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Should Urban Transit Subsidies Be Reduced? 
 
 

Abstract 
 

This paper derives empirically tractable formulas for the welfare effects of fare 
adjustments in passenger peak and off-peak rail and bus transit, and for optimal pricing of those 
services. The formulas account for congestion, pollution, and accident externalities, scale 
economies, and agency adjustment of transit service offerings. We apply them using parameter 
values for Washington (D.C.), Los Angeles, and London. The results support the efficiency of 
the large current fare subsidies; even starting with fares at 50 percent of operating costs, 
incremental fare reductions are welfare improving in almost all cases. These findings are robust 
to alternative assumptions and parameters. 

 
 

 

1. Introduction 

Passenger fares for public transportation are in most places heavily subsidized. Across 

the 20 largest transit systems in the United States (ranked by passenger miles), the subsidy, as 

measured by the difference between operating costs and passenger fare revenues, ranges from 29 

to 89 percent of operating costs for rail and from 57 to 89 percent for bus (Table 1). Kenworthy 

and Laube (2001) document a similar pattern across city transit systems in other developed 

nations.  

 Two classic rationales for transit subsidies are often advanced (Glaister 1974; Henderson 

1977; Jansson 1979). First, scale economies imply that the marginal social cost of supplying 

passenger miles is less than the average cost. These scale economies may arise from fixed costs, 

such as track and station maintenance, but more importantly they arise from the “Mohring 

effect,” whereby users’ waiting or access costs decline as service frequency or route density is 

increased (Mohring 1972). A related point is that higher passenger density allows vehicles to be 

operated with higher occupancy, thereby saving on the transit provider’s costs. 

 The second rationale is that lower transit fares discourage automobile use, thereby 

reducing external costs from traffic congestion, local and global air pollution, and traffic 

accidents. This is a second-best argument, since it assumes that these external costs cannot be 

internalized through appropriate road pricing.  

 Determining whether current fare subsidies are warranted by these two arguments is 

complicated by several factors. First, the strength of each argument may vary greatly by time of 
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day, mode, and location. Second, the appropriate subsidy depends on how transit agencies 

respond to increases in passenger demand at the margin—do they expand service through more 

vehicle miles or do they increase vehicle occupancy? Third, transit vehicles themselves 

contribute to externalities such as congestion and pollution, and their passengers impose external 

costs on each other via crowding (Kraus 1991) and via increased boarding and alighting time. 

Fourth, automobile externalities are partly internalized through fuel taxes. And finally, altering 

the subsidy for one mode will cause substitution across modes and times of day, with secondary 

effects on welfare due to distortions throughout the system. 

 Several studies have estimated optimal transit prices, focusing on one or both of the 

primary rationales just mentioned and usually in just one location. None of these studies 

encompasses all the complications just mentioned. In fact, existing estimates of optimal transit 

prices (given current road prices) vary enormously, from zero to more than 100 percent of 

operating costs, providing a confusing guide as to whether current fare subsidies should be 

preserved, expanded, or eliminated.1 It is difficult to discern the reasons for such diverse results 

because the studies apply to different regions and years, they account for different factors, they 

make different assumptions about transit agency response, they only sometimes distinguish 

among times of day, and they use different models ranging from simplified analytical models to 

less transparent but more detailed network models. Furthermore, some consider prices that are 

very different from current ones, raising questions of whether assumed parameter values remain 

valid. 

 This paper provides a general framework for evaluating existing fare subsidies and 

potential pricing reforms. It does so by developing a single analytical model that incorporates all 

the factors just described, then applies it to bus and rail at peak and off-peak periods. We derive a 

formula for the welfare effects from incrementally adjusting subsidies from their current levels, 

and we also adapt it to derive optimal subsidies. The resulting formulas clarify the contributions 

                                                      
1 For London, Glaister and Lewis (1978, Table 4, line 3b) estimate optimal rail and bus fares at about 50 to 60 
percent of marginal operating costs. For the San Francisco Bay Area and for Pittsburgh, Viton (1983) finds optimal 
fares to be virtually zero. Winston and Shirley (1998) find quite the opposite for the United States as a whole, with 
optimal bus and rail fares covering 84 percent and 97 percent of marginal operating costs, respectively. For a 
prototype Belgian city, De Borger et al. (1996) estimate optimal transit fares or 50 to 114 percent of average agency 
costs, depending on how service frequency adjusts to passenger demand. For Brussels, Proost and Van Dender 
(2008) estimate optimal transit fares to be nearly zero in peak periods and about double current fares in off-peak 
periods. Two recent studies of Washington, D.C., by Winston and Maheshri (2007) and Nelson et al. (2007), 
estimate net total benefits from transit but with conflicting results. We relate our findings to some of this literature 
below. 
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of all underlying parameters and can be empirically implemented in a spreadsheet.2 Following an 

extensive compilation of data and estimation of parameter values, we apply the formulas to three 

large but very different metropolitan areas: Washington, Los Angeles, and London. Our analysis 

includes vehicle capital costs, which can be varied fairly quickly, but not infrastructure 

investments. Thus, following previous pricing literature, we explore how best to use existing 

infrastructure without worrying about recovering sunk capital costs.3  

The most striking finding is that, in almost all cases, extending fare subsidies beyond 50 

percent of operating costs—often well beyond—is welfare improving at the margin across 

modes, periods, and cities. This finding is robust to plausible alternative assumptions about 

parameters and agency behavior. The main reasons why large subsides are welfare improving are 

the two classic ones, but the relative importance of these two rationales varies across different 

cases. We find big gains from alleviating auto traffic congestion (though not pollution), 

especially during peak periods. We also find big gains from increased patronage due to scale 

economies, mainly when initial service is low as is typical during off-peak hours and, in some 

cases, even for peak bus service. These latter gains may be in the form of reduced wait and 

access costs for users, if service is increased in response to higher patronage, or in the form of 

operating-cost savings, if vehicle occupancy instead of service is allowed to increase. 

We would caution against using an analysis as aggregated as ours to infer a finely tuned 

set of optimized transit prices. Nonetheless, we believe our results are useful for policymakers in 

that they provide a warning to think twice before attempting to cut operating deficits by raising 

passenger fares, as is often done under fiscal stress.  

One argument against transit subsidies is the broader efficiency costs of distortionary 

taxes needed to finance them. However, as emphasized in the literature on environmental tax 

shifts, there are important counteracting effects on tax distortions elsewhere in the economy to 

the extent that lower transportation costs reduce overall real prices and encourage more 

economic activity (Bovenberg and Goulder 2002; Parry and Bento 2001). We discuss tax 

distortions later; based on a rough calculation, the net impact of these distortions on optimal 

subsidies appears to be moderate. 

                                                      
2 The spreadsheet is available at: www.aeaweb.org/aer. 
 
3 As noted below, our framework could be used to assess the benefits of infrastructure improvements. These policies 
are beyond our scope however, partly because they are highly case-specific. 
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 Will our results carry over to other metropolitan areas? Marginal congestion costs are 

likely to be lower in most other cities; however, as revealed by our sensitivity analysis, optimal 

fare subsidies can still be substantial due to other factors. A more definitive answer awaits 

detailed parameter assessments for other cases. 

 Our analysis does not include distributional considerations. These of course play a 

significant role in political decisions regarding public transit, but they often are analytically 

ambiguous especially considering how changes in property values tend to shift costs and 

benefits. And they always involve substantial value judgments. We return to this issue briefly in 

our conclusion. 

Probably the most important qualification is that we do not explicitly model the 

potentially lax incentives for cost minimization by a monopoly provider. There is evidence that 

subsidy programs encourage high costs through excessive compensation, misuse of high-skilled 

labor in low-skill tasks, and inefficient use of labor and capital.4 But the causes of such adverse 

effects are very specific to the incentive structures built into transit management and subsidy 

programs, and need not preclude subsidies in any form. For example, one response to this 

problem would be to offer user-side subsidies, computed as a fixed amount per passenger mile 

(by mode and period), to either public or private transit operators. Thus the question of a 

desirable level of subsidy can be decoupled from that of how to encourage efficient operations. 

The latter is treated in a general form by Laffont and Tirole (1993), and for transit specifically by 

Pickrell (1983), Nash (2005), Karlaftis (2007), and Borck (2007). 

 The rest of the paper is organized as follows. Section 2 describes the analytical model and 

derives key formulas. Section 3 discusses baseline data. Section 4 presents the main quantitative 

results, describes sensitivity analysis, and discusses broader policy applications of the analysis. 

Section 5 concludes and elaborates on qualifications.  

 

2. Analytical Model 

A full accounting for the factors governing transit subsidies in a given city would require 

network models on the supply side interacted with disaggregate behavioral models, describing 

individual users with heterogeneous characteristics, on the demand side. Such models exist but 

                                                      
4For recent documentation, see Winston and Shirley (1998), Small and Gomez-Ibanez (1999), De Borger and 
Kerstens (2000), and Savage (2004). 
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are difficult to compare across regions and cannot easily provide transparent intuition about the 

underlying reasons for particular results. Furthermore, they require such extensive data and time-

consuming calibration that in practice their results can rarely be replicated by researchers outside 

the teams that produce them.5 

However, we can learn a great deal from an aggregate-level model that contains the 

supply and demand features most essential to measuring the factors that motivate transit 

subsidies. Those factors include, in particular, transit-user wait and access costs, externalities 

from motor vehicles, demand substitutions across modes and times of day, and transit supplier 

response to changes in passenger demand. Because our purpose is not to advise about detailed 

local policies, such as where to locate transit lines or whether fares should vary by location, we 

do not need the additional disaggregation provided by planning models designed for specific 

metropolitan areas. 

We therefore develop an analytical model of urban passenger travel by auto, rail, and bus 

at different times of day, in which transit user costs depend on congestion, transit frequency, 

route density, and vehicle crowding. Travel in our model also produces pollution and accident 

externalities, some of which are internalized by fuel taxes. The government chooses transit 

characteristics and fares subject to a budget constraint, while agents optimize over travel choices 

taking externalities and transit characteristics as given. 

We employ a representative agent framework, recognizing that this can only approximate 

the aggregate behavior of a diverse population. Thus, for example, considering separate income 

groups would add flexibility important for certain questions such as the effects of differentiated 

products.6 However, for the questions addressed here, such disaggregation would mainly affect 

the pattern of aggregate demand elasticities, which we already calibrate based on extensive 

empirical information. Similarly, one could explicitly model demographics and land-use 

patterns, but their main effects would be through parameters that we already incorporate, such as 

automobile congestion and initial transit share of trips.  

                                                      
5 For examples of such models, see Harvey (1994), Bates et al. (1996), and Nelson et al. (2007). 
6 For example, heterogeneity in the value of time across drivers is important in designing second-best road pricing 
polices, under constraints on what road segments can be priced (Small et al.  2006). 
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2.1. Model Assumptions 

For reference, Box 1 provides a summary of most of the notation defined below. 

 

(i) User utility. The representative agent has preferences defined by utility U as follows: 

(1a) ZMXuU −Γ= ),,(  

(1b)  }),,;,,({ RBCARj  OPi  MMM ij ===

(1c)  ),,,( CAWTΓ=Γ

(1d) ,  ∑=
ij

ijij MtT ∑
≠

=
iCARij

ijij MwW , ∑
≠

=
iCARij

ijij MaA ,  ∑
≠

=
iCARij

ijij McC

where all variables are in per capita terms. In (1a), X is the quantity of a numeraire or general 

consumption good; M is subutility from passenger miles traveled for all purposes; Γ is a 

generalized (non-money) cost of travel; and Z is disutility from pollution and traffic accident 

externalities.7 In (1b), ijM  is passenger miles traveled during period i by mode j where the two 

time periods are i = P (peak) and O (off-peak), and the three modes are j = CAR (auto), B (bus), 

and R (rail). We hold trip length constant, so variations in Mij arise from variations in the number 

of trips. In (1c), T is total in-vehicle travel time, W is time spent waiting at transit stops, A is time 

spent accessing transit, and C is crowding experienced on transit.8 As shown in (1d), these trip 

attributes are aggregations over miles traveled, each multiplied by the respective unit values tij, 

wij, aij, and cij. We assume u(⋅) is increasing and quasi-concave in X and M and decreasing and 

quasi-concave in Γ; M(⋅) is quasi-concave, implying that travel by different modes and times of 

day are imperfect substitutes; and Γ(⋅) is increasing and quasi-concave. 

 

(ii) Travel characteristics. Several characteristics of transit vehicles affect user and operator 

costs. First is vehicle occupancy, oij, the average number of passengers in a bus or train:  

                                                      
7 We exclude possible externalities from oil dependence because they are difficult to define. Insofar as they have 
been quantified (for example, Leiby 2007 puts them at 32 cents per gallon of gasoline), incorporating them would 
make little difference to our results. 
8 Recent research has emphasized the importance of reliability (i.e., travel-time predictability) as well as travel time 
in determining travel choices. This is more important in analyzing the effects of congestion than those of scheduling. 
Increasing service levels would improve reliability as well as cut waiting time, so including this effect would 
probably increase the scale economies that we measure. 
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(2a)  ijijij VMo /=

where Vij is total vehicle miles per capita. Second is the load factor, lij, defined as the fraction of 

a vehicle’s passenger capacity nij that is occupied: 

(2b) lij = oij / nij 

Third is the average service frequency, fij, along each bus or rail transit line: 

(2c) fij = Vij / (hiDij) 

Where hi is the duration of period I in hours per year, and Dij is route density, measured as total 

route miles per capita within the fixed service area.9 

 These variables determine the unit travel characteristics in (1d) as follows. First, consider 

per mile wait time, access time, and crowding, for transit travel 

(3a) wij = wij(fij), aij = aij(Dij),   cij = cij(lij), j=B,R;     wiCAR = aiCAR = ciCA R=0 

where the first two functions are decreasing in their arguments, and the third is increasing.10  

 Next, consider in-vehicle travel time. For cars, this is determined through a performance 

function on combined car and bus vehicle traffic: 

(3b)  )( iB
B

iCARCARiCAR VVtt α+=

where αB > 1 is the “passenger car equivalent”, or the contribution of a bus to congestion relative 

to that for a car. For buses, in-vehicle travel time is: 

(3c) iBBiB
B

iCARBiB oVVtt θα ++= )(  

where tB(⋅) is another performance function giving the inverse of bus speed while the bus is 

moving. Equation (3c) also includes the time a bus is stationary at transit stops, expressed per 

passenger mile; this is vehicle occupancy oiB multiplied by , which is the average dwell time 

per passenger from boarding and alighting divided by trip length. In-vehicle time on trains is like 

that on buses except we assume there is no congestion on the rail system itself

Bθ

11 so that travel 

time while moving is a constant tR: 

(3d)  iRRRiR ott θ+=

                                                      
9 The arbitrary definition of time-period duration hi does not affect our results because we use (2c) only to derive an 
elasticity of f with respect to D. 
10 Equation (3a) embodies some simplifying assumptions about how such costs vary: for example, that crowding 
occurs entirely in vehicles as opposed to stations. 
11 This assumption may be dubious for London where the Tube is reputedly close to physical capacity. One could 
modify our model to consider an absolute capacity limit by setting εV=0 for London rail and representing crowding 
costs explicitly instead of through the sub-optimization assumption (10b). 
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For cars and buses, we assume that tj(⋅) is a weakly convex function of aggregate road traffic. We 

also assume that buses travel more slowly than autos, so that tB(V)>tCAR(V) for any given 

aggregate traffic flow V. 

  

(iii) Pollution and accident externalities. The nature of these externalities has been discussed 

extensively elsewhere (e.g., Parry and Small 2005); we simply summarize their per capita 

aggregate cost by 

(4)  ijij

ij
VzZ Σ=

where zij is the combined pollution and accident external costs per vehicle mile. Some of the 

costs of traffic accidents (e.g., injury risk to oneself) are internal and are implicitly taken into 

account in the subutility function M(⋅) for travel.  

 

(iv) Household optimization. The household budget constraint is 

(5) ∑+=−
ij

ijij MpXTAXI  

where I is (exogenous) private income, TAX is a lump-sum tax to help finance transit deficits, 

and the price of X is normalized to one. For bus and rail, pij is the average fare per passenger 

mile, whereas for auto, iCARiCARiCAR pp τ+= , where iCARp  is pre-tax fuel costs and  is fuel 

taxes, both expressed per passenger mile.

iCARτ
12 

Households choose passenger miles and the numeraire good to maximize utility (1) 

subject to (5), taking pij, , , aij, cij, Z, and TAX as given. This yields first-order conditions, 

summarized by 

ijt ijw

(6a) ijCijAijWijTijij

X

M cawtp    q    
u
u ij

ρρρρ ++++≡=  

(6b) ,    k=T, W, A, C  Xk
k uu /Γ−≡ Γρ

The quantities ρk are the (marginal) dollar values of in-vehicle time, waiting time, access time, 

and crowding, which are taken as fixed. (We allow these values to vary by time of day, although 

                                                      
12 Quantities iCARp iCARτ and  vary by time of day because congestion affects fuel economy. Other money payments 
(e.g., car maintenance, parking fees) are assumed constant and are implicitly treated as subtractions from the utility 
of car travel.  
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it is not indicated by the notation.) Thus  is a generalized price, including both money and 

nonmoney costs per mile. Equation (6a) says that agents equate the marginal benefit from 

passenger miles to this generalized price for each mode and time period. From (5), (6), and (1) 

we obtain the demand functions and indirect utility (the latter denoted by ~): 

ijq

(7) ( )TAXqMM xyijij },{= , ( )TAXqXX xy },{= ,  ( ) ZTAXquU xy −= },{~~  

where {qxy} denotes the set of qij for all i, j.   

 

(v) Transit agency constraints. The agency’s total operating cost, OCij, in period i for mode j, is  

(8a)    ijijijijij VtKFOC +=

(8b)  ijijijij nkkK 21 +=

where , > 0 are parameters. In (8a), Fij is a fixed cost representing, for example, the cost of 

operating rail stations. We assume FiB=0, so there are no scale economies or diseconomies in 

providing bus vehicle miles—this is approximately consistent with empirical evidence (Small 

and Verhoef 2007, 65). Variable operating costs equal total vehicle hours of operation  

multiplied by variable costs per vehicle hour, Kij, which primarily reflect driver labor and vehicle 

capital. In (8b), Kij is a linear function of vehicle capacity, with scale economies in providing 

seat-miles to the extent that >0. We assume  because peak service does not 

conveniently fit an eight-hour workday, so its unit labor costs are higher; and we assume 

 because larger vehicles that are purchased primarily for peak use are also available off-

peak at little or no extra cost.  

ijk1

Ojk2

ijk2

ijijVt

ijk1
OjPj kk 11 >

Pjk2 >

 The agency budget constraint is 

(9) ( )∑ ∑∑
≠

−=+
i CARj

ijijij

i

iCARiCAR MpOCVTAX τ  

That is, revenues from lump-sum taxes and fuel taxes finance the transit deficit.13  

 

(vi) Agency adjustment of transit characteristics. Because there is only a limited empirical basis 

for quantifying access and crowding costs, we eliminate the need to do so by assuming that, for 

given vehicle miles, the transit agency optimizes over route density and service frequency, and 

                                                      
13 In practice, fuel-tax revenues are often earmarked for road and transit infrastructure projects. Accounting for this 
could affect our results slightly if the social benefit per dollar of infrastructure spending differs from unity. 
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that for a given vehicle occupancy, it optimizes over vehicle size and load factor. As shown in 

Appendix A,14 these assumptions imply the following first-order conditions: 

(10a)  ij
a

ijAij
w

ijW aw ηρηρ =

(10b)   ijijijijij
c

ijC nktoc 2=ηρ

where , ,  denote wait, access, and crowding cost elasticities, all defined positively: for 

example,  = |dwij/dfij|⋅(fij/wij). (10a) states that route density is increased until the incremental 

cost of extra waiting, resulting from less frequent service, equals the incremental reduction in 

access cost. (10b) states that transit vehicle size is increased until the incremental reduction in 

crowding costs to its occupants equals the incremental cost to the agency from operating a larger 

vehicle. Although these assumptions represent a neutral case,

ij
wη

ij
aη

ij
wη

ij
cη

15 we discuss later the implications 

of relaxing them. From (6a) and (10a,b) we can express the generalized user price as 

(10c)  )/()/1( 2
ij
c

ijijijijij
a

ij
w

ijWijTijij onktwtp    q ηηηρρ ++⋅++=

 Following an increase in demand for passenger miles, we assume that a (constant) 

fraction εV of it is accommodated through increased vehicle miles. This is accomplished by 

increasing service frequency and route density together so as to maintain (10a). The rest of the 

demand increase (fraction 1−εV) is accommodated through higher occupancy of transit vehicles, 

accomplished through simultaneous increases in average vehicle size and load factor chosen to 

maintain (10b).  

 

2.2. Welfare and Optimal Subsidy Formulas 

(i) Marginal welfare effects. We first consider welfare effects of marginal changes in existing 

transit prices. The resulting formulas are relatively robust in that they depend only on marginal 

rather than global assumptions about demand functions and agency adjustments. We focus on 

peak-period rail for exposition; the formulas for other transit modes and periods are analogous.  

We totally differentiate indirect utility with respect to −pPR; that is, we consider an 

incremental reduction in the fare while accounting for induced changes in the agency budget and 

                                                      
14 Appendix A is available at: www.aeaweb.org/aer. 
 
15 That is, we consider that equations (10a,b) are equally likely to under- or over-estimate access and crowding costs. 
For example, the left-hand side of (10a) will overestimate access costs if the agency overinvests in service frequency 
relative to route density, and it will underestimate them in the opposite case. 
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in user and external costs. The resulting marginal welfare effect, defined (in consumption units) 

as X
PRPR udpUdMW /)/~(−≡ , can be expressed as the sum of four components (see Appendix 

A):  

(11)  ≡PRMW
4444 84444 76
gapcost/price marginal

MpMC PR
PR

PRPR
supply ))(( −−−

4444 84444 76
economyscalenet

MMCMB PR
PR

PR
occ

PR
scale ))(( −−+

444 8444 76
yexternalit

MMC
iCARPRij

ij
PR

ij
ext∑

=

⋅+
,

4444444444 84444444444 76
transitother

MpMBMCMCMC
OBPBORij

ij
PR

ijij
scale

ij
occ

ij
ext

ij
plysup∑

=

−−+++
,,

)(  

In (11), the quantity  is the marginal demand shift for mode ij induced by a 

peak-rail price change. Our assumptions on preferences imply that , and that  

for ij ≠ PR; that is, peak-rail ridership goes up following a decrease in the fare, diverting 

ridership away from autos and other transit modes.  

PRijij
PR dpdMM /≡

0<PR
PRM 0≥ij

PRM

 The other expressions in (11) are defined as follows: 

(12a)  ijijij
V

ij
plysup tKoMC )/(ε=

(12b) ,   ij
w

ijW
V

ij
scale wMB ηρε= ij

occMC ijijijij
V onkt /)1( 2ε−=

(12c) iCARiCARiCAR
cong

X

iCAR
iCAR
ext oMC

u
zMC /⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+= τ  

ijij
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X
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V
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u
zMC /⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ε ij

dwellV MC)1( ε−+ ,  j=B,R 

(12d)  ;    ;     ∑
=

=
BCARk

ikTik
CAR

iCAR
cong MtMC

,
ρ iBiBiB

CAR VKt+ iCAR
congB

iB
cong MCMC α= 0=iR

congMC

( )ijijTjij
dwell KoMC +⋅= ρθ  

In (12a),  is the marginal cost to the transit agency of supplying an extra 

passenger mile. It equals the product of the travel time per mile, the variable operating cost per 

unit of time, and the response of vehicle miles to an extra passenger mile, . Compared 

with (8a), the marginal supply cost is likely to be below the average operating cost per mile, to 

the extent that εV < 1 and/or there are fixed costs. 

ij
plysupMC

ij
V o/ε

In (12b),  is the marginal user benefit per extra passenger mile from scale ij
scaleMB
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economies and is positive to the extent that vehicle miles respond to passenger miles, i.e. that 

0>Vε . This term includes the reduction in wait costs from increased service frequency and the 

reduction in access costs from increased route density (with the latter included as a wait-cost 

equivalent from eq 10a).  is the marginal cost of increased vehicle occupancy per extra 

passenger mile and is positive to the extent that 

ij
occMC

01 >− Vε . It incorporates the increase in agency 

supply costs from increased vehicle size and the increase in crowding costs from higher load 

factors (with the latter expressed as an agency-cost equivalent from eq 10b). 

In (12c),  denotes (net) external costs per passenger mile. For autos, it equals the 

per-vehicle-mile external cost of pollution, accidents, and congestion (the latter denoted 

), net of the fuel tax, and all divided by occupancy to convert to passenger miles. For 

transit,  includes these same costs to the extent that vehicle miles respond to passenger 

miles (

ij
extMC

ij
congMC

ij
extMC

0>Vε ), except there are no congestion costs for rail. In addition, it includes the marginal 

cost of increased dwell time, , applicable to the extent that vehicle occupancy increases 

( 01

ij
dwellMC

− Vε > ). Fuel taxes for transit are excluded from supply costs and thus do not need to be 

netted out here. 

In (12d),  measures the increase in travel-time cost to all road users, plus the 

increase in bus operating costs due to the slower-moving traffic, caused by congestion arising 

from an extra vehicle mile by auto.  similarly measures the cost of additional congestion 

caused by a bus traveling one mile. Quantities  and  are the derivatives of (3b) and (3c), 

respectively, with respect to car-traffic volume ViCAR. Finally,  is the effect on other 

passengers’ time costs, and on agency operating costs, due to the additional boarding and 

alighting time when an extra passenger mile is accommodated through higher occupancy. 

iCAR
congMC

iB
congMC

iCAR
CARt iB

CARt

ij
dwellMC

Revisiting (11), each term shows a component of welfare change due to new trips 

attracted to peak rail due to the price reduction. The “marginal cost/price gap” term shows that 

welfare is reduced to the extent that the fare for peak rail already falls short of the corresponding 

marginal supply cost. The “net scale economy” term indicates that welfare is increased to the 

extent that scale economies from increased peak-rail use outweigh the costs of extra vehicle 

occupancy. The “externality” term shows that welfare also increases insofar as pollution, 
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accident, and congestion externalities from auto travel are reduced, although this is partly offset 

if there are similar externalities from peak rail itself. Finally, the “other transit” term indicates 

that welfare improves to the extent that passengers are diverted from other transit modes or times 

of day whose fares fall short of the corresponding marginal social cost, where that marginal 

social cost includes incremental supply cost, occupancy cost, and own externalities, less 

incremental benefits from scale economies. Later on, we discuss how (11) might be used in the 

evaluation of other transit policies, like infrastructure investments.  

 

(ii) Optimized transit subsidies. Equation (11) tells us whether or not to increase an existing 

subsidy. If we want to go further and find the optimal subsidy, we can do so by setting (11) to 

zero. Doing so, we obtain the following result for optimal fare subsidy per passenger mile, : PRŝ
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where  is value of pPR that sets (11) to zero.  denotes a modal diversion 

ratio, which tells us how many passenger-miles are diverted away from mode ij when one 

passenger-mile is added to peak rail. Equation (13) implies that the optimal subsidy per peak-rail 

passenger mile is positive to the extent that (a) marginal supply cost is below average operating 

cost; (b) scale economies from increasing passenger miles outweigh costs from increased 

occupancy; (c) externality gains from diverting auto travel exceed the marginal external costs of 

the increased peak-rail travel; and (d) travel is diverted from other transit for which the overall 

social cost per passenger mile exceeds the fare.  

PRp̂ ij
PRm PR

PR
ij
PR MM /−=

    

(iii) Functional forms. We assume that marginal congestion costs  and  are 

constant because road traffic changes only moderately in our policy simulations; we also assume 

that  and  are constant but that  and  vary as discussed in Section 3.  

iB
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X
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Passenger travel demands are assumed to have constant elasticities with respect to own 

generalized price, and to adjust to other prices according to the modal diversion ratios. For 
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changes in peak rail fares, this implies 

(14a) 
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where a bar denotes an initial (currently observed) value, and  is the elasticity of demand for 

peak rail with respect to its generalized price. We take  to be constant. To obtain , we 

differentiate (14a) totally: 
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Here  is the total effect of a one-cent-per-mile increase in the passenger fare on the 

generalized cost of peak-rail travel. This is greater than one cent because the reduction in peak-

rail vehicle miles increases wait and access costs (assuming εV>0), which magnifies the 

depressing effect on ridership.

PRPR dpdq /

16 

 

  

3. Parameter Values  

We examine three large metropolitan areas with extensive transit systems and plenty of 

road congestion, making them good places to illustrate the two factors discussed in the 

introduction as constituting the main case for transit subsidies. Yet the three are very different. 

London has very high transit ridership for its size and Los Angeles rather low, with Washington 

in between. Also, Washington exemplifies one of the most successful new post-war US rail 

transit systems, in contrast with London’s older but more complete subway and Los Angeles’ 

rudimentary rail transit. Our data cover the areas served by the Washington Metropolitan Area 

Transit Authority (WMATA), the Los Angeles County Metropolitan Transit Authority (MTA), 

and Transport for London (TfL) for year 2002. Appendix B provides an extensive discussion of 

                                                      
16 We make this point especially because many empirical studies of transit demand elasticities have not held wait 
and access costs constant while observing changes in money price. Thus the elasticities they measure involve the 
total money-price derivative, like that defined by (14c), rather than a partial derivative that holds service 
characteristics constant. As discussed in Appendix B, we account for this by assuming they measure the own-fare 
elasticity multiplied by dqij/dpij. 
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data sources and estimation procedures for all parameters.17 Here we comment on selected 

baseline data summarized in Table 2; alternative assumptions with possible significance for our 

results are discussed later. 

 

(i) System aggregates and agency adjustment. The Washington and Los Angeles transit systems 

each carried nearly 2 billion passenger miles across all modes and times of day in 2002. This 

transit usage represents 4.3 percent of total passenger miles (auto plus transit) in Washington but 

only 1.3 percent in Los Angeles. In London, the transit system carried more than 8 billion 

passenger miles, or 21.7 percent of all passenger travel. For Washington, passenger miles by rail 

are more than three times those for bus, while the opposite applies to Los Angeles, with its 

extensive bus but limited rail network (including both subway and light rail). For London, the 

two modes are closer in size, with passenger miles for rail exceeding those for bus by 29 percent. 

Average transit vehicle occupancies are broadly comparable across the cities and are 26 to 76 

percent greater during peak than during off-peak periods. Train occupancy is around 5 to 10 

times that for bus.  

We assume for our baseline scenario that transit agencies meet a 1 percent increase in 

passenger demand through a 0.67 percent increase in vehicle miles and a 0.33 percent increase in 

vehicle occupancy, or εV = 0.67. As explained in Appendix A, this rule would apply, under 

certain simplifications, if the agency optimally traded off vehicle miles and occupancy and if 

wait and access times were inversely proportional to service frequency and route density, 

respectively.18  

 

(ii) Operating costs, marginal supply costs, and fares. Our cost data enable us to compute the 

parameters in (8). We allocate the capital costs of vehicles to the peak period, and also 

incorporate an assumed 25 percent difference in per-hour labor cost between peak and off-peak 

periods. The resulting calculations imply that average operating costs per vehicle mile are around 

60 to 100 percent larger in the peak than in the off-peak period. Peak costs are greater because 

they include vehicle capital costs, higher unit labor costs due to irregular work hours, and in the 

                                                      
17 Appendix B is available at: www.aeaweb.org/aer. 
 
18 See also Nash (1988), Jansson (1997), and Small (2004). The result is a modification of the better-known “square-
root rule” (Mohring 1972), the latter applying when route density is fixed. 
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case of bus, additional costs incurred because it takes longer to drive a mile on congested roads. 

However, average operating costs per passenger mile are similar for peak and off-peak travel 

because of the different vehicle occupancies; they vary from 33 to 99 cents per passenger mile 

across cities, modes, and times of day. For the U.S. cities, average operating costs per passenger 

mile are generally higher for bus than for rail (expecially for Washington, where bus occupancies 

are lower than in Los Angeles). London, by contrast, has especially high costs for rail and low 

costs for bus, possibly because rail in London operates with an old and dilapidated infrastructure 

while bus service in London has benefited from cost efficiencies due to competitive tendering.  

 Passenger fares are 20 to 25 cents per mile for Washington and London; in Los Angeles 

they are only 14 cents per mile for bus and 8 cents per mile for rail.19 Fare subsidies, defined as 

, are substantial and exceed 50 percent of average operating costs in almost all 

cases. Subsidies are especially large for Los Angeles rail (82 to 83 percent), with its unusually 

low fares, and also for Washington bus (76 to 80 percent), which has typical fares but relatively 

low occupancies.  

)( ijijij MpOC −

 

(iii) User costs. Average wait times at transit stops are estimated from service frequency. We 

assume that when vehicles are less than 15 minutes apart, travelers arrive at random, so the wait-

time elasticity is one; but that as the time between vehicles exceeds 15 minutes, an increasing 

fraction of travelers use a timetable, thereby lowering the wait time/service frequency elasticity 

(see Appendix B). Expressing wait times on a per mile basis and multiplying by the value of wait 

time ρW (assumed from the empirical literature to be 49 to 104 percent of the market wage, 

depending on location and time period), we obtain initial wait costs that vary from 7 to 64 cents 

per passenger mile. Wait times are much larger during the off-peak than the peak period; they are 

also larger for bus than for rail. 

There is less empirical basis for gauging crowding and access time elasticities; we have 

assumed location-specific values as explained in Appendix B. When equation (10b) applies (as 

assumed in our baseline), our results are not very sensitive to alternative assumptions about these 

elasticities because they affect only the mileage shifts via generalized cost q in (14), rather than 

                                                      
19 The low rail fare in Los Angeles was so pronounced that it resulted in a suit by a bus riders’ group against the 
operating agency in 1996. However, this resulted in lowering the bus fare rather than raising the rail fares to levels 
comparable to those in other cities. 
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entering directly into equations (11)-(13). 

 

(iv) Marginal benefit from scale economies and marginal occupancy costs. These are computed 

from (12b) using our parameters for wait costs and vehicle capital costs.  

 Marginal scale economies are somewhat larger for bus than for rail and for off-peak than 

for peak travel, because of greater wait times at transit stops. They vary between 5 and 37 cents 

per mile across modes, periods, and cities. Increased occupancy costs counteract some, though 

usually not all, scale economies at peak period; however, they are zero in the off-peak period 

because all vehicle capital costs (and hence crowding costs) are attributed to the peak.   

 

(v) Externalities. Marginal external costs per passenger mile for autos (bottom of Table 2) are 

dominated by congestion. This is particularly the case for London, where marginal congestion 

costs are estimated at 103 and 37 cents per passenger mile in the peak and off-peak periods, 

respectively. Global and local pollution and external accident costs are “only” 5 to 7 cents per 

passenger mile, with offsetting fuel taxes of 6 to 9 cents in London and one to two cents in the 

U.S. The congestion costs are estimated from data on average delay, which is measured directly 

in the case of Washington and Los Angeles and indirectly (from observed peak and off-peak 

average speeds) in the case of London. This average delay is multiplied by a factor (3.7) 

reflecting typical estimates of the ratio of marginal to average delay cost on urban highways. 

 Costs from climate change amount to less than half of one cent per mile. This low value 

may seem surprising in light of the issue’s current prominence, yet that is what mainstream 

estimates of discounted damage costs imply. Even increasing our estimate several-fold would 

still leave pollution costs small relative to congestion costs.20 For the U.S. cities, overall external 

costs for auto (net of fuel taxes) are 25 to 31 cents per passenger mile in the peak period and 6 to 

8 cents off-peak; figures for gridlocked London are much higher, at 119 and 48 cents, 

respectively.21  

                                                      
20 A gallon of gasoline contains 0.0024 tons of carbon (NRC 2002), so even an extremely large carbon price of, say, 
$300 per ton amounts to 72 cents per gallon, or about 4 cents per auto mile for peak periods in the United States and 
even less for other cases. Similarly the introduction of a domestic CO2 tax, or cap-and-trade system, would have 
virtually no effect on our results. 
21 The very high UK fuel tax more than offsets the contribution of pollution and uninternalized accident costs to net 
external cost of automobiles, causing the latter to be slightly below marginal congestion cost (as shown in the table). 
Our figures are measured prior to the introduction of the London congestion charge in 2003. Given its very limited 
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 External accident and pollution costs for bus are minimal per passenger mile because of 

the sufficiently high vehicle occupancies and the relative safety of transit-vehicle occupants; the 

marginal costs of increased dwell time are also not very large. However, marginal congestion 

costs are more substantial and amount to 25 to 36 cents per passenger mile for London bus 

(assumed passenger car equivalents for bus are between 4 and 5). Marginal external costs for rail 

are negligible, since we assume no congestion. 

  

(vi) Travel responses. Based on literature surveys of estimated transit demand elasticities (see 

Appendix B), we choose peak and off-peak fare elasticities of -0.24 and -0.48 for rail and -0.4 

and -0.8 for bus. These are then converted to generalized-price elasticities (see Appendix B). 

 Modal diversion ratios are based on available evidence and our own judgment (Appendix 

B). We assume that 60 to 85 percent of increased passenger mileage in response to lower fares 

comes from diverted auto travel for U.S. cities, and 40 to 50 percent for London, where autos 

account for a smaller share of passenger travel (Table 2). We assume that 10 percent of extra 

travel on one transit mode comes from the same mode in the other period, and that the fraction 

from the other transit mode within the same time period is 5 percent for Los Angeles, 10 percent 

for Washington, and 30 percent for London. 

 

4. Results 

4.1. Baseline Results 

 The upper part of Table 3 shows estimates of the marginal welfare effect of a one-cent-

per-mile reduction in the passenger fare, starting either at the current subsidy level or at a 

subsidy level equal to 50 percent of operating costs. For ease of interpretation we have divided 

through by initial passenger-miles, to give MW/M; thus, results are expressed in U.S. cents per 

mile (at 2002 price levels) per one-cent-per-mile fare reduction. 

 The most striking result is that, with the exception of Washington peak-period bus, 

increasing the subsidy is welfare-improving across modes, periods, and cities starting at subsidy 

levels of 50 percent. Even starting at current subsidy levels, which are typically well above 50 

                                                                                                                                                                           
geographical coverage, we would expect that charge to have only modest effects on marginal congestion cost and on 
the total auto money priceτiCAR averaged across the entire city (see Section IV). If our study were more 
disaggregated geographically, congestion charging might have more significant effects on optimal transit fares 
within central London by reducing congestion and by increasing the value of τiCAR there. 
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percent, the marginal welfare effects from further lowering transit fares are positive in nine of 

twelve cases. 

The reasons for these results can be discerned in the figures for individual components of 

marginal welfare at current subsidies. In all cases the marginal supply cost exceeds the fare at 

current prices, causing an incremental welfare loss from this source between 0.04 and 1.43 times 

the fare reduction. However, in most cases this loss is outweighed by substantial incremental 

welfare gains from the combination of net scale economies and externality benefits, the former 

being especially important for off-peak service and the latter for peak service. Washington peak-

period bus is the exception here because of its especially high marginal supply cost. Welfare 

effects from interactions among transit modes play a reinforcing but generally more modest role, 

given that most of the extra passengers attracted to transit by subsidies were previously driving. 

Although the contributions of net scale economies and externalities to marginal welfare 

vary considerably, one or the other is important in almost every case. In eight of the twelve 

cases, net scale economies are substantial—between 0.29 and 2.0 cents per one-cent fare 

reduction. Net scale economies are larger for bus than for rail, and larger for off-peak than for 

peak travel; the reasons for this, already mentioned, are amplified by the greater price-

responsiveness of passenger demand (and hence of service frequency or route density) in the 

cases of bus and of off-peak travel. Only for peak-rail service in London are scale economies 

fully offset by higher occupancy costs, presumably reflecting London’s famous subway 

crowding and its already high service frequency and route density. As for externalities, most of 

the welfare gains come from reducing road congestion, except for off-peak bus service which 

does little to relieve road congestion.22 

Table 3 also shows the optimal subsidy level for each type of service, expressed as a 

percentage of average operating costs. Each subsidy level is optimized separately, holding other 

prices at their current levels. (We did this because simultaneous optimization of all four related 

transit prices resulted in large changes in patronage and service levels, which, as noted earlier, 

render our parameter assumptions less reliable.) We find that optimal fare subsidies are more 

                                                      
22 For Washington and London off-peak bus, the contribution of the bus itself to congestion is greater than the 
congestion removed due to diverted autos, causing MBext to be slightly negative. This occurs for these two cases 
both because of parameters affecting bus congestion—a high assumed value for αB (4 or 5) and a low average off-
peak bus occupancy (10 or 12)—and because of parameters that minimize the number of autos diverted, namely a 
low modal diversion rate from autos (60 or 40 percent) and a high average auto occupancy (1.45 or 1.51). 
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than two-thirds of average operating costs in eleven of twelve cases; Washington peak bus is the 

exception, where the optimal subsidy is “only” 46 percent. Again, some combination of net scale 

economies and diversion of auto externalities explains a major part of the optimal subsidy. The 

gap between the average and marginal cost of expanding passenger miles, due mostly to the 

savings in agency costs when occupancy is increased, also plays a consistently important role.23 

Finally in Table 3, the last row shows the percent change in passenger miles when fares are 

adjusted to their optimum levels; it varies between a reduction of 47.9 percent for Los Angeles 

peak bus to an increase of 149.1 percent for London off-peak bus.  

 

4.2. Sensitivity Analysis 

 To explore how robust our results are, we first vary parameters with potential 

significance for marginal welfare effects and then consider different assumptions about agency 

adjustment. These parameters are selected based on our knowledge of the sizes of various parts 

of the equations where they appear, as well as on trial-and-error experience. We vary each 

parameter in both directions, by 30 to 100 percent. 

 Table 4 reports results from varying travel demand elasticities, congestion costs, the 

passenger-car equivalent for buses, and the value of wait time at transit stops. In all cases welfare 

effects change in the expected direction—for example, when travel is more or less price-

responsive, the size of the welfare effects are magnified or shrunk but their sign is not reversed. 

Welfare effects change noticeably for some perturbations. For example, MW/M for off-peak 

service is sensitive to the value of wait time through its effect on scale economies, and MW/M for 

peak service is sensitive to congestion costs. In London, the case for increasing current peak bus 

subsidies is undermined if buses contribute as much to congestion as 10 cars, instead of 5 cars as 

in our baseline assumptions. 

 Overall, in seven of the 96 results shown, the sign of MW/M is reversed from that in the 

baseline scenario. Nonetheless, our basic qualitative finding—that marginal welfare effects are 

positive at current subsidies in the majority of cases—is unaffected.  

 In Table 5 we consider two alternative values for operators’ responsiveness to patronage. 

                                                      
23 While it is perfectly possible that the optimal subsidy could be greater than 100 percent, our confidence in these 
numbers is not sufficient to say whether or not we encountered any such results. In any case it would imply negative 
fares, which are impractical. Zero fares, by contrast, are practical and have been tried in various settings; Perone 
(2002) reviews the pros and costs of these polices. 
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In one, an increase in demand for passenger miles is met entirely through increased vehicle 

supply (εV = 1.0); in the other, half of the increase is met through increased vehicle miles and 

half through increased occupancy (εV  = 0.5). Marginal welfare effects are generally smaller in 

the first case and larger in the second than in our baseline (for which εV  = 0.67). This occurs 

because the agency costs of accommodating extra passenger miles through more vehicle miles, 

net of the user benefits from that extra service, are greater than the agency and user costs of 

accommodating extra passengers through higher occupancy.24 (This observation suggests that 

most current service levels are inefficiently high given current patronage—although not 

necessarily higher than at optimal patronage.) Again, our basic favorable finding for subsidies is 

robust. 

 Finally, suppose the agency does not suboptimize over route density and service 

frequency, or over vehicle size and load factor, so that conditions (10a,b) no longer hold. 

Suppose, for example, that service frequency is excessive relative to route density. In this case 

marginal wait costs will underestimate marginal access costs, and correspondingly, the marginal 

benefit from scale economies  in (12b) will be understated by a factor ij
scaleMB
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, where  is the fraction of marginal changes in vehicle miles 

that are met through increasing service frequency (as opposed to route density). If, for 

illustration, =0.5 and marginal access costs exceed marginal wait costs by 50 percent, then 

 will be understated by 25 percent. However, we have already illustrated the effect of 

different values for  when we varied the wait cost parameter in Table 4. Similarly, 

relaxing suboptimization over vehicle size and crowding has essentially the same effect as 

varying the cost of increasing vehicle size, which has such small effects that we have not shown 

them in Table 5.  

ij
fε

 

4.3. Relation to Other Studies 

 While space precludes a comprehensive comparison and reconciliation of our results and 

those in prior literature, we note here some selected results that are directly comparable to ours. 

 Glaister (1984) estim  a fare decrease using a m nts 

             

ates net benefits from odel that accou
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occMC− That is, in (12a,b) the derivative of  with respect to ε  is greater than that of . 
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for both automobile congestion and scale economies; he does not distinguish time periods but, 

unlike us, he does disaggregate rail into subway (London Transport) and commuter rail (British 

Rail). As updated in Glaister (2001, 57), he estimates that a reduction in London’s bus fare 

would produce net social benefits (weighted by annual passenger miles) of approximately 0.48 

times the direct revenue loss; our corresponding figure (averaged across times of day) is much 

higher at 0.86. Glaister reports zero net benefits for a reduction in subway fares, mainly because 

of subway crowding; this is lower than our estimated ratio of 0.25, probably because he accounts 

for capacity constraints that might preclude increasing subway service to accommodate new 

passengers.  

 Our findings on optimal subsidies for London are somewhat higher than those of Glaister 

alian cities, 

.4 Applying the Analysis to Broader Transit Policies 

plied more broadly to transit system 

improv

and Lewis (1978), who found them to be about 50 to 60 percent of operating costs in their 

preferred case. However, they obtain widely differing results for different parameter 

assumptions, and it is difficult to pinpoint the source of differences with our results.  

 Our results are broadly consistent with studies of Chicago and several Austr

which find that although service levels are sometimes inefficiently high, fare subsidies could 

generally be increased with positive effects on welfare (Savage and Schupp 1997; Dodgson 

1986). Indeed, for Chicago in 1994, the estimated ratio of net benefit to additional subsidy 

expended – similar though not identical to our MW/M – ranges from 1.2 to 1.8 across modes and 

time periods (Savage and Schupp 1997, Table 6), considerably higher than our estimates of 

MW/M for other cities. Our findings of high optimal subsidies for peak-period transit are similar 

to those of Proost and Van Dender (2008, 1227) for Brussels, where there is also heavy traffic 

congestion. Unlike them, we also find high optimal off-peak subsidies. 

 

4

Finally, we note how our analysis might be ap

ements. Dividing (11) through by PR
PRM−  gives an expression for the welfare benefit per 

extra passenger mile attracted to peak r )/( PRail, m PR

nd on the modal diver

PRPR MMWw −≡ . The “externality” and 

“other transit” terms in this expression will depe sion ratios, which can be 

interpreted to apply to other policies, besides lowering fares, that expand transit ridership. 

However, one must then check whether key parameter assumptions, such as modal diversion 
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ratios or the operator’s response to ridership increases, need to be changed.  

Table 6 shows the values of mw with all parameters the same as in our baseline. For 

example, the first two columns tell us that if Washington can attract new rail passengers by 

improving its escalators, adding new lines, or expanding its vehicle fleet, it would create benefits 

of 19.8 cents and 13.9 cents per additional peak and off-peak passenger-mile, respectively—

provided that the new passengers are drawn in the same proportions from other modes as in our 

baseline, that marginal supply costs are the same, and so forth. Often the assumption of 

unchanged parameters would not be reasonable, due to differences between the specific project 

and the rest of the system. For example, if a rail extension helped alleviate a critical highway 

bottleneck, the benefits would be greater than calculated under baseline parameters, whereas if it 

extended service to little-congested suburbs the benefits would be lower. Once benefits are 

calculated, they of course need to be aggregated and discounted over the life of the project in 

order to assess the desirability of an investment with a known up-front cost. 

Despite these qualifications, such numbers can help assess likely orders of magnitude for 

common cases. To illustrate, based on Pickrell (1989), and our own calculations, the annualized 

investment cost for the entire Washington rail system amounts to $2.01 per newly attracted 

passenger mile in 2002 prices.25 Our estimates of marginal benefits in Table 6 are smaller than 

this by more than a factor of ten. This suggests that any new rail line intended to have area-wide 

impacts similar to those of the existing system would need to come in at well under one-tenth the 

per-passenger cost of the initial system in order to have a favorable cost-benefit ratio. 

 

5. Conclusion 

Our analysis suggests that today’s substantial operating subsidies for transit systems are 

warranted on efficiency grounds, at least for the three major metropolitan areas studied. The 

main caveat is that some of the subsidy may be lost to inefficiency or captured by labor unions, 

given the evidence cited earlier of increases in wages and other costs following transit subsidies. 

Thus, our analysis is most applicable to a transit agency with strong incentives to minimize costs. 

                                                      
25 Pickrell (1989, Table S-1) estimates costs per newly attracted transit rider for the initial investment in the 
Washington rail system to be $8.75 per trip in 1988 dollars, of which 2.4 percent is operating cost and perhaps 
another 0.7 percent is vehicle capital (based on our own estimates for Washington underlying Table 1). Adjusting 
the remainder to 2002 prices (using the CPI for transportation) and dividing by the current average trip length (5.92 
miles) yields $2.01 per passenger-mile for infrastructure cost. 
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Policies that might promote this have been discussed extensively, for example by Wachs (1989) 

and Winston and Shirley (1998). 

Another caveat is that we have not incorporated the burden on the broader tax system 

from the need to finance agencies’ operating deficits. To the extent that transit subsidies require 

raising distortionary taxes, such as income taxes, this causes efficiency losses—for example, by 

deterring work effort. On the other hand, lower transportation costs have a counteracting effect 

by lowering the general price of goods and services, thereby raising the real wage and the return 

to work effort. Given these two effects and some simplifying assumptions, the optimal subsidy is 

given by the Pigouvian subsidy divided by the marginal cost of public funds (Bovenberg and 

Goulder 2002). A typical estimate for the marginal cost of public funds (which here depends on 

the uncompensated labor supply elasticity) is around 1.15. Making this simple adjustment for 

fiscal considerations would therefore imply some scaling back of the optimal subsidies 

calculated above, but not enough to overturn the basic finding that large subsidies are still 

warranted.26  

We have also ignored distributional considerations. Such concerns might raise the 

optimal subsidy for high-density bus service, which is heavily patronized by lower-income 

people, and lower it for rail service, which typically benefits wealthier riders and owners of land 

near transit stations. Quantifying these additional adjustments is contentious, as it brings in value 

judgments about appropriate distributional weights and it requires the analyst to trace the shifting 

of costs and benefits through related markets such as that for urban land. Making such 

adjustments also runs counter to the common view that distributional concerns are most 

efficiently addressed through the broader tax and benefit system.  

 We do not explore how optimal fares might vary across different routes—for example, a 

route passing through a central business district compared with one serving reverse commutes or 

intrasuburban trips. Analyzing this issue would require a more disaggregated model that 

accounted for substitution effects among different links in the road and transit network. A related 

qualification is that we do not account for physical capacity constraints that may make it difficult 

                                                      
26 A more exact adjustment would account for at least two additional factors, which work in opposite directions. On 
the one hand, if transportation policies reduce congestion and the time costs of commuting, this might have a 
positive feedback effect on labor supply, justifying a higher level of transit subsidy (Parry and Bento 2001). On the 
other hand, the efficiency cost of financing transit subsidies is larger when one accounts for other margins of 
behavior that are distorted by income taxes, such as the choice between ordinary spending and spending that is 
exempt from income taxes (Feldstein 1999).  
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to expand vehicle-miles in certain circumstances. Nor do we consider possible benefits from 

agglomeration externalities, or freeing up valuable downtown space currently used for 

(subsidized) parking, as transit ridership expands.  

 It is interesting to consider how the results might change upon adoption of a 

comprehensive congestion-pricing program. London adopted such a program for its central area 

in 2003, just after the time for which our simulations apply, imposing a charge of £5 (later raised 

to £8) and causing road speeds to rise by around six percent (Transport for London 2004). This 

must have greatly reduced the uninternalized congestion externality for peak-period automobile 

trips to and within Central London, thereby reducing the case for subsidizing transit trips to the 

center. (Congestion charging simultaneously increased the case for adding transit service, which 

in fact was done.) It is less clear whether we would see much difference in a system-wide 

calculation such as done here, however, since the congestion charging zone, even with its recent 

extension, covers just 2.4 percent of Greater London. 

 Finally, we re-emphasize that transit subsidies are only a second-best response to 

automobile externalities. Our results should not divert attention from the much larger welfare 

gains to be had from pricing those externalities more directly. For example, Parry and Small 

(2005) put the welfare gains from an optimized uniform toll on auto mileage in the United States 

at around $40 billion per year; welfare gains from differentiating the toll by region and time of 

day would be larger still. Such gains are on an entirely different scale from those achievable by 

reforming transit prices. 
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 Box 1. Selected Notation 
 
Symbol Description Defined in or near 

equation # 
 Note: superscripts ij for time and mode are omitted  
   

A Access time, per capita annual aggregate (minutes) (1d) 
a Access time divided by M (minutes/passenger-mile) (1d) 
C Crowding measure, per capita annual aggregate (1d) 
c Crowding measure divided by M (/passenger-mile) (1d) 
D Route density (route miles) (2c) 
F Fixed operating cost (cents/year) (8a) 
f Frequency of service (V/D) (2c) 
K Variable operating cost per vehicle-hour (cents/veh-hr) (8b) 
k1 Part of K invariant to vehicle size (cents/veh-hr) (8b) 
k2 Rate of variation of K with vehicle size (cents/veh-hr/pass-space) (8b) 
l Load factor (o/n) (2b) 

M Passenger-miles per person (annual) (1b) 
ij
rsm  Modal diversion ratio: − ij

rsM / rs
rsM  (13) 

ij
rsM  /ij rsdM dp  (11) 

MBscale Marginal benefit from scale economies (cents/pass-mile) (12b) 
MCdwell Marginal cost due to increased dwell time (cents/pass-mile) (12d) 
MCcong Marginal congestion cost (cents/pass-mile) (12c) 
MCext Marginal external cost (cents/pass-mile) (12c) 
MCocc Marginal cost due to increased occupancy (cents/pass-mile) (12a) 

MCsupply Marginal transit supply cost (cents/pass-mile) (12a) 
MW Marginal welfare of fare decrease (annual) [cents/(cents/pass-mile)] (11) 

n Vehicle capacity (passenger-spaces/vehicle) (2b) 
OC Operating cost (cents/year) (8a) 
o Vehicle occupancy (M/V) (2a) 
p Fare or money price of car travel (cents/passenger-mile) (5) 
q Generalized price (cents/passenger-mile) (6a) 
s Subsidy (cents/passenger-mile) (13) 
T In-vehicle travel time, per capita annual aggregate (minutes) (1d) 
t In-vehicle travel time divided by M  (minutes/passenger-mile) (1d) 

TAX Taxes per capita needed to finance transit deficit, annual (cents) (5) 
V Vehicle-miles per person (annual) (2a) 
W Waiting time, per capita annual aggregate (minutes) (1d) 
w Waiting time divided by M (minutes/passenger-mile) (1d) 
z External pollution & accident cost (cents/vehicle-mile) (4) 

Bα  Congestion caused by bus relative to car (3b) 

fε  Fraction of increased vehicle-miles accommodated through increased service 
frequency (versus increased route density) 

Sect 4.2, (A7b) 

nε  Fraction of increased occupancy accommodated through increased vehicle 
capacity (versus increased load factor) 

(A7d) 

εV Fraction of increased passenger-miles accommodated through increased 
vehicle-miles (versus increased occupancy) 

(10c) 
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aη  Minus the elasticity of a with respect to D (10), (3a) 

cη  Elasticity of c with respect to l (10), (3a) 

pη  Elasticity of use with respect to money price (B2) 

qη  Elasticity of use with respect to generalized price (14a) 

wη  Minus the elasticity of w with respect to f (10), (3a) 

θ  Dwell time per passenger, divided by trip length (min./mile) (3c,d) 
kρ  Marginal value of quantity k, k=T,W,A,C (6b) 

τ  Fuel tax rate (cents/vehicle-mile) (5) 
 
Note: Superscripts ij for time and mode are omitted on all symbols except MW, TAX, and all 
Greek letters. Monetary and time units stated here (cents, dollars, minutes, hours) are those used 
in our tables and text; in the formulas, all are in common units (dollars, hours). 
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`

rail bus combined total, million % rail %bus

MTA New York City Transit, Brooklyn, NY 29 59 41 9,451 83 17
New Jersey Transit Corporation, Newark, NJ 50 57 53 2,548 64 36
MTA Long Island Rail Road/Bus, Jamaica, NY 53 61 53 2,302 93 7
Metro-North Commuter Railroad Co., New York, NY 40 n/a 40 2,059 100 0
Washington Metrop. Area Transit Authority, Washington, DC 40 75 55 1,899 76 24
Massachusetts Bay Transportation Authority, Boston, MA 57 79 64 1,838 82 18
Los Angeles County Metrop. Transp. Authority, Los Angeles, CA 78 72 73 1,839 21 79
Chicago Transit Authority, Chicago, IL 59 64 62 1,814 58 42
Northeast Illinois Regional Commuter Railroad Corp., Chicago, IL 56 n/a 56 1,506 100 0
Southeastern Pennsylvania Transp. Authority, Philadelphia, PA 50 62 57 1,354 65 35
San Francisco Bay Area Rapid Transit District, Oakland, CA 42 n/a 42 1,148 100 0
Metropolitan Atlanta Rapid Transit Authority, Atlanta, GA 67 71 69 722 68 32
Maryland Transit Administration, Baltimore, MD 72 74 73 631 47 53
King County Dept. of Transp. - Metro Transit Division, Seattle, WA n/a 82 82 433 0 100
Metrop. Transit Authority of Harris County, Texas, Houston, TX n/a 82 82 417 0 100
Tri-County Metrop. Transp. District of Oregon, Portland, OR 35 89 76 407 42 58
Miami-Dade Transit, Miami, FL 85 75 77 389 28 72
Dallas Area Rapid Transit, Dallas, TX 89 87 88 385 36 64
Denver Regional Transportation District, Denver, CO 63 80 79 371 12 88
Port Authority of Allegheny County, Pittsburgh, PA 81 73 75 305 10 90

Average or total (unweighted) 58 73 65 31,819 54 46
Average (weighted by passenger miles) 44 69 54 72 28

Source: US FTA (2003), Tables 19 and 26.
Notes: Includes heavy rail, light rail, and commuter rail. Excludes trolley bus, cable car, demand-responsive transit, and vanpool.

(% of operating cost) Passenger miles

Table 1. Passenger Fare Subsidies for the 20 Largest U.S. Transit Authorities in 2003

Fare subsidy
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 33Source: See Appendix B.

Table 2. Selected Baseline Parameter Values

Washington Los Angeles
Rail Bus Rail Bus

London
Rail Bus

Peak Off- Peak Off- Peak Off- Peak Off- Peak Off- Peak Off-
Peak Peak Peak Peak Peak Peak

TRANSIT
Annual passenger miles, millions 1,100 339 290 161 267 126 799 662 3,302 1,265 2,115 1,432
Vehicle occupancy (pass-mi/veh-mi) 151 86 14 9 117 77 20 14 138 76 17 12

Average operating cost, $/ veh-mi 59 36 14 7 53 33 13 6 105 68 8 4
Avg operating cost, ¢/pass-mi 39 41 99 82 45 43 68 46 76 89 47 33
Marginal supply cost, ¢/pass-mi 23 25 66 55 27 26 46 31 46 54 32 22
Fare, ¢/pass-mi 20 20 20 20 8 8 14 14 25 25 20 20
Subsidy, % of average operating cost 49 52 80 76 83 82 79 69 67 72 59 40

Cost of in-vehicle travel time, ¢/pass-mi 42 31 73 47 35 26 60 35 42 31 67 43
Wait cost, ¢/pass-mi 11 26 38 87 9 21 24 55 7 22 22 64
Generalized price, ¢/pass-mi 96 116 207 266 76 96 157 196 93 105 146 207

Marginal scale economy, ¢/pass-mi 7 17 25 49 6 14 16 31 5 15 15 43
Marginal cost of occupancy, ¢/pass-mi 3 0 9 0 3 0 5 0 5 0 5 0

Marginal external cost, ¢/pass-mi 0.7 0.7 8.8 4.6 0.8 1.0 7.7 3.9 0.8 0.9 36.4 24.7
Marg. congestion cost, ¢/pass-mi 0.0 0.0 5.2 1.0 0.0 0.0 4.8 0.9 0.0 0.0 33.5 22.0
Pollution, climate & acc cost, ¢/pass-mi 0.0 0.0 0.7 1.2 0.0 0.0 0.8 1.1 0.0 0.0 0.6 0.9
Marginal dwell cost, ¢/pass-mi 0.7 0.7 2.8 2.4 0.8 1.0 2.2 2.0 0.8 0.9 2.2 1.8

Elasticity of passenger demand wrt fare -0.24 -0.48 -0.40 -0.80 -0.24 -0.48 -0.40 -0.80 -0.24 -0.48 -0.40 -0.80
Fraction of increased transit coming from

auto--same period 0.70 0.60 0.70 0.60 0.85 0.75 0.85 0.75 0.50 0.40 0.50 0.40
same transit mode--other period 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
other transit mode--same period 0.10 0.10 0.10 0.10 0.05 0.05 0.05 0.05 0.30 0.30 0.30 0.30
increased overall travel demand 0.10 0.20 0.10 0.20 0.00 0.10 0.00 0.10 0.10 0.20 0.10 0.20

AUTO Peak Off- Peak Off- Peak Off-
Peak Peak Peak

Annual passenger-miles, millions 19,583 22,055 69,519 75,226 15,450 13,951
Occupancy 1.34 1.45 1.34 1.45 1.41 1.53
Marginal external cost, ¢/pass-mi 25 6 31 8 119 48

Marg. congestion cost, ¢/pass-mi 21 2 26 3 123 49
Poll. & acc. less fuel tax, ¢/pass-mi 4 4 5 5 -4 -2



 

Peak Off- Peak Off- Peak Off- Peak Off- Peak Off- Peak Off-
Peak Peak Peak Peak Peak Peak

Current subsidy, % of op. cost 49 52 80 76 83 82 79 69 67 72 59 40

Marginal welfare effects
MW /M  at current subsidya 0.24 0.34 -0.44 0.64 0.36 0.14 -0.06 1.10 0.49 -0.07 0.52 1.76

marginal cost/price gap -0.04 -0.12 -0.93 -1.43 -0.61 -1.12 -0.87 -0.93 -0.20 -0.92 -0.25 -0.09
net scale economy 0.05 0.41 0.34 2.00 0.08 0.87 0.29 1.73 0.00 0.36 0.19 1.74
externality 0.20 0.07 0.17 -0.04 0.79 0.32 0.52 0.12 0.57 0.48 0.48 -0.23
other transit 0.03 -0.02 -0.02 0.11 0.10 0.08 0.00 0.17 0.13 -0.08 0.10 0.34

MW /M  at 50% subsidya,b 0.24 0.35 -0.03 0.63 0.35 0.29 0.14 1.01 0.46 0.20 0.51 1.90

Optimum subsidy, % of op. costc >90 88 46 >90 >90 89 74 >90 >90 78 >90 >90
Proportion of subsidy due to

average-marginal cost gap 0.43 0.54 0.37 0.39 0.38 0.49 0.42 0.35 0.31 0.56 0.35 0.33
net scale economy 0.10 0.41 0.46 0.59 0.05 0.34 0.22 0.55 0.00 0.21 0.15 0.61
externality 0.41 0.08 0.19 -0.01 0.51 0.13 0.37 0.04 0.56 0.27 0.42 -0.11
other transit 0.07 -0.03 -0.02 0.03 0.06 0.03 0.00 0.06 0.13 -0.04 0.09 0.17

% change in passenger miles 24.9 51.0 -47.9 28.1 11.5 21.3 -9.8 32.4 21.6 10.7 42.2 149.1

Notes
a MW /M  is the marginal welfare gain from a one cent-per-mile reduction in the passenger fare, expressed in cents per initial passenger-mile.

Table 3. Baseline Welfare and Optimal Subsidy Estimates

Washington Los Angeles London
BusRail Bus Rail Bus

c The subsidy for each time period and mode is optimized separately, holding the others at their current values.

b Computed with a starting subsidy of 50% for the given mode and time period, holding the others at their current levels.

Rail
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Peak Off- Peak Off- Peak Off- Peak Off- Peak Off- Peak Off-
Peak Peak Peak Peak Peak Peak

Baseline results 0.24 0.34 -0.44 0.64 0.36 0.14 -0.06 1.10 0.49 -0.07 0.52 1.76

Travel demand elasticities
Increased by 30% 0.31 0.44 -0.58 0.84 0.46 0.18 -0.08 1.43 0.64 -0.09 0.67 2.29
Reduced by 30% 0.17 0.12 -0.19 0.13 0.25 0.05 -0.03 0.23 0.34 -0.02 0.22 0.37

Marginal congestion costs
Increased by 50% 0.33 0.36 -0.35 0.66 0.70 0.22 0.18 1.15 0.84 0.19 0.83 1.79
Reduced by 50% 0.15 0.32 -0.54 0.62 0.01 0.07 -0.30 1.04 0.15 -0.33 0.21 1.74

Passenger-car equiv. for bus
Increased by 100% 0.25 0.34 -0.55 0.62 0.37 0.14 -0.19 1.08 0.59 -0.07 -0.13 1.01
Reduced by 50% 0.24 0.34 -0.39 0.65 0.35 0.14 0.00 1.11 0.44 -0.07 0.84 2.14

Value of wait time at transit stops
Increased by 50% 0.26 0.48 -0.25 1.56 0.41 0.51 0.11 1.90 0.49 0.11 0.61 2.52
Reduced by 50% 0.22 0.20 -0.64 -0.27 0.30 -0.22 -0.24 0.29 0.50 -0.26 0.42 1.01

Note 
All values are for MW/M in cents per passenger mile per one-cent increase in subsidy.

Table 4. Results with Alternative Parameter Values: Marginal Welfare Effects at Current Subsidies

Washington Los Angeles London
Rail BusRail Bus Rail Bus

 35



Peak Off- Peak Off- Peak Off- Peak Off- Peak Off- Peak Off-
Peak Peak Peak Peak Peak Peak

ε V  = 1.0
MW/M  at current subsidy 0.21 0.28 -0.66 0.64 0.20 -0.12 -0.32 1.21 0.42 -0.66 0.24 2.09

marginal cost/price gap -0.18 -0.41 -1.57 -2.51 -1.02 -1.89 -1.47 -1.78 -0.41 -1.70 -0.56 -0.52
net scale economy 0.13 0.61 0.75 2.97 0.27 1.28 0.65 2.57 0.06 0.53 0.44 2.57
externality 0.21 0.09 0.17 0.01 0.81 0.38 0.50 0.18 0.57 0.51 0.19 -0.60
other transit 0.05 -0.01 -0.01 0.17 0.13 0.12 0.00 0.24 0.19 -0.04 0.19 0.63

MW/M  at 50% subsidy 0.20 0.29 0.07 0.74 0.36 0.44 0.20 1.16 0.42 0.10 0.31 2.15

ε V  = 0.5
MW/M  at current subsidy 0.26 0.37 -0.33 0.64 0.44 0.28 0.07 1.04 0.53 0.20 0.66 1.59

marginal cost/price gap 0.03 0.03 -0.60 -0.86 -0.39 -0.71 -0.55 -0.49 -0.09 -0.54 -0.09 0.13
net scale economy 0.01 0.31 0.12 1.49 -0.02 0.65 0.10 1.29 -0.04 0.27 0.06 1.30
externality 0.20 0.06 0.17 -0.07 0.78 0.28 0.52 0.09 0.56 0.46 0.63 -0.03
other transit 0.02 -0.03 -0.02 0.08 0.08 0.06 -0.01 0.14 0.09 -0.09 0.06 0.19

MW/M  at 50% subsidy 0.26 0.37 -0.05 0.58 0.36 0.27 0.13 0.95 0.48 0.29 0.63 1.74

Note
All values are in cents per passenger mile per one-cent increase in subsidy.

Table 5. Results for Marginal Welfare Effects with Alternative Assumptions for Agency Adjustment

Washington Los Angeles London
Rail BusRail Bus Rail Bus
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Peak Off- Peak Off-
Peak Peak

mw  at current subsidya 19.8 13.9 -22.1 16.0

amw  is the marginal welfare gain from attracting one passenger-mile to the mo
expressed in cents.

Table 6. Welfare Benefits from Bro

Washington
Rail Bus

Peak Off- Peak Off- Peak Off- Peak Off-
Peak Peak Peak Peak

11.5 2.3 -2.2 19.8 51.0 -3.7 25.4 43.5

Bus

de and time period in question, assuming that parameters are unaffected, 

ader Transit-Expanding Policies

Los Angeles London
Rail Bus Rail
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Appendix A. Analytical Derivations 

 

Equation (10): Agency optimization over route density (D) and vehicle size (n) 

Combining (1), (4), and (5), the household’s indirect utility function in (7) is defined by 
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From the agency’s point of view, (A1) can be transformed into a social utility function by 

substituting the various definitions and constraints of the system, namely, (2), (3), (8), and (9). In 

doing so, the revenues ΣijpijMij in the government’s budget constraint (9) cancel those in the 

individual’s budget constraint in the last term of (A1); prices appear only insofar as Mij depends 

on them through the consumer’s demand functions. The resulting social utility function can be 

optimized by setting λ=uX (the first-order condition for X) and then by setting to zero its partial 

derivatives with respect to D, n, V, and either M or p. (Henceforth we omit the ij superscripts for 

simplicity and understand the preceding statement to apply to each i and j.) Here it is convenient 

to use M as the agency’s choice variable; that is, we hold M constant in taking the other three 

derivatives. We consider two of those in this subsection, deferring the third (V) till later. Each is 

a partial derivative, holding the other three variables constant. Thus, in optimizing route density 

and vehicle size, we hold constant M and V, which implies also that occupancy o≡M/V is 

constant. 

Route density affects user waiting and access costs, and vehicle size affects user 

crowding costs and agency operating costs OC. Thus each first-order condition for optimization 

has two terms, and each term involves only the same i and j, so we can continue to omit the ij 

superscripts without ambiguity: 
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where wf, aD, and cl are derivatives of the functions defined in (3a), and we have used the 

definitions of ρk from (6b). The partial derivatives on the right-hand sides of (A2) and (A3) can 

be computed using definitions (3) and (8), holding V, M, and o constant. This yields 

, , and dK/dn=k2. Inserting these and dividing each equation by 

λM yields (10). 

DfDf // −=∂∂ nlnl // −=∂∂

 

Equation (11). Marginal welfare effects of reduction in peak-rail fare 

Partially differentiating (A1) and applying (6b) gives 
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Totally differentiating (A1) shows that when the agency changes peak-rail price pPR, utility 

changes according to 
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From (A2) and (A3), we obtain 
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where ≡dVij/dMij is a constant (1/oiCAR) for j=CAR and depends on the transit agency’s 

operating policy for j=B, R. To keep track of its parts, we write the components of (A4a) as 

ij
MV

(A4b) POLLACC
dp

dTAXCROWDWAITACCUSERTIMMMW PR
PRPR +++++=  

where WAITACC includes the terms involving ρW and ρA and POLLACC, the last term in (A4a),  

represents changes in pollution and accident externality costs. 

 We can compute dTAX/dpPR by rearranging (9) with only TAX on the left-hand side, 

differentiating it, and using (2a) and (8) to get 
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where we hold constant τiA and all transit prices other than pPR. It is convenient to write the terms 

in (A5a) as changes in particular financial flows: 

(A5b) VEHSIZEOPCONGOPSUPPLYTRANSITREVFUELREVM
dp

dTAX PR
PR +++−−−= )(  

where the first term is changes in peak-rail revenue from existing passengers; the second is 

changes in fuel tax revenue; the third is changes in transit fare revenue due to mode and time-of-

day shifts; the fourth is changes in transit operating cost related to travel time (divided into two 

parts: changes due to shifts among different modes and times of day with different average 

supply costs, and effects of congestion); and the last is changes in transit operating cost related to 

vehicle size. Note that new revenues reduce the lump-sum TAX that must be levied, whereas new 

costs increase it. 

 Substituting (A5b) into (A4b), we see that the terms MPR cancel, and we can rearrange the 

other parts into a more convenient order for further calculation, as follows: 

(A6)  

( )

( )

( )VEHSIZECROWD
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 It is useful to summarize the definitions of elasticities of bus and rail travel 

characteristics, recalling that all are defined so as to be positive: 
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We also define how service frequency and route density change with vehicle miles, and how 

vehicle size and load factors change with occupancy, as follows: 
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 We now proceed to compute key derivatives in (A4a) and (A5a) in terms of  ≡ 

dMij/dpPR. The travel time derivative can be written, using (2a), (3), and (A7b), as 
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where  and . Note that  by our assumption 

that rail speeds are unaffected by road traffic. Similarly, the waiting, access, and crowding 

derivatives in (A4), which apply only for j≠CAR, can be written using (2), (3), and (A7) as 
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 We now examine the terms in (A6) in groups. We begin by using (A8b) and (A8c) to 

compute WAITACC as given in (A4), using (10a) to simplify: 
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where the last equality applies definition (12b). This accounts for all the terms in (11) involving 

MBscale. As for the other terms in the first group in (A6), we note that TRANSITREV, the third 

term in (A5a), accounts for all the terms in (11) involving p. We also see that OPSUPPLY, as 

defined by the first of the two terms involving Kij in (A5a), can be written using (A7b) as 

(A10) ∑ ∑∑ ∑
≠≠

==
i CARj

ij
PR

ij
supply

i CARj

ij
PR

ijijij
V MMCMtKoOPSUPPLY )/(ε  

where the last equality uses definition (12a). Thus OPSUPPLY accounts for all the terms in (11) 

involving MCsupply. 
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 We now turn to the second group of terms in (A6). The terms USERTIM and OPCONG, 

which are the terms in (A4a) and (A5a) involving dtij/dpPR, can be combined and written, using 

(A8a), as 
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where we have adopted the notational convention that KiCAR=0. Using the fact that , 

the definition oij=Mij/Vij, and definitions (12d), we obtain 
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B tt α=

(A11) 
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These terms are components of sums of  as defined in (12c). Next we obtain some other 

components of those same sums. Using the definition of εV and the fact that λ=uX, the change in 

external costs of pollution and accidents is 
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Finally, the fuel tax revenue term in (A5) is 

(A13)  ∑ −=−
I

iCAR
PR

iCARiCAR MoFUELREV )/( τ

Adding equations (A11)-(A13) and applying definitions (12c) yields 

  ∑ ∑∑
=

+
i RBj

ij
PR

ij
ext

i

ij
PR

iCAR
ext MMCMMC

,

which accounts for all the terms in (11) involving MCext.  

 Finally, we consider the last group of terms in (A6), involving crowding and the costs 

undertaken to avoid it. Using (A7b), A7d), (A8d), and (10b), these terms add to 
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which accounts for the terms in (11) involving MCocc. We have now accounted for all terms in 

(11), which completes the proof. 

 

Transit agency optimization over vehicle miles of service (V). 

 Now consider what would happen if the agency also optimized with respect to V. Our 

model does  not assume the agency actually does so, but here we use this assumption to derive a 

benchmark case for εV to use in our baseline scenario. This type of benchmark is sometimes 

called a “quasi-first-best” response: responding to changes according to a first-best adjustment 

rule even though some other factor (e.g. a bureaucratic bias toward offering too much service) 

prevents the situation from being truly first-best (Small and Verhoef 2007, p. 142).  

 In our case even this “quasi-first-best” value of εV is only approximate, as we compute it 

under three additional simplifying assumptions: 

• Elasticities of waiting and access times (defined positively) are all equal to a common value 

( ); ζηη ≡= ij
a

ij
w

• The transit agency ignores its own vehicles’ contributions to congesti 0=ij
B ) and to 

other externalities (ziB=ziR

on 

=0); 

( t

• Dwell time for entering and exiting passengers is negligible (θB=θR=0). 

The first bullet is an assumption common to the simpler models of Mohring effects—for 

example, that of Small (2004). A special case is when average waiting time is half the interval 

between vehicles, and average access time is proportional to the distance between parallel transit 

lines; then ζ=1. 

 Those assumptions enable us to derive a simple condition for maximizing (A1) with 

respect to the agency’s choice variables, for given travel demands {Mij}. In what follows, we 
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suppress superscripts for simplicity. Maximizing with respect to D and n again yields (10). Given 

our first simplifying assumption, we see immediately from (10a) that average waiting cost and 

access cost are equated: 

(A14)  aw AW ρρ =

This result is also in Jansson (1997). Since D=V/f, it can be written as 

(A15)  ζζ αραρ −− ⋅= )/( fVf a
A

w
W

where we have substituted in the constant-elasticity functions  and a=αaD-ζ 

describing waiting and access times, respectively. Solving (A15) for f, we see that it is 

proportional to the square root of V. That is, f is adjusted when V changes with elasticity εfV=½. 

Therefore, 

ζα −= fw w

(A16) εfM = εfVεV = ½εV 

 We now consider maximizing with respect to V. Given our second assumption, V affects 

(A1) only through the terms involving waiting time w, access a, crowding c, and operator cost 

OC, the latter entering through budget constraint (9). The first-order condition is therefore 
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where the last equality uses the definitions in (6b) and (8) and the result λ=uX. Dividing by λ and 

using (A7), (2a), and (10), this implies 
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or 

(A17) 
ζρW
tk

V
wM 1=  

Under our second assumption, the right-hand side of (A17) is a constant as far as the agency is 

concerned. On the left-hand side, . Therefore, ζα −= fw w

(A18)  constantMVf =−− 1ζ

Now let M change parametrically, with all the service variables f, n, and V changing in response. 

Differentiating the logarithm of (A18) with respect to log(M) yields 
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(A19) -ζεfM + 1 –εV = 0 

Substituting (A16) into (A19) and solving yields εV=2/(2+ζ). For the common case ζ=1, this 

yields εV=2/3, as in Small (2004) and a special case of Nash (1988). 

 The intuition for this result is somewhat subtle. If ζ is near zero, wait and access costs are 

relatively unaffected by vehicle miles of service, so vehicles are operated only as necessary to 

handle the passenger loads; thus increased passenger loads require a proportional increase in 

vehicle miles, i.e. εV=1. If ζ is large, the operator accounts for the substantial effects on user 

costs by running extra vehicles for passengers’ convenience even when M is small; in that case, 

when M increases, the operator can absorb some of the increase through higher occupancy, 

thereby reaping more of the advantages of scale; this means choosing a smaller value of εV. We 

take ζ=1 as our base case (εV=2/3) and consider sensitivity ζ∈[0,2] by treating εV=1 and εV=½. 
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Appendix B. Assessment of Parameter Values 

Here we describe our methodology for estimating parameter values along with data 

sources; Table 2, which is discussed in the text, summarizes our key estimates. For some 

parameters, breakdowns by mode or time of day are unavailable from statistical sources; in these 

cases we use various estimation procedures or our own judgment. U.K. monetary numbers are 

converted to U.S. dollars using the average 1998–2003 exchange rate of £1.0 = US$1.6.  

 

System operating characteristics. Basic data are compiled from the operating agencies and 

various national statistics.27 For London, we allocate total passenger miles across time of day 

using the observed fraction of passenger trips occurring at peak period, 0.62 for rail and 0.48 for 

bus, and an assumed average trip length in the peak equal to 1.6 times that in the off-peak.28 

Passenger miles per hour are then computed assuming that the peak period covers 6 hours per 

workday (30 hours per week) and the off-peak covers 10 hours every day (70 hours per week). 

We assume peak shares are each 0.05 higher for Washington (which has a high proportion of 

government employment) and 0.05 lower for Los Angeles (which has a smaller discrepancy 

between peak and off-peak vehicles per hour).29 To obtain vehicle miles offered by time period, 

we assume that observed total vehicle miles are allocated across the available 100 weekly hours 

in proportion to passenger miles per hour to the power εV=0.67, our baseline assumption as 

discussed in Appendix A.30 

For Washington and Los Angeles, automobile vehicle miles by time of day are from 

Schrank and Lomax (2003), and occupancy is from the 2001 National Household Travel Survey 

on average occupancy per trip in large metropolitan areas. For London, auto passenger miles by 

                                                      
27 For the United States, see the National Transit Database (FTA 2003), and for the United Kingdom, see TfL (2003, 
Tables 1.1,1.2, 3.6), TfL (2004a, b), and U.K. DfT (2003, Tables 5.3, 5.16). Rail data encompass subways and light 
rail but not commuter rail. 
28 For the entire United Kingdom, commuting trips have length around twice that of trips for education, shopping, or 
other personal business (U.K. DfT 2003, Table 10); however, we expect a smaller discrepancy for transit trips 
because of the high fixed time cost of accessing transit. 
29 The Washington adjustments are in line with unpublished statistics we obtained from transit agency 
representatives; the Los Angeles transit authority has no such data on trips by time of day. 
30 Total vehicle miles for U.S. rail systems were obtained by multiplying vehicle-car miles by average cars per train. 
For peak periods the latter is calculated by the ratio of rail cars to trains; off-peak train length is assumed to be 
slightly lower based on common observation. For London rail, vehicle-miles (i.e. train-miles) is measured directly 
(in train-km) as 65.4 million train-km from LUL (2003), p. 2; the same figure appears rounded off as 65 train-km in 
TfL (2003), Table 1.1. 
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time of day are from TfL (2003, Table 3.6), including car/motorcycle and taxi. Auto vehicle-

miles are from TfL (2003, Tables 1.2, 31.); to allocate them across time periods we use 

information about person trips by time period and overall average trip distance, along with an 

assumed ratio of peak to off-peak trip distance of 1.3. Auto occupancy for London is then 

calculated as the ratio of passenger-miles to vehicle-miles. 

 

Operating costs and fares. We assume that vehicle capital costs are proportional to capacity n, 

whereas other operating costs are independent of n. Thus in aggregate, vehicle capital costs 

constitute k1tV and other operating costs k2ntV, using (8). Operating costs, aside from vehicle 

capital costs, are taken from the operating statistics of the transit agencies. For rail, we assume 

that 10 percent of these are the fixed cost of maintaining stations (  in (8a)). When expressed 

per vehicle hour of service, we assume that the rest of these costs are 25 percent greater during 

peak than off-peak periods because of difficulties in scheduling labor for split shifts; hence we 

obtain  in (8b). 

iRF

ijk1

As for vehicle capital costs, we estimate them ourselves by annualizing the purchase cost 

of a rail or bus car, assuming lifetimes of 25 and 12 years, respectively, and a real interest rate of 

7 percent.31 (One advantage of this procedure is that we need not rely on agency data for vehicle 

purchase costs, which may be distorted by various financing mechanisms such as tax-free 

bonds.) We allocate vehicle capital costs entirely to the peak period, on the assumption that any 

increase in vehicle miles in that period requires purchasing more vehicles, whereas an increase in 

the off-peak period does not; hence we obtain  and  = 0 in (8b). Vehicle capital costs 

are 27 to 52 percent of other peak variable operating costs. Thus our assumption that they are the 

portion of costs that is proportional to n leads to results consistent with several other studies of 

size-related costs, as reviewed by Small (2004, 156 and note 13).  

PjPj nk2
Ojk2

Fares were obtained by dividing agency passenger fare revenue by passenger mileage (for 

Washington rail, peak fares were higher than off-peak in 2002, but the discrepancy was modest 

and we ignore it). 

  

                                                      
31 We use U.S. nationwide figures for all vehicle prices (from APTA 2002, Table 60) except for Los Angeles rail, 
for which figures were available from www.mta.net/press/pressroom/facts_glance (where necessary, figures are 
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Wait costs. Based on evidence summarized in Small and Verhoef (2007, 53), we assume the 

e 

minute

ait time 

per trip

value of in-vehicle time ρT in the U.S. is half the gross wage rate; in the UK we assume the value 

of time is only 40 percent of the gross wage rate, due to higher labor taxes there which reduce the 

net wage rate relative to the gross wage. In both nations we assume the value of waiting time at 

transit stops, ρW, is 1.8ρT, the midpoint of the range suggested by Small and Verhoef. The 

median gross wage rate is measured at $16.93, $14.19, and $18.83 for Washington, Los Angeles, 

and London, respectively, and then expressed per minute.32 We assume that people of different 

wage rates have sorted themselves into different modes and time periods initially, as follows: 

auto and rail travelers each have wages that are 15% above the area’s median gross wage rate for 

peak periods, and 15 percent below for off-peak (since peak travelers are more likely to be 

higher-wage workers); and bus travelers have wage rates that are 80 percent of these amounts. 

We obtain initial wait times and the wait time elasticity as follows. Let H be averag

s between transit vehicles at a given stop, or headway (the inverse of frequency). When H 

is small, it is reasonable to assume that travelers arrive randomly at a stop and incur expected 

wait time H/2. When headways are larger, at least some travelers will use transit timetables, 

which, following Tisato (1998), we assume involves three time costs. The first two are planning 

and precautionary time required because the exact vehicle arrival time is uncertain; we assume 

these are 1 and 5 minutes, respectively, and each is valued at rate ρW. The third is the expected 

cost of early arrival at the destination, assuming the traveler chooses a transit vehicle arriving 

prior to the desired time to ensure against late arrival. This is ρEH/2 where ρE is the per minute 

cost of early arrival, assumed conservatively to be 0.2ρW; that is, a minute of early arrival is 

equivalent to 0.2 minutes of extra planning or precautionary time.33 All these costs are therefore 

accounted for by setting wait time per trip, w⋅d, to 6+0.2H/2 for those using a timetable.  

We therefore assume that when H<15, all users arrive randomly, so the average w

 is w⋅d=H/2; whereas when H>60, everyone uses a schedule, so w⋅d=6+H/10. In the first 

case, ij
wη ≡(dw/dH)⋅(H/w)=1, whereas in the latter case, ij

wη =1/[1+(60/H)]. For simplicity, we 

                                                                                                                                                                           
updated to 2002 using the CPI for Transportation Equipment). The vehicle lifetimes chosen are common in the 
transit cost literature, and the interest rate is that recommended for cost-benefit analysis by U.S. OMB (1992). 
32 Wages are from U.S. BLS (2004), TfL (2003, p. 49) and U.K. ONS (2004). 
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assume that the elasticity (which is what enters our calculations directly) falls gradually as a 

mixture of the elasticities applying to these two regimes:  

(B1) 
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where λ=(H-15)/45. Substituting this value for λ, the middle part of (B1) can be written as 

=(4/3)–(5/3)/[1+(60/H)], from which we can see that  is monotonically declining in H from 

a value of 1.0 at H=15 to 0.5 at H=60.

ij
wη

ij
wη

34 (It then rises gradually for H>60, but this regime is 

inapplicable here because in our simulations, headways never rise above 26 minutes.) 

Ideally we would compute initial headways from data on car-miles, directional route-

miles, and assumed duration of each time period. However some data on route-miles are 

unavailable, and even if they are the resulting average headways are not realistic because 

individual routes are heterogeneous. Therefore we use these data as guidance, but ultimately 

assume initial headways based on our judgment. For the US, we assume rail headways of 5 and 

10 minutes (peak and off-peak), and bus headways of 12 and 25 minutes. For London, we 

assume smaller headways of 3 and 8 minutes for rail, 6 and 15 for bus. 

 

Marginal benefits from scale economies and marginal cost from occupancy. These are easily 

computed from (12b), using above values for parameters Vε , , , , and .  Wρ ijw ij
wη

ijijnk2

 

Marginal congestion costs. For automobiles,  is obtained directly from equation (12d). 

The travel-time functions are assumed to follow the commonly used BPR-type functional form 

                                                                                                                                                                          

iCAR
congMC

 
33 Arnott, de Palma, and Lindsey (1993) and others se the value of ρE/ρT estimated by Small (1982) for work trips, 
which is 0.61. The ratio is likely to be much lower for non-work trips, which less often have a fixed schedule. So to 

u

be conservative we use half the work-trip value, or ρE=0.305ρT≈0.2ρW. 
34 In the optimal subsidy and 50% subsidy calculations, where we have non-marginal price changes, we also must 
compute wd itself in order to obtain the full prices for use in (14). In this case we integrate (B1) to obtain ln(wd) = 
5.6 + (4/3)lnH – (5/3)ln(H+60). In our calculations, H>15 occurs in only two cases (US off-peak bus), when H≈25. 
At H=25 this formula implies wd=12.03, which suggests that about seven-eighths of travelers arrive randomly (thus 
having wait time H/2=12.5), while one-eighth of them use a schedule (wait time 6+H/10=8.5); thus the penetration 
rate of schedules is less than λ, which is 0.22 at this headway. 
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(US Bureau of Public Roads, ) in which travel delay (dropping the i superscript for simplicity) is 

proportional to (V/C)γ where V=VCAR+αBVB is total traffic (in passenger-car equivalents), 

C=capacity, and γ is an exponent that we take to be 3.7 based on some aggregate relationships 

from the U.S.35 We also assume that bus speed is a fixed proportion of car speed. It is easy to 

ow that with these assum rs and buses, respectively, due to an auto 

ehicle-mile are: 

sh ptions, marginal delays to ca

v
CARCARCAR CAR dVdtt /≡  = γ⋅(average delay/mile)/V 

 CARBB
CAR dVdtt /≡  = ( ) CAR

CAR

.36 Base

operators, despite that only about one-eighth of passengers using roadways do so 

                                                     

CARB ttt /  

Average delay/mile for the U.S. cities is obtained from total person hours of delay from Schrank 

and Lomax (2003), allocating 85 percent of it to the peak period, and dividing by passenger 

miles; this yields an average peak delay (in min/pass-mile) of 0.33 minutes per passenger mile 

for Washington and 0.49 for Los Angeles). Our data provide direct estimates of average traffic 

speeds in Greater London during the peak and daytime off-peak periods; we add 10 percent to 

the latter to account for evenings and nights (bus speeds are 10.3 and 12.3 mph in peak and off-

peak period). Average delay is then inferred assuming a free-flow speed of 30 miles per hour, 

with a result of 1.91 min/mile peak and 1.08 min/mile off-peak. We assume the passenger-car 

equivalent for buses, αB in (12d), is 4.0 for the U.S. cities and 5.0 for London, where buses are 

larger and cars are smaller d on agency data, we find the ratio of auto to bus speed to be 

2.8 in Washington, 2.7 in Los Angeles, and 1.6 in London. In London, about one-fourth of the 

marginal congestion cost iCAR
congMC  turns out to be attributed to the effect of congestion on bus 

passengers and 

on buses; the difference is due to the considerable adverse effects of congestion on agency costs.  

  

Pollution and accident externalities. We start with nationwide average values from the 

assessment by Parry and Small (2005) of U.S. and U.K. automobile externalities: namely, 2.0 

cents per vehicle mile for local pollution; 6 cents per gallon of gasoline for global warming; and 

3.0 and 2.4 cents per vehicle mile for accidents in the United States and the United Kingdom, 

 
35 Small (1992, 70–71) found that total delay is well approximated by a power function of traffic volume, with 
power 4.1 in Toronto and 3.3 in Boston; we average to set γ=3.7. 
36 U.S. FHWA (1997, Table V-23) gives the passenger-car equivalent as only 2.0; however, this is only for federal 
urban highways where buses stop very infrequently, and it excludes mileage on city and suburban streets. 
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respectively. To account for greater population exposure in urban areas, we double the local 

pollution figure for Washington and London, and we triple it for Los Angeles, whose topography 

causes pollutants to disperse especially slowly. We do not adjust external accident costs because 

the evidence suggests that, despite higher traffic densities in urban areas, external accident risks 

are not

de is in conditions similar to off-peak travel in these very large metropolitan 

 fuel efficiency of 5 miles per gallon. When expressed per passenger mile, all three of 

. The costs might be considerably higher on city streets because of their thinner 

avements, but we would not expect them to dominate the congestion costs and scale economies 

                                                     

 necessarily higher, given the counteracting effect of slower-moving traffic (Lindberg 

2001, 406–407).  

Also from Parry and Small (2005), we assume fuel taxes of 40 cents per gallon for the 

U.S. cities37 and 280 cents per gallon in London. We use their nationwide average fuel 

efficiencies of 20 and 30 miles per gallon for the off-peak period (on the assumption that most 

travel nationwi

areas) but reduce them by 25 percent in the peak period to adjust for the effect of congestion on 

fuel economy. 

 For bus, accidents costs per vehicle mile are taken to be the same as for auto because 

buses move more slowly and are driven by professionals, offsetting their much greater weight, 

but pollution is taken to be triple that for automobiles.38 Bus global-warming costs are computed 

assuming

these external costs are very small for bus (one cent per passenger-mile), and are taken to be zero 

for rail.  

 Our estimates of external costs omit road wear, which is negligible for autos but perhaps 

not for buses due to their weight and small number of axles over which it is distributed. Still, we 

think these are small enough to ignore. Buses probably cause marginal road damage similar to 

that of lighter single-unit trucks, which has been estimated at around 3 cents per vehicle-mile on 

urban interstate roads (U.S. FHWA 2000, Table 13), an amount that would have negligible effect 

on our results

p

that we find. 

 

Dwell times. For bus, we adopt the midrange values for typical boarding and alighting times 

 
37 The federal tax was 18.4 cents per gallon; state-level taxes in California, the District of Columbia, Virginia, and 
Maryland were approximately 20 cents per gallon (U.S. DOC 2003, Table 730).  
38 These assumptions are consistent with estimates of relative external costs per vehicle mile for heavy trucks and 
autos in U.S. FHWA (1997, Table 13); separate estimates for bus are not available. 
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from TRB (2000, Exhibit 27-9), assuming two doors for alighting and boarding. We assume cash 

payment for the U.S. cities and prepayment (which allows rear-door boarding) for London. This 

yields values of 4.275 seconds for the U.S. cities and 3.375 sec for London (for comparison, 

Dueker et al. 2004 estimate 5.18 sec in Portland). For rail, we use the estimate by Kraus (1991, 

256) from observations in Boston, which is 1.0/NT sec where NT is the number of cars per train. 

 each case we divide by trip length to specify parameter θij. The marginal cost of increased 

 p  tr

already described, we need the time per mile of transit vehicles tij and access and crowding 

ities we assume the ratio 

ity. We assume other access 

e in W

or gauging , which is positive only for peak service; we 

he baseline, though our results are not sensitive to different assumptions (because 

Own-price travel demand elasticities. Our model calls for elasticities of each mode’s passenger 

In

dwell time is then calculated from (12d), using parameters already described. 

 

Generalized rice of avel. The components of qij are given by (10c); besides parameter values 

elasticities aη  and cη . (This is in fact the only place where we need an empirical estimate of 

ij
cη .) 

 To calculate tij, we divide total vehicle miles by vehicle hours to give average speeds, 

over the day, of 23 and 11 miles per hour for Washington rail and bus, and 23 and 12 miles per 

hour for Los Angeles rail and bus. For London, we have a direct estimate of average speeds from 

the agency: namely 20 miles per hour for rail, 11 for bus. For all three c

ij ij

of peak to off-peak speed is 1.0 for rail, while for bus it is the same as that for autos: 

approximately 0.86 for Washington and London, 0.79 for Los Angeles. 

 The access-time elasticity ij
aη  depends on route density in a manner similar to how the 

wait-time elasticity depends on service frequency. It is one if people live at uniformly distributed 

locations and walk to the nearest transit stop, and smaller if people living farther away choose a 

faster access mode with a fixed cost (e.g., park and ride). The less dense the transit network, the 

more important these other access modes, so the lower the elastic

modes have minor importance in London but mor ashington and more still in Los Angeles, 

and so choose ij
aη  = 0.8, 0.65 and 0.5 for these cities, respectively. 

 There is little empirical basis f  ij
cη

set it to 1.5 in t

crowding costs are relatively small).  
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demand with respect to its own generalized price qij, denoted as ij
qη . However, most empirical 

evidence is based on elasticities with respect to fare pij, which we denote as . We first review 

a

con

tes the effects of pij on wij in (10c), as discussed in the derivation of (14c); that is, 

sume  

ij
pη

the evidence on ij
pη , then describe how we convert to ij

qη . 

 Based on Lago, Mayworm, and McEnroe (1981), Goodwin (1992), and Pratt et al. 

(2000), we assume that the own-fare dem nd elasticity, averaged over peak and off-peak time 

periods, is -0.5 for bus and -0.3 for rail,39 and that in each case the elasticity in the off-peak 

period is twice that in the peak. Given that about 70 percent of passenger mileage occurs during 

the peak period, the values just stated imply own-fare elasticities ij
pη  of approximately -0.40 and 

-0.8 for peak and off-peak bus, and -0.24 and -0.48 for peak and off-peak rail, respectively. To 

vert these to generalized-price elasticities ij
qη , we assume that the empirical measurement of 

ij
pη  incorpora

we as

(B2) ijij
ij
qijPRij

ij
p dpqdpdqM

ηη ==  

where the ratio and the derivative on the right-hand side are both obtained from (10c). Thus

ijijijijij dqpdqdMp

 we 

mply invert equation (B2) to obtain our estimates of , which we assume to be constants. 

are to

 are 0.05 higher, and 

                                                     

ij
qηsi

 

Modal diversion ratios, ij
klm . Pratt et al. (2000, 12–41 ff.) provide several estimates for U.S. cities 

of the proportion of incremental transit trips that are diverted to or from other modes following a 

change in transit price; typical numbers, averaged across time of day, are about 65 percent and 

80 percent for Atlanta and Los Angeles, respectively. Nearly all of these shifts  or from 

cars. We assume that Washington is like Atlanta, and that peak values Pj
PCm AR

off-peak values Oj
OCARm  0.05 lower, than these average values.  

 Now consider the cross-elasticities between bus and rail transit. The few studies available 

typically find them to be about half the direct elasticities in cities with good coverage by both 

 
39 A recent review of mostly U.K. studies by Paulley et al. (2006) produces somewhat larger long-run elasticities, 
which they suggest is because elasticities have risen in magnitude and are higher in the United Kingdom than in 
other nations. Many of the studies relied upon by Paulley et al. are unpublished, and we do not feel the evidence is 
strong enough to apply these higher elasticities to our U.K. simulations. 
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bus and rail transit systems, such as London and Chicago (Gilbert and Jalilian 1991, Table 3b; 

Talvitie 1973). Assuming equal travel volume by mode, this would imply 5.0≈= iR
iB

iB
iR mm  for 

i=P,O. However, we expect the substitutability between modes to decrease as one expands 

beyond the city to the metropolitan area, and to decrease more for cities with less and less well 

developed rail networks. We also expect them to have declined considerably from the 1970s or 

1980s to the year 2000 because of increasing competition from the automobile. Finally, in the 

newer U.S. transit systems the bus lines are typically reconfigured to serve as feeders to the rail 

system, with competitive routes discontinued. ssume the cross-mode diversion 

ra 0 

Therefore, we a

tios to be just 1 percent for Washington (

smaller 

ransit ridership represents such shifts, and 

ue to metropolitan 

ecentralization, this evidence is roughly consistent with our assumed values. 

 

)1.0== iR
iB

iB
iR mm  and 5 percent for Los Angeles 

( 05.0=iR
iBmm ). 

 For London, we expect less diversion to automobile and more to the other transit mode 

because of the smaller initial share of automobiles and travelers’ more extensive transit choices. 

We therefore set London’s diversion ratios to be like those for Washington, except 0.20 

=iB
iR

for auto in the same time period, and 0.20 larger for other transit in the same time period. 

 Little information is available about shifts of transit riders across time periods. We 

assume that in each case, 10 percent of the change in t

that the shifts occur entirely to the same transit mode. 

 Those assumptions lead to the values shown in Table 2. The fraction of extra transit trips 

from increased travel demand is a residual, equal to between zero and 20 percent. The review by 

Pratt et al. (2000) suggests that 10 percent and 26 percent of new transit trips in Los Angeles and 

Atlanta, respectively, represented some combination of changes in walking, trip frequency, and 

destination during the 1990s. Given the likely further decline in this fraction d

d
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