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Abstract

I analyze efficient estimation of a cointegrating vector when the regressand is observed
at a lower frequency than the regressors. Previous authors have examined the effects of spe-
cific temporal aggregation or sampling schemes, finding conventionally efficient techniques
to be efficient only when both the regressand and the regressors are average sampled. Using
an alternative method for analyzing aggregation under more general weighting schemes, I
derive an efficiency bound that is conditional on the type of aggregation used on the re-
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tegrating regression (CCR), to accommodate cases in which the aggregation weights are
either unknown or known. In the unknown case, the correlation structure of the error term
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simulation study and an application to estimating a gasoline demand equation.
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1 Introduction

Many models of practical importance to econometricians rely on time series that are ob-
served at different frequencies. Some examples of economic models where mixed-frequency
series are unavoidable in estimation include purchasing power parity, where nominal ex-
change rates fluctuate daily while aggregate prices are sampled only monthly at best; de-
mand models, where the price of a good may be observed daily but the quantity purchased
is usually observed only monthly; or just about any macro-level model, which commonly
include series that are measured at a mix of quarterly and monthly frequencies.

When the genesis of the problem lies upstream, the analyst must necessarily make a
judgment about the best way to incorporate mixed-frequency data into the model at hand.
The most commonly used methods for handling mixed frequencies include aggregating or
sampling from the higher frequency series to create a low-frequency series.3 Aggregation
generally results in a loss of information, and thus a loss of efficiency.

Cointegrated series, having common long-run relationships and sharing common stochas-
tic trends, offer unique opportunities for overcoming the challenges of inefficiency.4 Specifi-
cally, the superconsistency of the least squares estimator extends to mixed-frequency mod-
els, so that an initial consistent estimate may be leveraged to create second-step estimators
with asymptotically mixed normal distributions. Chambers (2003) and Pons and Sansó
(2005) studied the effects of temporal aggregation of cointegrating regressions on efficiency.
Although they explicitly studied models with temporally aggregated regressand and regres-
sors, their results shed light on models with mixed frequencies considered here, where the
lower frequency may be the result of aggregation.

Defining the data-generating process (DGP) in continuous time, Chambers (2003) found
that the most efficient estimator is obtained when both regressand and regressors are mea-
sured as flows rather than stocks. Such estimators are just as efficient as if the data were
continuously recorded. In the practical case in which the type of aggregated data – stock or
flow – is dictated by the model, Chambers (2003) suggested mimicking flow data by average
sampling, even if the data are not flows.

Pons and Sansó (2005) built on Chambers’s (2003) research by taking a discrete-time
rather than continuous-time approach. These authors argued that a discrete-time approach
may be preferable when agents’ reactions to deviations from long-run equilibria are not
instantaneous due to transaction costs. Measurement error provides another motivation for

3Average or flat sampling, assigning equal weights to each high-frequency observation, is a common but
specific type of temporal aggregation. However, the weights used in aggregation may be more complicated.
Selective or skip sampling, which sets most weights to zero, is another common weighting scheme. Specifi-
cally, end-of-period sampling sets all but the last high-frequency weight in each low-frequency period to be
zero. I use temporal aggregation and sampling almost interchangeably throughout the paper, in spite of
a shade of difference in connotation. Although the term aggregation ceases to be accurate when only one
weight is non-zero, it generally and accurately describes all other weighting schemes.

4Granger (1990), Granger and Siklos (1995), Marcellino (1999), Haug (2002), Pons and Sansó (2005), and
Rajaguru and Abeysinghe (2008) studied various effects of temporal aggregation on estimation and testing of
discrete-time cointegration models. Moreover, Chambers (2003, 2010) and Chambers and McCrorie (2007)
studied temporally aggregated cointegrated series in continuous time. Miller (2010) studied the effects of
imputation on cointegrated series as a special case of general nonlinear perturbations to the error of a
cointegrating regression.
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a courser partition of time to detect a long-run relationship. Macroeconomic aggregates,
such as consumer price indices, may be measured over a wide cross-section and unevenly
over time. Defining the DGP at a monthly frequency circumvents this type measurement
error in this case. On the other hand, a continuous-time framework dominates a discrete-
time approach when the dynamics cannot be defined at the specified frequency but can be
assumed to evolve continuously.

I take a discrete-time approach, which may be viewed as a complement of rather than as
a substitute for a continuous-time approach in the following sense. Continuous time may be
viewed as the “high frequency” (using discrete-time terminology), while the low frequency is
in discrete time. The invariance principle based on a high-frequency DGP considered in this
paper may be viewed as the low-frequency invariance principle derived by Chambers (2003,
Lemma 2). The key difference lies in the long-run variances. Theorem 1 of Chambers (2003)
presents long-run variances when the regressors and regressand are combinations of skip-
sampled stock data and average-sampled flow data. If the high-frequency DGP is defined
at this discrete frequency, then the benchmark high-frequency long-run variance, by which
(unconditional) efficiency is evaluated in this paper and denoted by Ω below, may depend
on the type of series, similarly to those in Chambers’s (2003) theorem.

Several econometric methods in the literature incorporate different frequencies directly
into estimation, thus avoiding potential inefficiency from aggregation. The principal ad-
vantage of such models lies in exploiting the high-frequency information without directly
imputing the lower frequency series. One such approach is a distributed lag (DL) model
with a low-frequency regressand and lagged high-frequency regressors. The DL approach
has several advantages over extant mixed-frequency approaches. No numerical optimization
or overly restrictive distributional assumptions are required.5,6

Like previous authors, I focus on efficient estimation of the cointegrating vector of a
single-equation regression model. More specifically, I focus on the case of a low-frequency
regressand with high-frequency regressors. Many applications, such as estimating price elas-
ticities or inventory smoothing models, have this feature. As discussed below, the opposite
case turns out to be analytically similar. I define the data-generating process at the higher
frequency, so that the lower frequency of the regressand is the result of some sort of tem-
poral aggregation or sampling scheme. Specifically, I refer to the scheme as the regressand
aggregation scheme.

I present a low-frequency invariance principle more general than that of Pons and Sansó
(2005) in the sense that it nests both of the two aggregation schemes considered by those
authors, as well as more general aggregation schemes, such as the nonlinear DL schemes
considered by Ghysels et al. (2004, 2006), inter alia.

5Alternatives include state-space models and nonlinear DL models. State-space models specifically for
cointegrated mixed-frequency series have been studied by Gomez and Maravall (1994) and Seong et al.
(2007). Nonlinear DL models have been employed by Ghysels et al. (2004, 2006), and a number of subsequent
authors. My approach is much less parsimonious than nonlinear DL models, and may not be feasible when
the number of high-frequency regressors approaches or exceeds the low-frequency sample size. Therefore,
the approach in this paper is not recommended when parameter proliferation is a concern.

6However, Miller (2011) recently showed the asymptotic validity of forecasts from stationary or cointe-
grating nonlinear DL regressions with general error structures.
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I take an approach that may be described as a semiparametric DL approach, employ-
ing the semiparametric approach of Park (1992) to construct a canonical cointegrating
regression (CCR).7 Although I use a DL approach for the high-frequency regressors, I do
not extend the DL approach to account for error correlations, as Saikkonen (1991) does.
Rather, CCR allows for a very general error correlation structure. This allowance is partic-
ularly convenient in temporal aggregation or mixed-frequency settings, in which the error
may contain neglected information from the aggregation.

I derive two efficiency bounds: aggregation-unconditional and aggregation-conditional.
All of the CCR estimators considered here are consistent and asymptotically mixed normal.
Thus, the aggregation-unconditional bound is defined by the conditional asymptotic vari-
ance of the CCR estimator of the infeasible full-information high-frequency model. I show
that this efficiency bound is obtained when both regressand and regressors are average-
sampled, which supports the results of Chambers (2003) and Pons and Sansó (2005). Since
the econometrician may be presented with series that have already been aggregated, I de-
fine the concept of an aggregation-conditional efficiency bound. In general, matching the
regressor aggregation scheme with that of the regressand does not lead to conditionally
efficient estimators.

Within the DL framework, I consider both unknown and known regressand aggregation
weights. The cointegrating vector can always be estimated consistently using least squares,
but unknown aggregation weights add a stationary term comprised of differenced regressors
with coefficients as a function of these weights. Unless the regressors are strictly exogenous,
the coefficients cannot be estimated consistently, efficient weights cannot be identified, and
so the idiosyncratic error term is compounded with estimation error. The conventional CCR
is still asymptotically mixed normal and thus may be used for valid inference. Although
not generally efficient, this approach is preferable to arbitrarily aggregating all of the high-
frequency series, as is often done in the empirical literature.

The third contribution of this research lies in improving efficiency in the case of known
weights. Known weights provide additional structure, which may be used to create condi-
tionally efficient estimators. A key insight is that although correlation of the error with the
regressors is traditionally viewed as a nuisance in econometric modeling, this correlation
may be leveraged in the mixed-frequency case to regain information lost from aggregat-
ing the regressand. I show how this correlation may be utilized for conditionally efficient
estimation of the cointegrating vector.

The remainder of the paper is organized as follows. In Section 2, I describe the high-
frequency DGP and mixed-frequency model, and I derive some preliminary results that
generalize some of the results in the literature to more general aggregation schemes. The
main results are contained in Section 3, in which I derive efficiency bounds based on the
limiting variances, I present asymptotic results for the cases of unknown and known aggre-
gation weights, and I introduce modifications of CCR to address these cases. I demonstrate
the efficiency gain for the latter case using finite-sample simulations in Section 4. In Section

7There are of course many other well-known approaches to estimating cointegrating relationships, includ-
ing those by Engle and Granger (1987), Johansen (1988), Phillips and Hansen (1990), Saikkonen (1991),
Stock and Watson (1993), and Pesaran and Shin (1998). The extension of my results to the FM-OLS
estimator of Phillips and Hansen (1990) should be straightforward.
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5, I examine an application to estimating short-run price and income elasticities of gasoline
demand, providing evidence in favor of estimating the weights when they are unknown.
Section 6 concludes, and an appendix contains mathematical proofs.

2 Model and Preliminary Results

I define the DGP and the unconditional efficiency bound of an estimator of the cointegrating
vector at the higher frequency. Since the mixed-frequency model is estimated at the lower
frequency, I analyze asymptotic approximations at that frequency. The preliminary results
of this section generalize some of the results in the existing literature on aggregation by
allowing for more flexible aggregation schemes or mixed frequencies.

2.1 High-frequency DGP and Invariance Principle

Consider a high-frequency DGP given by

yt−i/m = β′xt−i/m + ut−i/m. (1)

I normalize the increments of the lower frequency to unity so that increments of the higher
frequency are 1/m.8 Let the number of high-frequency observations be denoted by M
and the number of low-frequency observations be denoted by T . It is convenient to let
T = [M/m], where [a] denotes the greatest integer not exceeding a. If the high-frequency
observations occur in multiples of m, then clearly T =M/m. I assume that m <∞, or that
the ratio of frequencies is finite. As a result, approximations using standard asymptotics
may be more appropriate than those using in-fill asymptotics.

To analyze statistical properties of the estimators, define bt−i/m ≡ (ut−i/m,4
(1/m)x′t−i/m)

′,

where 4(1/m) is the high-frequency difference operator. Except for the increment normal-
ization above, I maintain standard assumptions about stationarity of (bt−i/m), similar to
those of Phillips and Hansen (1990), Saikkonen (1991), Park (1992), inter alia.

For the sake of concreteness, I assume that

[A1] (bt−i/m) is stationary and ergodic with zero mean, and

[A2] M−1/2
∑[Mr]

i=1 bi/m →d B
(1/m) (r), a vector Brownian motion with covariance matrix

Ω,

along the lines of Park (1992). The asymptotic approximations below may hold under much
more general assumptions, such as those for the weakly dependent heterogeneous processes
of Davidson (1994).

8Such a normalization is similar to Ghysels et al. (2004), e.g., but contrasts with that of Pons and Sansó
(2005), e.g., who set increments of the higher frequency to unity but those of the lower frequency to m.
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Lemma 1. Under Assumptions [A1]-[A2],

(mT )−1/2
∑[Tr]

t=1

∑m−1

i=0
bt−i/m →d B

(1/m) (r) , (2)

as T → ∞,

This invariance principle stems from the invariance principle in [A2]. However, the stochas-
tic process in (2) is convenient for comparing variances of time series observed at different
frequencies. Making use of the conventional partition,

lim
T→∞

var

(

(mT )−1/2
∑T

t=1

∑m−1

i=0
bt−i/m

)

≡ Ω =

[

ωuu ωux
ωxu Ωxx

]

, (3)

and B(1/m) (r) may also be partitioned conformably as (B
(1/m)
u , B

(1/m)′
x )′. I assume that

[A3] Ω,Ωxx > 0.

It is worth reiterating that the high-frequency invariance principle in Lemma 1 may be
viewed analogously to the low -frequency invariance principle of Chambers (2003, Lemma
2), since he defines a continuous-time DGP. In this light, the variance Ω depends on whether
the vector series (bt−i/m) contains stocks, flows, or combinations. By defining a discrete-
time DGP, I abstract from this distinction. Instead, I use Ω as the benchmark for efficiency
of estimators using the mixed-frequency model below. However, Chambers’s (2003) re-
sults suggest that efficient estimators defined in this way may not be efficient compared to
infeasible estimators using continuously sampled series.

2.2 Aggregation and Mixed-frequency Model

Suppose that some aggregation scheme is imposed on the series (yt) such that y$t ≡
∑m−1

i=0 $i+1yt−i/m, where ($i) is a sequence of m deterministic weights. The superscript
$ on yt is simply to denote that temporal aggregation is present, but not to denote any
particular aggregation scheme. Rather, the weights are quite general. I refer to the weights
and the scheme interchangeably as the regressand aggregation scheme.

In order for the low-frequency model to be consistent with the high-frequency DGP,
the regressors and error must inherit the regressand aggregation scheme. The aggregated
low-frequency model becomes

y$t = β′x$t + u$t , (4)

where x$t ≡
∑m−1

i=0 $i+1xt−i/m and u$t ≡
∑m−1

i=0 $i+1ut−i/m.
The model in (4) is equivalent to

y$t = β′
∑m−1

i=0
$i+1xt − β′

∑m−2

k=0

∑m−1

i=k+1
$i+14

(1/m)xt−k/m + u$t , (5)

using a finite-order Beveridge-Nelson decomposition.
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In order to identify β and the cointegrating space, I assume that
∑m−1

i=0
$i+1 = 1 (6)

in line with the nonlinear ADL literature, but in contrast to Pons and Sansó (2005). One
of the two aggregation schemes analyzed by those authors features weights summing to m
rather than to unity. Consequently, some of my results differ from theirs by a factor of
m or 1/m. This identification avoids the difficulty noted by those authors of changes in
measurement from one scheme to another.

Introducing additional notation to simplify exposition, let zt ≡ (4(1/m)x′t, ...,4
(1/m)x′t−(m−2)/m)

′,

Π ≡ ($2, ..., $m) ⊗ I, and D ≡ D# ⊗ I, where D# is an m − 1 square matrix with units
along the main diagonal and below and with zeros above, and where the identity matrices
have dimensions given by the number of regressors in the DGP in (1). The aggregated
models in (4) and (5) may be rewritten simply as

y$t = β′(xt −ΠDzt) + u$t (7)

using this notation.
In case the regressors are aggregated differently than the regressand, I denote the matrix

of regressor aggregation weights as Υ. The model in (7) may be rewritten as

y$t = β′(xt −ΥDzt) + ψ′zt + u$t (8)

by defining the vector ψ ≡ D′(Υ−Π)′β. Note that all of the aggregated models in (4), (5),
(7), and (8) have a common high-frequency DGP given by (1).

A key difference between my DGP and that of Pons and Sansó (2005) lies in the term
ψ′zt. Since I assume that the data are generated at the high frequency, a low-frequency
model necessarily includes ψ′zt, unless aggregation of the regressand and regressors is iden-
tical. The vector ψ may also be viewed as estimation error in a mixed-frequency model in
which Υ = Π̂, an estimator of the weight matrix Π of the regressand.

The models in (4), (5), (7), and (8) may be either low-frequency or mixed-frequency
models. If the regressor vector is (xt−ΠDzt) or (xt−ΥDzt), they are strictly (aggregated)
low-frequency models. If the regressor vector is (x′t, z

′

t)
′, they are mixed-frequency models.

It is worth noting at this point that the choice of analyzing an aggregated regressand
rather than aggregated regressors is arbitrary. In applications such as the gasoline price
elasticity model discussed below, the regressand is aggregated. On the contrary, in ap-
plications such as using macroeconomic covariates to explain a price (PPP, e.g.), the re-
gressor is aggregated. Although I focus on the former case in this paper, the latter case
could be easily accommodated by instead examining yt = β′x$t +ΥDwt − ψ′wt + u$t with
wt ≡ (4(1/m)yt, ...,4

(1/m)yt−(m−2)/m)
′ in place of (8). The error term suffers from aggrega-

tion and an omitted stationary regressor, just as that in (8), but it would also be explicitly
correlated with the stationary regressors. Since such correlation is allowed, much of the
analysis below should hold qualitatively if in fact the regressors are aggregated rather than
regressand. Of course, both of these cases are nested by a cointegrated mixed-frequency
system, such as that examined by Ghysels and Miller (2012). However, since cointegrated
systems are typically examined in differences rather than in levels, that analysis is quite a
bit different.
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2.3 Low-frequency Invariance Principle

Because estimation of β in mixed-frequency models occurs at the lower frequency, asymp-
totic approximations at the lower frequency (as T → ∞) are more convenient. However,
since the DGP, which is also the benchmark model against which the mixed-frequency model
should be compared, is defined at the higher frequency, all low-frequency asymptotics should
be defined in terms of high-frequency limits.

All of the stationary series in (8) – error, low-frequency increment of the I(1) regressors,
and I(0) regressors – may be expressed as b$t ≡ (u$t ,4x

′

t, z
′

t)
′ at the lower frequency.

Defining vt ≡ (ut, ..., ut−(m−1)/m,4
(1/m)x′t, ...,4

(1/m)x′t−(m−1)/m)
′,

A ≡

















$1 · · · $m 0 · · · · · · 0
0 · · · 0 I · · · I I
...

... I 0 0 0
...

... 0
. . . 0

...
0 · · · 0 0 0 I 0

















and F ≡

[

1 · · · 1 0 · · · 0
0 · · · 0 I · · · I

]

allows
∑m−1

i=0 bt−i/m = Fvt and b$t = Avt. An invariance principle for (b$t ), used for the
subsequent asymptotic analysis, may be deduced from that for (vt), which may be deduced
from that for

(

bt−i/m
)

in (2).

It follows from Lemma 1 that m−1/2F (T−1/2
∑[Tr]

t=1 vt) →d B
(1/m) (r). Denote the lim-

iting distribution of T−1/2
∑[Tr]

t=1 vt by V (r), and define

∑∞

k=−∞

Γ (k + i/m) ≡ Ωi =

[

ωiuu ωiux
ωixu Ωixx

]

and Ξ ≡

[

Ξuu Ξux
Ξxu Ξxx

]

,

where Γ(z) is the autocovariance function,

Ξuu ≡







ω0
uu · · · ωm−1

uu
...

. . .
...

ω1−m
uu · · · ω0

uu






, Ξxx ≡







Ω0
xx · · · Ωm−1

xx
...

. . .
...

Ω1−m
xx · · · Ω0

xx






, Ξxu ≡







ω0
xu · · · ωm−1

xu
...

. . .
...

ω1−m
xu · · · ω0

xu






,

and Ξux ≡ Ξ′

xu. The distribution of B(1/m) (r) coincides with that of m−1/2FV (r) where
V (r) is a vector Brownian motion with variance given by Ξ, so that Ω = m−1FΞF ′.

Because of the normalization of the high-frequency increments to 1/m, Ω0 =
∑

∞

k=−∞
Γ (k)

but
Ω =

∑∞

k=−∞

∑m−1

i=0
Γ (k − (i+ j)/m) =

∑m−1

i=0
Ωi+j (9)

for any integer j. Note the slight difference from the standard definition of the long-run
variance.

I assume that Ξxx is full rank. Otherwise, some of the short-differenced increments of
the regressor vector contain superfluous information, causing perfect collinearity. Such su-
perfluous increments may be dropped or else the length of the difference may be increased.9

Finally, using b$t = Avt, an invariance principle for (b$t ) is given by the following lemma.

9A linear interpolated series provides a counter-example. In that case, all of the short differences of the
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Lemma 2. Under the above assumptions, T−1/2
∑[Tr]

t=1 b
$
t →d B (r), where B(r) = AV (r)

is a vector Brownian motion that may be partitioned as B = (B$
u , B

′

x, B
′

z)
′ with variance

given by

AΞA′ ≡ Θ =





θ$uu θux θ$uz
θxu Θxx Θxz

θ$zu Θzx Θzz



 , (10)

where

θ$uu ≡
∑m−1

i=0

∑m−1

j=0
$i+1$j+1ω

j−i
uu

θ$zu ≡ (
∑m−1

i=0
$i+1(ω

i
xu)

′, ...,
∑m−1

i=0
$i+1(ω

i−(m−2)
xu )′)′

θ$uz ≡ (
∑m−1

i=0
$i+1ω

−i
ux, ...,

∑m−1

i=0
$i+1ω

−i+(m−2)
ux )

θxu ≡ ωxu, θux ≡ ωux, Θxx ≡ mΩxx, Θxz ≡ ι′m−1 ⊗ Ωxx with defined ιm−1 as an (m− 1)-
vector of ones, Θzx ≡ Θ′

xz, and where Θzz is a matrix of the first (m− 1) blocks of rows
and columns of Ξxx.

The proof of the lemma follows directly from the preceding discussion with some straight-
forward matrix manipulations. The subvectors θxu and θux are invariant with respect to
the aggregation weights, due to the properties in (6) and (9).

The invariance principle in Lemma 2 may be compared with that of Pons and Sansó
(2005, Lemma 2.1), since both of these results present low-frequency invariance principles
with limiting variances defined at the higher frequency. I allow for a general weighting
scheme, nesting not only the two types of aggregation considered by Chambers (2003) and
Pons and Sansó (2005), but also nesting the flexible nonlinear weighting schemes of Ghysels
et al. (2004, 2006). (See Miller, 2011, for an application of this invariance principle to
models with these schemes.)

Define Σ ≡ var(b$t ) and Λ ≡
∑

∞

k=0 cov
(

b$t , b
$
t−k

)

to be the “contemporaneous” variance
and a “one-sided” long-run variance.10 Both Σ and Λ may be partitioned as

Σ =





σ$uu σ$ux σ$uz
σ$xu Σxx Σxz
σ$zu Σzx Σzz



 and Λ =





λ$uu λ$ux λ$uz
λ$xu Λxx Λxz
λ$zu Λzx Λzz



 ,

similarly to Θ.

2.4 Least Squares Estimation

As in the conventional case with a single frequency, least squares is consistent but neither
asymptotically unbiased nor efficient. In the mixed-frequency case, the bias and inefficiency

regressors, 4(1/m)
xt−i/m, are functions of the same long difference, 4xt. Therefore, each short-difference has

no marginal informational content, and the terms causing the singularity may be dropped with no efficiency
loss.

10The variance of (b$t ) is not really contemporaneous, because the vector b
$
t contains random variables

observed at different times. However, it is nearly contemporaneous in the sense that b
$
t contains random

variables observed during the same low-frequency interval.
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originate not only from the usual non-Gaussian distribution and nuisance parameters, but
also from the stationary covariates (zt) in (8). The coefficients of these covariates may or
may not be estimated consistently, and they are not zero if the regressand and regressors
are aggregated differently, creating additional nuisance parameters.

The result for least squares estimation of β is summarized in the following lemma.

Lemma 3. Let the weight matrix Υ be either (i) chosen to be a nonstochastic matrix
ΥT = Υ∗ or (ii) estimated by ΥT such that plimT→∞ΥT ≡ Υ∗, where ‖Υ∗‖ < ∞. The
least squares estimator β̂LS of β in (8) has a limiting distribution given by

T (β̂LS − β) →d

(
∫

BxB
′

xdr

)

−1(∫

BxdB
$∗

u + λ$∗′

ux −Υ∗Dσ$∗

zu

)

where B$∗

u ≡ B$
u +B′

zψ
∗, λ$∗

xu ≡ λ$xu + Λxzψ
∗, σ$∗

zu ≡ σ$zu +Σzzψ
∗, and

ψ∗ ≡ D′(Υ∗ −Π)′β (11)

under the above assumptions and as T → ∞.

At this point, ΥT (and thus Υ∗) may be quite general. ΥT may be selected arbitrarily or
else be an estimator. Its limit is not generally Π.

The keys to efficiency are (i) to find a class of estimators to orthogonalize B$∗

u with
respect to Bx and eliminate the nuisance parameter λ$∗′

xu − Υ∗Dσ$∗

zu , and (ii) to minimize
the variance of the estimators within this class. All of the estimators I consider beyond
least squares accomplish the former and are asymptotically unbiased and mixed normal
by construction, providing valid asymptotic inference. However, not all provide efficient
inference by accomplishing the latter.

For arbitrary regressand and regressor weighting schemes Π and Υ, a CCR or FM-OLS
regression may be constructed based on the results of the lemma. Efficiency comparisons
like those of Chambers (2003) and Pons and Sansó (2005) for particular weighting schemes
may be conducted on these regressions. With only a low-frequency model in mind, the
preliminary results of this section generalize the results of Pons and Sansó (2005) by allowing
more general weighting schemes.

3 Efficiency Bounds and Efficient Estimation

One of the main innovations of this paper lies in using the preliminary results of the previous
section to obtain efficiency bounds for either mixed-frequency or (aggregated) low-frequency
cointegrating regressions, providing precise metrics for efficiency of such models. The re-
maining theoretical innovations lie in creating estimators that are more efficient using these
metrics.
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3.1 Efficiency Bounds

Saikkonen (1991) and Phillips (1991) extensively discussed efficient estimation of cointe-
grating relationships, synthesizing earlier literature that focused primarily on inference. As
mentioned above, all of the estimators in this section are consistent and asymptotically nor-
mal. To focus on the issues of aggregation and mixed frequencies, I consider the efficiency
bound to be the asymptotic variance of the CCR estimator of the infeasible full-information
high-frequency model in (1).

Using the invariance principle in Lemma 1, an efficient high-frequency estimator β̂EFF
of β must have a limiting distribution given by

M(β̂EFF − β) →d

(
∫

B(1/m)
x B(1/m)′

x dr

)

−1 ∫

B(1/m)
x dB

(1/m)′
u·xx ,

where B
(1/m)
u·xx (r) ≡ B

(1/m)
u (r) − ωuxΩ

−1
xxB

(1/m)
x (r). By Lemmas 1 and 2, the vectors of

Brownian motion B
(1/m)
x (r) and Bx(r) are related by B

(1/m)
x = m−1/2Bx. Moreover, since

M/ (Tm) → 1 as T → ∞, the limiting distribution above may be rewritten as

T (β̂EFF − β) →d m
−1/2

(
∫

BxB
′

xdr

)

−1 ∫

BxdB
(1/m)
u·xx ,

which has conditional variance given by

(
∫

BxB
′

xdr

)

−1

θuu·x (12)

where θuu·x ≡ m−1(ωuu − ωuxΩ
−1
xxωxu).

This conditional variance is a translation of the high-frequency lower bound into the
lower frequency. The factor (

∫

BxB
′

xdr)
−1 is common to the distributions of both efficient

and inefficient estimators across different types of aggregation. Ignoring the common factor,
the comparisons in the ensuing discussion focus on the remaining factor, which is bounded
below by θuu·x. Since this bound is clearly not conditional on the type of aggregation used,
I refer to this variance as the aggregation-unconditional efficiency bound.

The fact that θuu·x is smaller than ωuu − ωuxΩ
−1
xxωxu by a factor of m−1 reflects the

necessity that distributions of low-frequency estimators must collapse faster to obtain the
high-frequency bound. Chambers (2003) and Pons and Sansó (2005) showed that aggregat-
ing high-frequency data may accomplish this task. A lower bound that is conditional on
aggregation would be useful, since aggregation is already present in mixed-frequency series.

A canonical cointegrating regression performed on the high-frequency DGP in (1) has
an error term given by κ′bt−i/m, where κ ≡ (1,−ωuxΩ

−1
xx )

′. At the lower frequency with
known weights Υ = Π, so that ψ = 0, the error term becomes κ′w$t with w$t ≡ (u$t ,4x

′

t)
′

and with κ ≡ (1,−θuxΘ
−1
xx )

′ redefined. With possibly unknown weights, the error term is
augmented by ψ′zt 6= 0, so that it becomes κ′ψb

$
t , where I define

κψ ≡ (1,−(θux + ψ′Θzx)Θ
−1
xx , ψ

′)′

= (1,−m−1(ωuxΩ
−1
xx + ψ′(ιm−1 ⊗ I)), ψ′)′.
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The long-run covariance of any of these error terms with the first difference of the regressors
is zero, providing Gaussian alternatives to the limiting distribution in Lemma 3.

It is straightforward to minimize the long-run variance of κ′ψb
$
t over ψ. Some straight-

forward matrix manipulations show that this variance is

κ′ψΘκψ = θ$uu·x + 2θ$uz·xψ + ψ′Θzz·xψ

where θ$uu·x ≡ θ$uu −m−1ωuxΩ
−1
xxωxu, Θzz·x ≡ Θzz −ΘzxΘ

−1
xxΘxz, θ

$
uz·x ≡ θ$uz − θuxΘ

−1
xxΘxz,

and θ$zu·x ≡ θ$′

uz·x. The minimum variance

min
ψ
κ′ψΘκψ = θ$uu·x − θ$uz·xΘ

−1
zz·xθ

$
zu·x

is attained at
ψmin = −Θ−1

zz·xθ
$
zu·x, (13)

and I refer to the conditional variance
(
∫

BxB
′

xdr

)

−1
(

θ$uu·x − θ$uz·xΘ
−1
zz·xθ

$
zu·x

)

(14)

as the aggregation-conditional efficiency bound.
In general, ψ∗ in (11) does not equal ψmin. In other words, using the least squares resid-

ual in a conventional procedure, such as FM-OLS or CCR, does not yield the aggregation-
conditional efficiency bound.

Given a known regressand aggregation scheme, an intuitive way to try to achieve the
aggregation-conditional efficiency bound is to set ψ∗ = 0. This means using the same
aggregation scheme for the regressors, thus avoiding the mixed-frequency problem entirely.
From Lemma 3, the limiting distribution of the least squares estimator resembles that of
the least squares estimator in the conventional case. It is straightforward to deduce that
a conventional method such as FM-OLS or CCR yields an estimator with a conditional
variance having a second factor of θ$uu·x in this case, rather than that in (12) or in (14).

The following proposition formalizes the relationship between θuu·x, θ
$
uu·x, and θ

$
uu·x −

θ$uz·xΘ
−1
zz·xθ

$
zu·x.

Proposition 4. In general,

[a] θuu·x ≤ θ$uu·x − θ$uz·xΘ
−1
zz·xθ

$
zu·x ≤ θ$uu·x.

If the regressors are strictly exogenous, such that Ξxu = 0, then

[b] θuu·x ≤ θ$uu·x − θ$uz·xΘ
−1
zz·xθ

$
zu·x = θ$uu·x.

If either (i) the aggregation weights are constant or (ii) there is no variation across the rows
of Ξux and Ξuu, then

[c] θuu·x = θ$uu·x − θ$uz·xΘ
−1
zz·xθ

$
zu·x = θ$uu·x.
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Part [a] may seem to be somewhat counterintuitive. If the regressand aggregation scheme
is known, it is not efficient to use these weights for aggregating the regressors, except in
the special cases in parts [b] and [c]. Instead, the optimal weights are functions of the
covariance of the error term with differences of the regressors.

For aggregated low-frequency models, the results of Chambers (2003) and Pons and
Sansó (2005) may be re-interpreted in light of the proposition. Those authors considered
two types of aggregation – average sampling, in which $i+1 = m−1 for all i,11 and selective
sampling, in which $1 = 1 and $i+1 = 0 for i ≥ 1.

Clearly, it might be possible to attain the aggregation-unconditional bound in aggregated
low-frequency models. Part [c] of the above proposition supports the findings of Chambers
(2003) and Pons and Sansó (2005) that average sampling both sides of the regression is just
as efficient as the infeasible high-frequency DGP.12 Pons and Sansó (2005) further suggest
average sampling the regressors even if the regressand is selectively sampled. In this case,
Π is a matrix of zeros, but Υ∗ = m−1(ι′m−1 ⊗ I), so that ψ∗ = m−1(D′

#ιm−1 ⊗ β). Since

ψmin = −Θ−1
zz·xθ

$
zu·x, their suggested scheme is not efficient.

Proposition 4 is also useful in evaluating estimators in mixed-frequency models. Given
a regressand aggregation scheme, I henceforth consider a conditionally efficient estimator to
be one that attains the aggregation-conditional efficiency bound. As Proposition 4 suggests,
such estimators are not generally efficient in the unconditional high-frequency sense.

3.2 Estimation of β with Unknown Weights

Some of the discussion so far has focused on aggregated low-frequency models, in order to
compare results with the existing literature. I now focus exclusively on mixed-frequency
models, in which (zt) is observable. I first consider an unknown regressand aggregation
scheme. The unknown case may be considered to be a proxy for systematic measurement
error. Even if the weighting scheme is known, there may be hidden systematic adjustments,
such as seasonal adjustment or regular but mistimed sampling. The latter might occur,
for example, if a weekly regressand is sampled on a day unknown to the analyst. On the
other hand, allowing unknown weights does not accommodate cases of irregular or random
weights, such as that considered by Jordá (1999), e.g., where series are observed at the
frequency at which agents make decisions. The weights are constant here.

With Π unknown, it may either be (i) ignored and left to the error term, so that Υ∗ = 0,
(ii) set arbitrarily to some other Υ∗, or (iii) estimated by Υ = Π̂ for some estimator Π̂ of
Π. Choice (i) amounts to selective sampling of the last high-frequency observation in each
low-frequency period. Choices (i) and (ii) amount to much the same thing: choosing Υ∗

arbitrarily and suboptimally.
Choice (iii) may be more reasonable in the sense that its goal is to estimate Π, so that

ψ̂ ≡ D′(Π̂−Π)′β may be close to zero to diminish the effect of ψ̂′zt on the error term. With
a consistent estimator of β from Lemma 3, the following theorem holds.

11Constant weights given by $i+1 = 1 considered by Pons and Sansó (2005), do not satisfy the identifying
restriction that I impose in (6).

12Further, Chambers (2003) showed that average sampling is just as efficient as having continuously
recorded series when all series are flows.
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Theorem 5. Given a consistent estimator β̂ of β, the least squares estimator Π̂LS of Π
in (7) is such that

ψ∗

LS = plimT→∞
ψ̂LS = plimT→∞

D′(Π̂LS −Π)′β̂ = −Σ−1
zz σ

$
zu

under the above assumptions and as T → ∞.

Using this strategy, −Σ−1
zz σ

$
zu = ψ∗

LS 6= ψmin = −Θ−1
zz·xθ

$
zu·x in general. It is possible that

ψ∗

LS = 0, but only if the stationary regressors are contemporaneously uncorrelated with the

error term, so that σ$zu = 0. In general, Π̂LS is not a consistent estimator of Π.
The advantage of this approach is a value of ψ∗ such that σ$∗

zu ≡ σ$zu + Σzzψ
∗ = 0,

eliminating the final nuisance parameter Υ∗Dσ$∗

zu in the limiting distribution of the least
squares estimator of β in Lemma 3. However, ψ∗

LS is not identified, since its definition
involves unknown Π. The penultimate nuisance parameter thus remains.

Using least squares, the residual is û$t + ψ̂′

LSzt. In this case, ψ̂LS is estimation error,
but when ψ∗

LS 6= 0, it is part of the residual. As such, a feasible version of b$t cannot be
identified. Alternatively, let

C ′

1 ≡

[

1 0 0
0 1 0

]

and C ′

2 ≡

[

1 0 ψ∗′

LS

0 1 0

]

,

and consider κ′ψC1C
′

2b
$
t . The linear transformation C ′

2b
$
t = (u$t +ψ∗′

LSzt,4x
′

t)
′ is identified.

The long-run variance C ′

2ΘC2 and associated variances C ′

2ΣC2 and C ′

2ΛC2 can be fea-
sibly estimated using the residuals identified in this way. It only remains to estimate
−(θux + ψ′Θzx)Θ

−1
xx in C ′

1κψ. Estimating Θxx is accomplished from the long difference of
the regressors, from the limit in (10) of Lemma 2. Also from that limit, the long-run co-
variance between the residuals û$t + ψ̂′

LSzt and the long difference of the regressors 4xt is
clearly θux + ψ∗′

LSΘzx, so that ψ∗

LS does not need to be identified.
As a result, the conventional feasible procedures are still feasible when the unidentified

term ψ∗′

LSzt becomes part of the error term. The estimator is asymptotically mixed normal,
and the nuisance parameters in Lemma 3 are eliminated – the first λ$∗′

ux by the procedure
itself and the second Υ∗Dσ$∗

zu by least squares estimation. However, not knowing Π means
that the aggregation-conditional efficiency bound is not attained, since ψ∗

LS 6= ψmin in
general.

3.3 Estimation of β with Known Weights

With known Π, the least squares estimator in Lemma 3 can be calculated directly with
ψ∗ = 0 – i.e., by using the same aggregation scheme on both sides. Setting ψ∗ = 0
guarantees ω$uu·x, but this is not the aggregation-conditional bound in the general case
of part [a] of Proposition 4. A smaller variance is possible. The mixed-frequency CCR
proposed in this section attains the aggregation-conditional bound asymptotically.

An example in which the regressand in selectively sampled provides some intuition. In-
formation is lost from the selection, inflating the variance. If the regressors are selectively
sampled in the same way, ψ∗ = 0, the information loss is neither worsened nor amelio-
rated. However, if the short differences of the regressors are correlated with the error
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term, Ξxu 6= 0, including lagged regressors provides additional information about the omit-
ted high-frequency errors. This information may be exploited to recover the aggregation-
conditional bound.

Estimation proceeds in several steps. First, the regression in (8) is estimated using least
squares with Υ = Π, so that ψ∗ = 0. This regression provides consistent estimates of both
β and u$t by Lemma 3. The residual series (û$t ) is used in (b̂$t ) to estimate the variances
Σ, Θ, and Λ.

Once these variances are identified using ψ∗ = 0, the minimum variance may be obtained
by estimating ψmin to be used in κψ. Either FM-OLS or CCR is valid, but using κψ rather
than C ′

1κψ as in the case of unknown weights.
The novelty of this approach lies in estimating ψmin before the final step. Once Θ is

estimated, the formula

ψmin = −(Θzz −ΘzxΘ
−1
xxΘxz)

−1(θ$zu −ΘzxΘ
−1
xx θ

$
xu)

from (13) may be applied.
A CCR may be constructed using either the model in (4) or one of the equivalent models

in (5), (7), or (8). However, a single long difference of each integrated regressor 4xt should
be used, which is intuitively based on the models in (5), (7), or (8). Basing the CCR on
that in (4) would require weighing short differences of each lag of each regressor, adding
superfluous terms and an unnecessary computational burden.

The mixed-frequency CCR differs from the conventional CCR in two ways. First, κψmin

in (13) used in the second step is more complicated than ψ = 0 corresponding to the
conventional case. Second, the coefficients of Dzt are known up to a consistent estimate of
β, so this term may be subtracted from both sides.

Specifically, let

x$∗

t ≡ xt − Λ′

•xΣ
−1b$t

y$∗

t ≡ y$t + β′(ΠDzt − Λ′

•xΣ
−1b$t )− (θux + ψ′

minΘzx)Θ
−1
xx4xt + ψ′

minzt

where Λ•x is a submatrix of Λ given by all rows but only the columns corresponding to
4xt. The model in (7) may be rewritten as

y$∗

t = β′x$∗

t + u$∗

t (15)

where u$∗

t ≡ u$t − (θux+ψ
′

minΘzx)Θ
−1
xx4xt+ψ

′

minzt = κ′ψminb
$
t . This model reduces to the

conventional CCR considered by Park (1992) if ψmin = 0 and Π = 0.

Theorem 6. Given weights Π, variances Σ, Θ, and Λ, and a consistent estimator β̂ of
β such that y$∗

t is defined using β̂, the least squares estimator β̂CCR of β in the model in
(15) has a limiting distribution given by

T (β̂CCR − β) →d

(
∫

BxB
′

xdr

)

−1 ∫

BxdB
′κψmin,
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under the above assumptions and as T → ∞. This estimator attains the aggregation-
conditional efficiency bound.

The theorem provides an asymptotically aggregation-conditional efficient estimator of the
cointegrating vector.

To the best of this author’s knowledge, efficient estimators for mixed-frequency cointe-
grating regressions have not been analyzed previously, except in the special case in which
the regressand has been average sampled. More generally, such estimators do not attain
the same level of efficiency in comparison with the infeasible DGP. The proposed estimator
attains the efficiency bound defined conditionally on the regressand aggregation scheme,
nesting the unconditional bound as a special case.

The proposed mixed-frequency CCR is feasible once the variance matrices are replaced
by consistent estimators.13 Using residuals (û$t ) from the least squares regression in the
first step, that standard covariance estimation procedures are consistent may be deduced
from the low-frequency invariance principle in Lemma 2.

4 Finite-Sample Comparisons (Known Weights)

Finite-sample experiments provide clear comparisons of the efficiency gains under different
data-generating assumptions. All of the procedures discussed above, including least squares,
are consistent. Moreover, all of the conventional techniques provide estimators with limiting
mixed normal distributions. Since a goal of efficient estimation is to improve the power of
hypothesis tests, I base the comparisons on size-adjusted power functions of simple t-tests
of β, which is a scalar in this exercise.

I use a data-generating process similar to that of Pons and Sansó (2005) for the simu-
lations. Specifically, I let

bt−i/m =

[

ρ 0
0 0

]

bt−(i+1)/m + εt−i/m, εt−i/m ∼ N

(

0,

[

1 α
α 1

])

,

varying both ρ and α. Clearly, ρ controls the serial correlation of the error, while α controls
the correlation of the error with the regressors.

In order to simulate 60 years of quarterly and monthly data, I let M = 720 and m = 3,
so that T = 240. I repeat all simulations 10, 000 times. I then repeat the whole exercise
for 60 years of annual and monthly data, with m = 12 and T = 60. In order to most
clearly illustrate the efficiency of each technique, I use the true variances based on the
DGP above in calculating y$∗

t and x$∗

t , rather than estimating the variances. Any loss of
efficiency therefore stems from aggregation rather than from a smaller sample size than the
full-information benchmark.

13The feasibility of the mixed-frequency CCR presupposes that the sample size is large enough to accom-
modate the requisite number of high-frequency regressors. It would not be feasible with 50 years of annual
and weekly data, for example. In this case, temporal aggregation may be required. As a first approximation,
aggregation of the regressors should match that of the regressand, as in the first step of the mixed-frequency
CCR above. Tests to distinguish between these schemes, such as the tests proposed by Andreou et al. (2010)
and Miller (2011), would be useful for this purpose.
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I consider the same types of aggregation as Chambers (2003) and Pons and Sansó
(2005). However, I show power functions only for a selectively sampled regressand. The
power functions for an average-sampled regressand are not informative, since part [c] of
Proposition 4 suggests no difference in the efficiency bounds in that case.

Figures 1 and 2 show size-adjusted power functions for ρ = (0, 0.5, 0.9), rows of panels,
and α = (0, 0.5, 0.9), columns of panels. Specifically, Figure 1 shows power functions with
m = 3, while Figure 2 shows those with m = 12.

Each panel displays the power functions from t-tests based on four different estimators.
The benchmark estimation is least squares estimation of a CCR created from the high-
frequency model in (1), similar to Park’s (1992) CCR. The remaining three estimators are
based on a selectively-sampled regressand. The case in which both the regressand and
regressors are selectively sampled is labeled “same schemes” in the figures, while the label
“mixed schemes” refers to the case in which the regressors are average sampled, even though
the regressand is selectively sampled. The fourth estimator uses the same aggregation
schemes, but with ψmin derived above. I label this as “same schemes, adjusted” in the
figures and refer to it as adjusted estimation below.

I set β = 10. Since this is a relatively large value, the extra term with ψ = m−1(D′

#ιm−1⊗
β) for mixed aggregation schemes has a large impact. In each case, the size-adjusted power
shows substantially weaker tests based on mixed aggregation schemes. The tests are even bi-
ased over a range of alternatives. (Similar results – not shown – hold for an average-sampled
regressand but selectively sampled regressor, the opposite mix.) The results suggest that
aggregation schemes should not be mixed, in contrast to the recommendation of Pons and
Sansó (2005). They found no appreciable differences in test sizes, but recommended always
average-sampling the regressors, even when the regressand is selectively sampled, based
on precision of the estimator when the cointegrating space is allowed to vary. My results
instead suggest that matching aggregation schemes, so that ψ = 0, is preferable to mixing
aggregation schemes based on power. The tests are unbiased and more powerful when the
schemes are matched.

The resulting power from matched schemes lies below that from the full-information
case, because selective sampling necessarily suppresses information. However, as the serial
correlation in the error term increases from 0 to 0.9 in the figures (top to bottom), two
things are apparent. First, the overall power of tests using all of the techniques decreases,
as the root in the error term approaches unity. Recent theoretical results of Kurozumi and
Hayakawa (2009) suggest that CCR remains consistent even when the error contains a root
near unity. Second, increasing the error dependence decreases the marginal value of the
information loss from selective sampling. At ρ = 0.9, the power functions from matching
schemes are nearly indistinguishable from the corresponding full-information benchmarks.

Matching regressor and regressand aggregation schemes clearly does not generally attain
the aggregation-unconditional efficiency bound. As part [a] of Proposition 4 suggests, it
does not generally attain the aggregation-conditional bound, either. No improvement from
adjusted estimation is expected when α = 0, since θ$zu, θ

$
xu = 0 so that ψmin = 0. However,

the figures show an improvement in power when α 6= 0. The intuition underlying this result
is as follows. When the marginal information loss from selectively sampling the regressand
is high – i.e., ρ is small, and the correlation between the error and regressors is high – i.e., α



17

1
ρ = 0.0

α = 0.0

0

-0.03 0 0.03

1
ρ = 0.0

α = 0.5

0

-0.03 0 0.03

1

ρ = 0.0

α = 0.9

0

-0.03 0 0.03

1
ρ = 0.5

α = 0.0

0

-0.03 0 0.03

1
ρ = 0.5

α = 0.5

0

-0.03 0 0.03

1
ρ = 0.5

α = 0.9

0

-0.03 0 0.03

1
ρ = 0.9

α = 0.0

0

-0.03 0 0.03

1
ρ = 0.9

α = 0.5

0

-0.03 0 0.03

1
ρ = 0.9

α = 0.9

0

-0.03 0 0.03

Figure 1: Size-adjusted power for m = 3, β = 10, ρ, α = (0, 0.5, 0.9) with a selectively
sampled regressand.
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Figure 2: Size-adjusted power for m = 12, β = 10, ρ, α = (0, 0.5, 0.9) with a selectively
sampled regressand.
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is large, then using the correlated regressors to compensate for the information loss in the
error provides more power. The inequalities of the factors θuu·x, θ

$
uu·x− θ

$
uz·xΘ

−1
zz·xθ

$
zu·x, and

θ$uu·x are clearly illustrated in these cases, and the aggregation-conditional efficiency bound
cannot be attained without the proposed ψmin adjustment.

5 Application: Gasoline Price Elasticity (Unknown Weights)

Estimating the demand equation for a good, such as gasoline, provides an application in
which one of the regressors, nominal price, may be obtained at a high frequency than the
regressand, quantity consumed. Gasoline price inelasticity provides, to some extent, a mea-
sure of consumers’ dependence on gasoline. Consumers who cannot easily substitute away
from gasoline consumption (e.g., using alternative means of transportation) will exhibit an
inelastic short-run price elasticity, because they cannot easily decrease gasoline consump-
tion in response to price increases. As a result, the elasticity has implications for any policy
that could affect oil or gasoline prices, including taxation and environmental policies.

Since the oil price hikes of the 1970s, there has been a vast literature on estimating
the short-run price elasticity of gasoline demand. See Dahl and Sterner (1991), e.g., for
an extensive review of the early literature. With gasoline prices soaring, price elasticity
has once again become an important concern. A number of studies (e.g., Schmalensee
and Stoker, 1999; Small and Van Dender, 2007; Hughes et al., 2008) have examined more
recent data. While many of these studies use cross-sectional or panel data, a few estimate
cointegrating regressions using aggregate data.14

Let Qt, Rt, and It denote the quantity of gasoline consumed, the real price of gaso-
line, and real income, respectively, and let lower case letters qt, rt, and it represent their
logarithmically transformed quantities. A regression to estimate gasoline short-run price
elasticities may be written as

qt = α′dt + βrt + γit + ut,

where β is the short-run price elasticity and γ is the short-run income elasticity. dt is vector
of monthly indicators included to control for seasonality, but the coefficient vector α may
also account for scale transformations of the other regressors.

Suppose that the real price of gasoline may be represented as Rt ≡ Pt/Ct, where Pt
is the nominal gasoline price and Ct is a price deflator, such as the consumer price index.
Clearly, rt = pt − ct using the same notational convention. If nominal prices are available
daily, the monthly nominal price is a weighted geometric mean of daily prices:

Pt =
mt

√

∏mt−1

i=0
P
πi+1

t−i/m or pt =
1

mt

∑mt−1

i=0
πi+1pt−i/m,

so that the log monthly price is a weighted arithmetic mean of the log daily price. (Here,
mt denotes the number of days in month t.) The regression may be rewritten as

qt = αdt + β
∑mt−1

i=0
$t,i+1(pt−i/m − ct) + γit + ut (16)

14Hughes et al. (2008) provides an example for gasoline demand. Silk and Joutz (1997) apply a cointe-
grating regression to the related problem of estimating electricity demand.
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by defining $t,i+1 ≡ πi+1/mt and imposing
∑mt−1

i=0 $t,i+1 = 1.
Of the four covariates in the model, three may be viewed as subject to aggregation: qt,

ct, and it. From the analysis above, it is clear that differences between the aggregation
scheme of the regressand qt and those of each of the regressors may cause a loss of efficiency
due to an omitted variable. However, aggregation of ct and it are upstream of the analyst
in practice. In contrast, a measure of pt, spot price for gasoline, is available daily. The
focus of this exercise is to show how the daily price may be used and the implications for
efficiency.

I consider explicitly four approaches using the daily price. In the absence of measurement
error, monthly gasoline consumption should simply be the sum of daily consumption, so
that equal weights should be assigned: $t,i+1 = $t (average sampling). Second, I consider
sampling at the end of each month (end-of-period sampling, EOP), so that $t,1 = 1 and
$t,i+1 = 0 otherwise. Third, I consider sampling at the beginning of each month (beginning-
of-period sampling, BOP), so that $t,mt = 1 and $t,i+1 = 0 otherwise. These approaches
correspond to choices (i) and (ii) discussed in Section 3.2 above.

As the fourth approach, I consider estimating $t,i+1 by specifying different regressors
for different days of the month, corresponding to choice (iii) in Section 3.2. In order to
eliminate missing variables, I estimate weights using only the last 18 trading days of each
month, since every month in the sample contains at least that many.15 Conceptually, when
the weights are unknown, the model above is estimated by either setting using mt = 18
or by restricting $t,i+1 = $s,i+1 for i + 1 ≤ 18 and all s, t = 1, ..., T , and $t,i+1 = 0 for
i + 1 > 18. The fourth approach is still less restrictive than the first three approaches,
which restrict all of the weights.

I impose
∑17

i=0$i+1 = 1 as an identifying restriction in the fourth approach. That is,

I estimate 18 OLS coefficients of the form β̂$i+1 and then identify β̂ as
∑17

i=0 β̂$i+1. A

standard error for β̂ is calculated accordingly.
For qt and it, I use data that match those of Hughes et al. (2008) as closely as possi-

ble. Specifically, I use “U.S. product supplied of finished motor gasoline” from the Energy
Information Administration (EIA)16 and “real disposable personal income: per capita”
(chained 2005 dollars, seasonally adjusted) from the St. Louis Fed (original source: Bureau
of Economic Analysis).17 Hughes et al. (2008) use a monthly real gasoline price, which is
aggregated both temporally (across days) and cross-sectionally (across U.S. cities). I use
daily spot prices for gasoline (New York Harbor) from the EIA18 and the CPI from the
St. Louis Fed (original source: Bureau of Labor Statistics)19 to deflate these prices. I am
making a trade-off between the time and space domains: I am choosing a relatively poor
cross-sectional representation of prices by only looking at one location, but I get observa-

15This choice is arbitrary and necessitates some omitted variables, which will naturally affect power like
the omitted variables discussed above. As long as weights at the beginning of each month are not outliers, I
do not expect this to be very problematic. As an alternative, unbalanced months can be handled effectively
using nonlinear DL specifications.

16
<http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MGFUPUS1&f=M>

17
<http://research.stlouisfed.org/fred2/series/A229RX0>

18
<http://www.eia.gov/dnav/pet/pet pri spt s1 d.htm>

19
<http://research.stlouisfed.org/fred2/series/CPIAUCSL>
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tions at a higher temporal frequency by doing so. Even though qt may be viewed as a result
of aggregating daily quantities using equal weights, the fact that my daily price series omits
weekends and holidays suggests that equal weights might not be optimal for daily prices.
Consequently, the regressand aggregation scheme is unknown and flat sampling may not be
the most efficient.

The sample runs from June 1986 through February 2012: T = 309 monthly observations.
June 1986 is the earliest that I can obtain daily spot prices. Otherwise, mid-1986 is a
convenient time to start the sample for two reasons. First, it is just after the oil price
collapse early that year. Second, Hughes et al. (2008) argue that a structural break in the
price elasticity occurred, and it appears from their graphical evidence that the break may
have occurred just before 1986.

To estimate the four models, I construct a feasible CCR in multiple steps. I first regress
out α′dt from all other variables in the model. I then construct a feasible CCR in the usual
way based on these residuals. In order to calculate the long-run variances and covariances
for the feasible CCR, I use a lag window of 12, but I obtained similar results using 8 or 16.

Table 1. Coefficient Estimates.

Average BOP EOP Daily
est s.e. est s.e. est s.e. est s.e.

β −0.0359 0.0039 −0.0364 0.0038 −0.0345 0.0038 −0.0352 0.0041
γ 0.7381 0.0123 0.7398 0.0124 0.7361 0.0124 0.7386 0.0129

Table 1 shows the coefficient estimates and standard errors using CCR. The estimators
are all superconsistent and they are all asymptotically normal. They differ only in terms of
asymptotic efficiency. As a result, the robustness of estimates of β should not be surprising.
The short-run price elasticity results are also similar to those obtained by Hughes et al.
(2008) for their later sample: −0.042 for 2001-2006.

To examine efficiency of the different estimators of the cointegrating vector, I test for
cointegration using estimates generated by the different estimators. With no persistent
supply disruptions in the gasoline market over the period and similarly to the results of
Hughes et al. (2008), I expect a long-run equilibrium – i.e., cointegration – in this market. If
the series are I(1) and cointegrated, then a more precise estimate of the cointegrating vector
will better detect the cointegration, because even a slightly different linear combination of
the I(1) variables will not be cointegrated.

Table 2. Residual-based Cointegration Tests.

Average BOP EOP Daily

Ẑα −165.18 −167.11 −163.72 −206.32

Ẑt −3.50 −3.50 −3.52 −3.56

Table 2 shows the results of Phillips-Ouliaris (1990) coefficient tests and t-tests. With a
5% critical value of −26.09, all four estimators produce coefficient test statistics that reject
the null of no cointegration. The t-tests are more marginal, with all four statistics falling
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between the 5% and 10% critical values of −3.77 and −3.45. The least restrictive (mixed-
frequency) model provides the strongest evidence for cointegration using both tests. This
result suggests that when the regressand aggregation weights are unknown, they should be
estimated when feasible.

6 Concluding Remarks

Temporal aggregation and observation of series at disparate frequencies are nearly unavoid-
able problems in empirical analysis of time series. Since cointegrating regressions are known
to retain their long-run properties in the wake of aggregation, it might be tempting to ag-
gregate all series to the lowest frequency and settle for conventional estimation methods.
When average sampling of both regressand and regressors is not possible, these estimators
are inefficient compared to the full-information high-frequency benchmark.

The aggregation-conditional bound defined in this paper provides a convenient metric
for evaluating efficiency of cointegrating regressions in mixed-frequency cases. Moreover,
the proposed adjustment to conventionally efficient estimators attains this bound asymp-
totically, allowing more powerful inference on the long-run relationship in a cointegrating
regression. When the regressand aggregation scheme is known but such an adjustment is
infeasible, I recommend matching the regressor aggregation scheme to that of the regres-
sand, in order to increase power and efficiency. When the regressand aggregation scheme
is unknown, I recommend leaving the regressor disaggregated and estimating a distributed
lag model when feasible.

Appendix: Proofs of the Asymptotic Results

Proof of Lemma 1. Since the ratio (mT/M)−1/2 has a unit limit as T → ∞, the
normalization in the lemma is asymptotically equivalent to that in Assumption [A2]. Now,
since

∑[Mr]

i=1
bi/m =

∑[Tr]

t=1

∑m−1

i=0
bt−i/m +

∑[Mr]

i=[Tr]m+1
bi/m

the desired result follows if (mT )−1/2
∑[Mr]

i=[Tr]m+1 bi/m = op (1), which requires only that

[Mr] − [Tr]m < ∞. Using the definition of T and the properties of the floor operator,
[Mr]− [Tr]m < Mr − ((M/m− 1)r − 1)m, which simplifies to (r + 1)m and is finite. �

Proof of Lemma 3. Defining

MT ≡
∑

t
(xt −ΥTDzt)(xt −ΥTDzt)

′ and

NT ≡
∑

t
(xt −ΥTDzt)(u

$
t + β′(ΥT −Π)Dzt),

the least squares estimator is such that β̂LS − β = M−1
T NT . By assumption, ΥT is either

nonstochastic at Υ∗ or ergodic with finite limit Υ∗, so that MT =
∑

t xtx
′

t +Op (T ) and

Nt =
∑

t
xt(u

$
t + z′tψ

∗)−Υ∗D
∑

t
zt(u

$
t + z′tψ

∗) + op(T )
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by replacing ΥT with its probability limit. The limit of T−2MT comes from the invariance
principle in Lemma 2. The limit of the first term in T−1NT follows along the lines of Lemma
3.1 of Park (1992) and using the invariance principle in Lemma 2. That of the second term
follows from a law of large numbers for stationary processes. �

Proof of Proposition 4. The second inequality in part [a] of the lemma requires

θ$uz·xΘ
−1
zz·xθ

$
zu·x = (θ$uz −m−1(ι′m−1 ⊗ ωux))(Θzz −m−1(ιm−1ι

′

m−1 ⊗ Ωxx))
−1

× (θ$zu −m−1(ιm−1 ⊗ ωxu))

to be positive semidefinite. Define Pι ≡ ιm(ι
′

mιm)
−1ι′m and E to be an m× (m− 1) matrix

with identity in the first m − 1 rows and columns and zeros in the remaining row. Some
algebra reveals that

Θzz −m−1(ιm−1ι
′

m−1 ⊗ Ωxx) = (E′ ⊗ I)(Ξxx − Pι ⊗ Ωxx)(E ⊗ I)

= (E′(I − Pι)⊗ I)Ξxx((I − Pι)E ⊗ I) ≡ Ξ̃xx

using the fact that Ξxx(Pι ⊗ I) = (Pι ⊗ I)Ξxx = Pι ⊗ Ωxx from (9). Ξ̃xx > 0 since Ξxx > 0
and (I − Pι)E has full column rank of m− 1 < m.20

Parts [b] and [c] require that the second inequality collapses to an equality. Defining
$ = ($1, ..., $m)

′, allows

θ$zu −m−1(ιm−1 ⊗ ωxu) = (E′ ⊗ I)Ξxu$ − (E′ ⊗ I)ΞxuPι$

= (E′(I − Pι)⊗ I)Ξxu(I − Pι)$ ≡ Ξ̃xu$

using the fact that ΞxuPι = (Pι ⊗ I)Ξxu = Pι ⊗ ωxu. Ξ̃xu$ is a vector of zeros if either (i)
(I − Pι)$ = 0, (ii) (I − Pι)Ξux = 0, or (iii) (E′(I − Pι) ⊗ I)Ξxu = 0. The first is satisfied
if there is no variation in the weights: all weights equal 1/m. The second and third are
satisfied if Ξxu = 0 – i.e., if the regressors are strictly exogenous. The second is also satisfied
if there is no variation across the rows of Ξux, even if the elements of these rows are not
zeros. (The assumption that Ξxx > 0 rules out that the third may also be satisfied by a
similar condition on the columns.)

The first inequality in part [a] holds if θ$uu·x−θ
$
uz·xΘ

−1
zz·xθ

$
zu·x−θuu·x ≥ 0. This difference

may be rewritten as
$′(Ξ̃uu − Ξ̃uxΞ̃

−1
xx Ξ̃xu)$

with Ξ̃uu ≡ (I−Pι)Ξuu(I−Pι) and Ξ̃ux ≡ Ξ̃′

xu, using the fact that ΞuuPι = PιΞuu = Pι⊗ωuu.
Letting

G′ ≡ ((I − Pι),−Ξ̃uxΞ̃
−1
xx (E

′(I − Pι)⊗ I))

allows $′(Ξ̃uu − Ξ̃uxΞ̃
−1
xx Ξ̃xu)$ = $′G′ΞG$. Finally, $′G′ΞG$ ≥ 0 since Ξ ≥ 0. This

completes the proof for parts [a] and [b].
Finally, ruling out the possibility that Ξ̃xx has reduced rank, $′G′ΞG$ = 0 holds if

either (I − Pι)$ = 0 or (I − Pι)Ξux = (I − Pι)Ξuu = 0. Unless the weights are constant, it

20The rank is deduced from the properties of idempotent matrices (e.g., Lütkepohl, 1996, pg. 138).
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is insufficient that the regressors are strictly exogenous. There must not be any variation
across the rows of Ξux and Ξuu. Under these conditions, all of the inequalities become
equalities, completing the proof of part [c]. �

Proof of Theorem 5. The least squares estimator of D′Π̂′

LS β̂ is

D′Π̂′

LS β̂ = −
(

∑

t
ztz

′

t

)

−1∑

t
zt(y

$
t − x′tβ̂),

given β̂. Subtracting D′Π′β̂ from both sides yields

D′(Π̂LS −Π)′β̂ = −D′Π′(β̂ − β)−
(

∑

t
ztz

′

t

)

−1∑

t
zt(u

$
t − x′t(β̂ − β))

from (7). By assumption, (β̂ − β) = op (1), so the stated result follows from a standard law
of large numbers for stationary processes applied to the factors

∑

t ztzt and
∑

t ztu
$
t . �

Proof of Theorem 6. Similarly to the proof of Lemma 3, define M∗

T ≡
∑

t x
$∗

t x$∗′

t and

N∗

T ≡
∑

t x
$∗

t u$∗

t so that β̂CCR−β = (M∗

T )
−1N∗

T . That the limit of T−2M∗

T coincides with
that of T−2MT in Lemma 3 follows from the stationarity of b$t . T

−1N∗

T expands to

T−1
∑

t
xtb

$′

t κψmin − Λ′

•xΣ
−1T−1

∑

t
b$t b

$′

t κψmin,

and standard asymptotics for integrated series show that the limit is
∫

BxdB
′κψmin, since

the Λ′

•xκψmin from the limit in first term cancels exactly with the limit of the second. By
construction, the conditional variance of the estimator attains the bound, since the long-run
variance of κ′ψminb

$
t is minψ κ

′

ψΘκψ. �
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