state being occupied at time t, for
which all individuals are in state 1 at time zero. The stochastic behavior of the process is
represented by a random vector (T12, T13, T23) , where Thj is the potential transition from
state h to state j, 1 ≤ h < j ≤ 3, in which T23 is the sojourn time in state 2. The survival
time of the process is given by T = I(T12 ≤ T13)(T12 + T23) + I(T12 > T13)(T13).

This random vector may be subjected to a random right-censoring variable, denoted as C
and assumed to be independent of (T12, T13, T23) . Owing to censoring, only the following
are observed: sojourn time in state 1, U = min(T12, T13, C) ; sojourn time in state 2, V =
min(T23, C−T12) ; observed total time Y = U + δV = min(T,C) (δ = I (T12 ≤ min(T13, C)));
and indicator statuses ∆1 = I (min(T12, T13) ≤ C) and ∆2 = I(T ≤ C).

Traditionally, the transition probabilities are estimated via the non-parametric model (Aalen-
Johansen estimator, Aalen and Johansen 1978). The performance of Aalen-Johansen estima-
tor of stage occupancy probabilities was investigated by Datta and Satten (2001) when the
process is not Markovian. These authors concluded that the Aalen-Johansen method provides
consistent estimators in this case. However, no similar result is available when the target is
the transition (rather than the occupancy) probability. Recently, Meira-Machado et al. (2006)
verified that, in non-Markov situations, the use of these estimators for empirical estimation of
the transition probabilities, phj(s, t), may be inappropriate. Within the scope of the illness-
death model, these authors propose alternative estimators for the transition probabilities,
which do not rely on the Markov assumption. The quantities are determined by the joint
distribution of (T12, T13, T23). Specifically, knowledge of the distribution H of min(T12, T13)
will suffice for recovery of p11(s, t) while expectations of type S(φ) = E[φ(U, Y )] arise when
handling p12(s, t) and p22(s, t) . The estimators are expressed as

p̂11(s, t) =
1− Ĥ(t)

1− Ĥ(s)
(1)

p̂12(s, t) =

∑n
i=1Wiφs,t

(
U[i], Y(i)

)
1− Ĥ(s)

(2)

p̂22(s, t) =

∑n
i=1Wiφ̃s,t

(
U[i], Y(i)

)
∑n

i=1Wiφ̃s,s
(
U[i], Y(i)

) (3)

where Wi are the Kaplan-Meier weights attached to Y(i), Ĥ is the Kaplan-Meier estimator

based on the pairs (Ui,∆1i) , and φs,t(u, v) = I(s < u ≤ t, v > t) and φ̃s,t(u, v) = I(u ≤ s, v >
t) . In these expressions, Y(1) ≤ . . . ≤ Y(n) denotes the ordered sample of the Yi’s and U[i] for
the pair attached (concomitant) to the Y(i) value.

Note that for the illness-death model, the transition probabilities to be estimated reduce
to p11(s, t), p12(s, t), and p22(s, t), since p13(s, t) = 1 − p11(s, t) − p12(s, t) and p23(s, t) =
1− p22(s, t).
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2.2. The progressive three-state model

Consider the progressive three-state model depicted in Figure 1. The stochastic behavior of
the process is represented by a random vector (T12, T23), deemed to be a pair of gap times
of successive events which may be subjected to random right-censoring. Let C be the right-
censoring variable, assumed to be independent of (T12, T23), and let T = T12 + T23 be the
survival time of the process and Y = min(T,C) the observed total time.

The methods shown above (for the illness-death model, 1–3) apply to the progressive three-
state model. Estimation of the marginal distribution for the second gap time, F2(y) =
P (T23 ≤ y), and estimation of the bivariate distribution function, F12(x, y) = P (T12 ≤ x,
T23 ≤ y), constitute two additional topics of interest within the scope of the model depicted
in Figure 1. Indeed, as T23 and C2 = (C − T12) I (T12 ≤ C) will in general be interdepen-
dent, estimation of the marginal distribution for the second gap time is not a simple issue.
The same applies to the bivariate distribution function. A simple estimator was proposed
by de Uña-Álvarez and Meira-Machado (2008), with the Kaplan-Meier estimator pertain-
ing to the distribution of the total time being used to weight the data. The estimators are
expressed as

F̂12(x, y) =
n∑

i=1

WiI (Ui ≤ x, Vi ≤ y) (4)

where Wi is the Kaplan-Meier weight attached to Yi when estimating the marginal distribution
of Y from (Yi,∆2i)s, Ui = min (T12i, Ci) and Vi = min (T23i, C2i). From (4) one can obtain an
estimator for the marginal distribution of the second gap time, namely, F̂2(y) = F̂12(∞, y) =∑n

i=1WiI (Vi ≤ y).

2.3. Regression models

One important goal in multi-state modeling is to study the relationships between the differ-
ent predictors and the outcome. To relate the individual characteristics to the intensity rates
through a possibly time-dependent covariate vector, Z, several models have been used in lit-
erature. A common simplifying strategy is to decouple the whole process into various survival
models, by fitting separate intensities to all permitted transitions using semi-parametric Cox
proportional hazard regression models, while making appropriate adjustments to the risk set.
For the illness-death model of Figure 2, the transition intensities, αhj(t;Z) , 1 ≤ h < j ≤ 3,

may be modeled using Cox-like models of the form αhj(t;Z) = αhj0(t) exp
(
βThjZ

)
assum-

ing the process to be Markovian. These models are known as Cox Markov models (CMM).
The Markov assumption states that the future depends on the individual’s past solely by
means of his current state. However, by ignoring disease history behavior, Markov models
may have severe limitations, thus rendering them inappropriate. One alternative approach
is to use a Cox semi-Markov model (CSMM) in which the future of the process does not
depend on the current time but rather on the duration in the current state. These mod-
els are also called ”clock reset” models, because each time the patient enters a new state
time is reset to 0. Assuming an illness-death model, the only difference between CMM and
CSMM (Andersen et al. 2000) resides in transition 2→ 3 , in which intensity α23 is modeled
in a different way. Specifically, the corresponding intensity α23 in the CSMM is given by

α23(t − T12;Z) = α230(t − T12) exp
(
βT23Z

)
where T12 is the entry time into state 2. These
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Cox-like models (Markovian and semi-Markovian) can be fitted by means of most of the sta-
tistical packages (R, S-PLUS, SAS, etc.), provided that a counting process notation is used,
with each patient being represented by several observations (Meira-Machado et al. 2009).

Though we assume different baseline hazards for the transition intensities, we note that,
in some cases, one may impose some restriction on the baseline hazards. For example, for
the illness-death model, one approach that is often considered is to assume the baseline
hazards for transition 1 → 3 and for the 2 → 3 transition to be proportional. In such cases,

the model for these transitions is given by α13(t;Z) = α130(t) exp
(
βT13Z

)
and α23(t;Z) =

α130(t) exp
(
βT23Z + δ

)
.

3. Package description

The p3state.msm software contains nonparametric statistical methods for estimating quanti-
ties of interest such as transition probabilities, the bivariate distribution function for censored
gap times, etc. This software is intended to be used with the R statistical program (R De-
velopment Core Team 2010). In the R language, programming is based on objects, and
computations are basically specialized functions designed to perform specific calculations.
Our package is composed of 6 functions that enable users to fit the proposed models and
methods. Table 1 provides a summary of the objects in this package.

Users can fit the proposed models and methods discussed in the previous section by means
of the three functions, namely, p3state, summary and plot. Table 2 provides a summary of
the arguments in the three functions.

It should be noted that only data is a required argument. Records in the data file must contain
the following variables: times1, delta, times2, time, status, covariate1, covariate2, and
so on. The structure of the data input is as follows: each individual is represented by one line

Function Description

p3state Main function for fitting regression models and obtaining multi-
state estimates (transition probabilities, bivariate distribution
function, etc.).

plot A function that provides the plots for transition probabilities, bi-
variate distribution function, and marginal distribution of the sec-
ond time (the last two available solely for the progressive three-
state model).

summary Summary method for objects of class p3state.
data.creation.reg Provides the adequate dataset for implementing regression models

(TDCM, CMM, and CSMM). Same input data as for p3state.
pLIDA Provides estimates for the transition probabilities using the meth-

ods in paper by Meira-Machado et al. (2006).
Biv Provides estimates for the bivariate distribution function, using

the paper by de Uña-Álvarez and Meira-Machado (2008). Avail-
able solely for the progressive three-state model.

Table 1: Summary of functions in the package.
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p3state arguments Description

data Data input as described below.
coxdata Data set in a counting process data-structure. This data set can

be obtained by using data.creation.reg. If NULL, the main function
p3state function will automatically create this dataset every time
it is called.

formula A formula giving the vector of covariates, e.g., formula = ~ age +

sex.

regression A logical variable indicating whether you want the regression model
(from the Cox regression model and Cox-type multi-state models).

summary arguments Description

object Object of class p3state.
model A character string specifying which model(s) to fit. Possible values

are TDCM, CMM and CSMM. If NULL, none of the regression models will
be implemented.

covmat If TRUE, provides the variance-covariance matrices when implement-
ing regression models. By default, covmat = FALSE.

estimate A logical variable indicating whether you want the nonparametric
estimates from the multi-state model. These include transition prob-
abilities, bivariate distribution function, and marginal distribution
of the second time (the last two available solely for the progressive
three-state model).

time1 The first time for computing estimates for the transition probabili-
ties and bivariate distribution function. NULL is equivalent to 0.

time2 The second time for computing estimates for the transition proba-
bilities and bivariate distribution function.

plot arguments Description

x Object of class p3state.
plot.trans A character string specifying which plot(s) are to be given for the

transition probabilities. Possible values are all, P11, P12, P22 and
P23.

plot.marginal If TRUE, plots the marginal distribution of the second gap time.
plot.bivariate If TRUE, plots the bivariate distribution function.
time1 Starting value for computing the transition probabilities. NULL is

equivalent to 0.
col.biv A logical variable indicating whether you want color to be used in

the filled.contour plot. By default col.biv = FALSE.

Table 2: Summary of arguments of the p3state, summary, and plot functions.

of data. The variable times1 represents the observed time in state 1, and delta the indicator
of transition to state 2 (taking a value of 1 if a transition to state 2 is observed, and a value
of 0 otherwise). The variable times2 represents the observed time in state 2. If no transition
into state 2 (delta = 0) is observed then times2 = 0. The variable time is just the observed
total time (times1 + times2) whereas status is the final status of the individual (1 if the
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event of interest, representing state 3, is observed and 0 otherwise). The following variables
are the covariates to be studied in the regression models. Note that possible courses for the
individual include: 1 → 1 (the individual remains in state 1 until the end of the study; if
delta = 0 and status = 0); 1→ 3 (a direct transition from state 1 into state 3 is observed;
if delta = 0 and status = 1); 1→ 2→ 2 (if delta = 1 and status = 0); and 1→ 2→ 3
(if delta = 1 and status = 1).

Although only data is a required argument in p3state, note that for implementing regression
models (alone) the argument formula is also necessary. The p3state function returns an
object of class p3state with the following components:

� descriptives: vector with transition between states.

� datafr: data.frame to be used for obtaining the nonparametric estimates and plotting
purposes.

� tdcm: a coxph object with the fit of the Cox regression model with time-dependent
covariates.

� msm12: a coxph object with the fit of the Cox model for transition from state 1 to
state 2.

� msm13: a coxph object with the fit of the Cox model for transition from state 1 to state 3
(solely for the illness-death model).

� cmm23: a coxph object with the fit of the Cox Markov model for transition from state 2
to state 3.

� csmm23: a coxph object with the fit of the Cox semi-Markov model for transition from
state 2 to state 3.

� tma: a coxph object with the fit of a Cox model for testing the Markov assumption.

� tma2: the same as tma but with all the covariates in the model.

The object obtained when using the p3state function is the only argument required for
summary. However, the arguments, regression, time1 and time2 are also required if the
results from the regression model and the estimates for the other nonparametric methods are
sought. This function prints several numerical results on the screen, i.e., parameter estimates
with standard errors for the covariates for TDCM, CMM and CSMM models, transition
probabilities estimates, and estimates for the bivariate distribution function and the marginal
distribution of the second time (only in the case of the progressive three-state model).

The plot function provides the following graphical output: transition probabilities estimates;
bivariate distribution function; and marginal distribution of the second time.

The dataset included in p3state.msm package is the well-known Stanford Heart Transplant
data in a different format. Details about this dataset are given below.

4. Example of application: Stanford Heart Transplant data

An example of application is provided using the Stanford Heart Transplant data. A copy
of the data may be obtained from statlib or in the R survival package. This data set is
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also available in the book by Kalbfleisch and Prentice (1980, Appendix I, pp. 230–232) or
in the paper by Crowley and Hu (1977). The data set covers the period until 1974-04-
01. In this period some patients died before an appropriate heart could be found. Of the
103 patients, 69 received heart transplants; the number of deaths was 75; the remaining
28 patients contributed with censored survival times. For each individual, an indicator of final
vital status (censored or not), survival times (time since acceptance into the transplantation
program to transplant and to death) from patient entry into the study (in days), and a
vector of covariates including age at acceptance (age), year of acceptance (year), previous
surgery (surgery: coded as 1 = yes; 0 = no), and transplant (coded as 1 = yes; 0 = no)
were recorded. The covariate “transplant” is the only time-dependent covariate, while the
other covariates included are fixed. These time-dependent covariates can be re-expressed as a
multi-state model, with states based on the values of the covariate. If all subjects observe the
intermediate event, then the time-dependent covariate renders it possible for the progressive
three-state model to be used (Figure 1); otherwise, it is feasible for the illness-death model,
depicted in Figure 2, to be used. For the transplant heart data, the time-dependent covariate
can be expressed as an intermediate event that can be modeled using an illness-death model
with states, “alive without transplant”, “alive with transplant”, and “dead”. This relationship
will be used below to compare the Cox model with time-dependent covariates against common
multi-state regression approaches (CMM and CSMM). Other targets include the estimation
of transition probabilities. This will be done using p3state.msm.

In the following, we will demonstrate the package capabilities using data from the Stanford
Heart Transplant Study. Bellow is an excerpt of the data.frame with one row per individual

R> library("p3state.msm")

R> data("heart2")

R> head(heart2)

times1 delta times2 time status age year surgery

1 50 0 0 50 1 -17.155373 0.1232033 0

2 6 0 0 6 1 3.835729 0.2546201 0

3 1 1 15 16 1 6.297057 0.2655715 0

4 36 1 3 39 1 -7.737166 0.4900753 0

5 18 0 0 18 1 -27.214237 0.6078029 0

6 3 0 0 3 1 6.595483 0.7008898 0

Individuals represented in lines 1, 2, 5 and 6 experienced a direct transition from state 1 to
state 3 (1 → 3); individuals represented in lines 3 and 4 had a heart transplant at 1 and 36
days, respectively, after enrolment, and died at 16 and 39 days (1→ 2→ 3), respectively. We
note that delta = 1 and status = 0 corresponds to individuals with a transition from state
1 to state 2 and, afterwards, he/she exhibits a censored sojourn time in state 2 (1→ 2→ 2;
individuals that receive a new heart and remain alive until de end of study); finally, delta =

0 and status = 0 corresponds to a censored sojourn time in state 1 (1 → 1; remained alive
without a heart transplant).

Two central questions that arise in multi-state survival data are: what is the relationship
between the different covariates and disease evolution; what is the rate (hazard) at which
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persons in state h move to state j. Both questions can be answered using our software. This
will be shown below.

The p3state.msm software enables several semi-parametric Cox models to be fitted. The time-
dependent Cox model or multi-state Cox-like models (CMM and CSMM) can be constructed
with the following input command:

R> obj1.p3state <- p3state(heart2, formula = ~ age + year + surgery)

Results are printed on the screen as follows: For the TDCM (where treat denotes the time-
dependent covariate), by using

R> summary(obj1.p3state, model = "TDCM")

***** TIME-DEPENDENT COX REGRESSION MODEL *****

n= 172

coef exp(coef) se(coef) z Pr(>|z|)

age 0.02716664 1.0275390 0.01371412 1.98092553 0.04759963

year -0.14634635 0.8638585 0.07046798 -2.07677794 0.03782206

surgery -0.63720989 0.5287657 0.36722600 -1.73519821 0.08270570

treat -0.01025077 0.9898016 0.31375480 -0.03267128 0.97393672

exp(coef) exp(-coef) lower .95 upper .95

age 1.0275390 0.973199 1.0002875 1.0555330

year 0.8638585 1.157597 0.7524197 0.9918021

surgery 0.5287657 1.891197 0.2574423 1.0860419

treat 0.9898016 1.010303 0.5351550 1.8306980

Likelihood ratio test= 15.11148 on 4 df, p= 0.0044755

-2*Log-likelihood= 581.1312

here treat denotes the time-dependent covariate associated with the occurrence of the inter-
mediate state (in our application, transplantation, which is a binary time-dependent covari-
ate); and in which the likelihood ratio test is of the model with all covariates versus a model
with intercept only.

Multi-state Cox-like models (CMM and CSMM) can be obtained by simply changing the
model argument to “CMM” or “CSMM”, e.g.,

R> summary(obj1.p3state, model = "CMM")

*********************** COX MARKOV MODEL ***********************

*************** FROM STATE 1 TO STATE 3 ****************

n= 103

coef exp(coef) se(coef) z Pr(>|z|)

age 0.01978539 1.0199824 0.01807908 1.0943806 0.27378810

year -0.28331015 0.7532861 0.11096315 -2.5531913 0.01067409

surgery -0.22875449 0.7955238 0.63608541 -0.3596286 0.71912491
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exp(coef) exp(-coef) lower .95 upper .95

age 1.0199824 0.980409 0.9844729 1.0567728

year 0.7532861 1.327517 0.6060493 0.9362934

surgery 0.7955238 1.257033 0.2286737 2.7675156

Likelihood ratio test= 8.623363 on 3 df, p= 0.03474115

-2*Log-likelihood= 214.9848

*************** FROM STATE 1 TO STATE 2 ****************

n= 103

coef exp(coef) se(coef) z Pr(>|z|)

age 0.0311147186 1.031604 0.01398119 2.22546929 0.02604975

year 0.0007505999 1.000751 0.06948591 0.01080219 0.99138127

surgery 0.0473360792 1.048474 0.31524102 0.15015838 0.88063966

exp(coef) exp(-coef) lower .95 upper .95

age 1.031604 0.9693644 1.0037190 1.060263

year 1.000751 0.9992497 0.8733322 1.146760

surgery 1.048474 0.9537668 0.5652286 1.944874

Likelihood ratio test= 5.768582 on 3 df, p= 0.1234284

-2*Log-likelihood= 509.5638

*************** FROM STATE 2 TO STATE 3 ****************

n= 69

coef exp(coef) se(coef) z Pr(>|z|)

age 0.04956295 1.0508117 0.02137741 2.3184737 0.02042359

year -0.02303487 0.9772284 0.09693819 -0.2376243 0.81217248

surgery -0.81647952 0.4419849 0.45491690 -1.7947883 0.07268744

exp(coef) exp(-coef) lower .95 upper .95

age 1.0508117 0.9516452 1.0076935 1.095775

year 0.9772284 1.0233022 0.8081317 1.181708

surgery 0.4419849 2.2625206 0.1812097 1.078036

Likelihood ratio test= 11.30435 on 3 df, p= 0.01018901

-2*Log-likelihood= 290.1922

Checking the Markov assumption:

Testing if the time spent in state 1 (start) is important on transition from

state 2 to state 3

coef exp(coef) se(coef) z Pr(>|z|)

start -0.009392569 0.9906514 0.005340591 -1.758713 0.07862619

The p-value is 0.07862619
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Note that differences between the CMM and CSMM are only present in the transition from
state 2. The results reported above show that Markov’s assumption is satisfactory for the
Stanford Heart data. This assumption is tested by including covariates depending on the
history, “time spent in state 1” (Kay 1986). Note that rather than “time spent in state 1” one
could use time-dependent indicator covariates (Andersen et al. 2000); or test if “time since
transplant” (Hougaard 1999) is important in mortality transition after transplantation. We
note that this assumption can also be performed considering the model with all covariates.
The output for such model can be obtained using the command obj1.p3state$tma2 (results
not shown).

The patients course over time may also be studied through transition probabilities. To obtain
these estimates (for a model with no covariates), the following input command must be typed:

R> summary(obj1.p3state, time1 = 20, time2 = 200)

Illness-death model

The estimate of the transition probability P11( 20 , 200 ) is 0.1040599

The estimate of the transition probability P12( 20 , 200 ) is 0.2821365

The estimate of the transition probability P13( 20 , 200 ) is 0.6138035

The estimate of the transition probability P22( 20 , 200 ) is 0.3540728

The estimate of the transition probability P23( 20 , 200 ) is 0.6459272

The results obtained with the last two input commands can be obtained with a single input
command (results not shown), namely:

R> summary(obj1.p3state, model = "CMM", time1 = 20, time2 = 200)

The package also provides plots for several functions. Estimates of the the transition proba-
bilities (for a model with no covariates) are displayed in Figure 3. These plots can be obtained
with:

R> plot(obj1.p3state, plot.trans = "all", time1 = 20)

Just for the purposes of illustration, we created a new data set in which the individuals who
experienced a direct transition from state 1 to state 3 (1→ 3) are taken as censored on death
time. The aim of this subset is to illustrate the program in a progressive three-state model.
This can be done with the following three lines of command:

R> p <- which(heart2$delta == 0 & heart2$status == 1)

R> inputdata <- heart2

R> inputdata[p,5] <- 0

Estimates for the transition probabilities and estimates of regression effects can be obtained
in the same way as for the illness-death model.

The outputs for the bivariate distribution function and for the marginal distribution of the
second gap time (time since transplantation) are useful displays that greatly helps to un-
derstand the patients’ course over time. Estimates and plots for these quantities can easily
be obtained. The following three input commands provide the corresponding numerical and
graphical output (Figures 4, 5 and 6):
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Figure 3: Transition probability estimates with first time equal to 20 days.

R> obj2.p3state <- p3state(inputdata)

R> summary(obj2.p3state, time1 = 50, time2 = 300)

Progressive three-state model

Number of individuals experiencing the intermediate event: 69

Number of events for the direct transition from state 1 to state 3: 0

Number of individuals remaining in state 1: 34

Number of events on transition leaving state 2: 45

Number of censored observations on transition leaving state 2: 24
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Figure 4: Marginal distribution of the second time.

The estimate of the transition probability P11( 50 , 300 ) is 0.3066378

The estimate of the transition probability P12( 50 , 300 ) is 0.1654678

The estimate of the transition probability P13( 50 , 300 ) is 0.5278944

The estimate of the transition probability P22( 50 , 300 ) is 0.4947382

The estimate of the transition probability P23( 50 , 300 ) is 0.5052618

The estimate of the bivariate distribution function

F12( 50 , 300 ) is 0.3899876

The estimate of the marginal distribution function of the second gap time,

F2( 300 ) is 0.4943689

R> plot(obj2.p3state, time1 = 50, plot.marginal = TRUE,

+ plot.bivariate = TRUE)

5. Conclusion

This paper discusses implementation in R of some newly developed methods in multi-state
models. The p3state.msm package uses methods proposed by Meira-Machado et al. (2006)
(transition probabilities) and de Uña-Álvarez and Meira-Machado (2008) (bivariate distribu-
tion function for the censored gap times in the progressive three-state model). The main
novelty of these estimators is that they do not rely on the Markov assumption, typically
assumed to hold in a multi-state model. The software also enables the user to easily ob-
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tain estimates of regression parameters, assuming that each transition may be specified by a
Cox-type model. Numerical results as well as graphics are easily obtained.

As in other Cox analyses some care is necessary when performing regression modeling (as-
sumptions, baseline hazards, etc.). We note that the software returns an object of class
p3state with components that allow users to perform a detailed analysis of these models.

We mention three important topics that we shall consider in future versions of the package.
First, covariates have not been included in our nonparametric methods, e.g. transition prob-
abilities. Another topic of much practical interest is that of providing pointwise confidence
bands for the transition probabilities. To this end, we note that the (1 − α)100% limits for
the confidence interval of phj(s, t) can be obtained using pointwise confidence bands based
on the bootstrap. Though this can be achieved using the current version of our paper it will
be quite demanding. Finally, it is our belief that it may be valuable to include an option
where the baseline intensities (for Cox-like regression models) are estimated using methods
described in paper by Meira-Machado et al. (2006).

We plan to constantly update p3state.msm to cope with other multi-state models such as the
progressive k-state model and the bivariate model (for bivariate failure times).
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