
Università degli Studi del Molise
Facoltà di Economia

Dipartimento di Scienze Economiche, Gestionali e Sociali
Via De Sanctis, I-86100 Campobasso (Italy)

ECONOMICS & STATISTICS DISCUSSION PAPER
No. 55/09

A Characterization of the Dickey-Fuller Distribution, 

With Some Extensions to the Multivariate Case 

by

Roy Cerqueti

University of Macerata, Dept. of Economic and Financial Institutions

Mauro Costantini

University of Vienna, Dept. of Economics

and

Claudio Lupi

University of Molise, Dept. SEGeS

The Economics & Statistics Discussion Papers are preliminary materials circulated to stimulate discussion 
and critical comment. The views expressed in the papers are solely the responsibility of the authors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6339815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Characterization of the Dickey-Fuller Distribution,
With Some Extensions to the Multivariate Case

Roy Cerqueti∗ Mauro Costantini† Claudio Lupi‡

Abstract

This paper provides a theoretical functional representation of the density function related to the Dickey-
Fuller random variable. The approach is extended to cover the multivariate case in two special frameworks:
the independence and the perfect correlation of the series.
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1 Introduction

In this paper we deal with the theoretical case where n possibly cross-dependent time series are
generated by

yi,t = yi,t−1 + ui,t (i = 1, . . . , n ; t = 1, . . . , T )

= yi,0 +
t∑

j=1

ui,j

= yi,0 + Si,t (1)

where yi,0 = ci with probability one, or it has a given probability distribution. The ui,t’s are
assumed to satisfy some regularity conditions so that a suitably normalized transform of Si,t,
S∗i,T (r) := T−1/2σ−1

i Si,bTrc (where b·c denotes the integer part and r ∈ [0, 1]), is such that
S∗i,T (r)⇒Wi(r) as T →∞, with Wi(r) a Wiener process (see e.g., Phillips, 1987, for a detailed
discussion of such regularity conditions and of the exact meaning of the normalization). Here
we take the simplifying assumption that ui,t ∼ iid(0, σ2

i ), so that the conditions for the weak
convergence of the normalized partial sums are trivially satisfied.
It is well known that, under the null H0 : ρi = 1, the t-ratio based on the OLS estimator of ρi, t̂ρi ,
in

∆yi,t = ρiyi,t−1 + ei,t . (2)
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2 The Univariate Case 2

has the non-standard Dickey-Fuller limiting distribution

t̂ρi ⇒
(∫ 1

0
Wi(r)dWi(r)

)(∫ 1

0
W 2
i (r)dr

)− 1
2

(3)

as T →∞ (see e.g., Phillips, 1987).
Building on Ruben (1962), in Section 2 we derive an explicit formulation of the conventional uni-
variate Dickey-Fuller distribution (3). Although not easy to manage, the proposed formulation can
be used to derive analytical results, as opposed to the conventional simulation approach. In this
respect, our work is related to Abadir (1995). In Section 3 we extend the analysis to the multi-
variate case by focusing on the special cases where the series are either independent or perfectly
correlated. Section 4 concludes.

In the derivation of the theoretical results, we assume that all the random quantities introduced
in the paper are contained in a filtered probability space (Ω,F , {Ft}t>0, P ).

2 The Univariate Case

Consider the Dickey-Fuller distribution (3): by definition of stochastic integral, we take a partition
of the interval [0, 1] in N intervals of length 1/N . If N is large enough, we can approximate the
asymptotic distribution of t̂ρi under the null as follows:

(∫ 1

0
Wi(r)dWi(r)

)(∫ 1

0
W 2
i (r)dr

)− 1
2

∼

∼

(
N∑
k=1

Wi(k/N) [Wi(k/N)−Wi ((k − 1)/N)]

)(
1
N

N∑
k=1

W 2
i (k/N)

)− 1
2

=

=
1
2
(
W 2
i (1)− 1

)( 1
N

N∑
k=1

W 2
i (k/N)

)− 1
2

=: Xi/Yi, (4)

where

Xi :=
1
2
(
W 2
i (1)− 1

)
(5)

Yi :=

(
1
N

N∑
k=1

W 2
i (k/N)

) 1
2

. (6)

Therefore, by definition of Wiener process, the distribution of the univariate Dickey-Fuller test
under the stated conditions can be approximated as follows:

t̂ρi ⇒ Xi/Yi ∼
1
2

(
χ2(1)− 1

)
(CvM0(1))

1
2

, (7)

where χ2(1) denotes a Chi-squared distribution with 1 degree of freedom and CvM0(1) denotes a
zero level Cramér-von Mises distribution with 1 degree of freedom.
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In order to derive an analytical expression for the density function of the Dickey-Fuller distribu-
tion, we need to introduce the ratio variable Zi := Xi/Yi. The cumulative distribution function of
Zi will be denoted as Fi. For z ∈ R, we have

Fi(z) = P (Zi ≤ z)
= P (Xi/Yi ≤ z)

=
∫ +∞

0

∫ yz

0
fXi,Yi(x, y)dxdy , (8)

where fXi,Yi is the joint density function of the random variables Xi and Yi.
The density function fi of the variable Zi is

fi(z) =
∂

∂z

[∫ +∞

0

∫ yz

0
fXi,Yi(x, y)dxdy

]
=

∫ +∞

0
yfXi,Yi(yz, y)dy . (9)

We need to find an explicit form of the density function fXi,Yi , in order to get an expression for
fi. Fixed x, y ∈ R, we have

fXi,Yi(x, y) = fYi|Xi(y|Xi = x)fXi(x) , (10)

where fYi|Xi is the density function of Yi conditional on Xi, and fXi is the (marginal) density
function of the random variable Xi.
We write the cumulative distribution functions of Xi as:

FXi(x) = P (Xi ≤ x)

= P

(
1
2

(W 2
i (1)− 1) ≤ x

)
= P (W 2

i (1) ≤ 2x+ 1)

= KXi

∫ 2x+1

−∞
s−1/2e−s/2ds , (11)

where KXi is the normalizing constant. The density function fXi is then

fXi(x) = KXi

∂

∂x

[∫ 2x+1

−∞
s−1/2e−s/2ds

]
= 2KXi(2x+ 1)−1/2exp

[
2x+ 1

2

]
. (12)
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The cumulative distribution function of Yi conditional on Xi = x is

FYi|Xi(y|Xi = x) = P (Yi ≤ y|Xi = x)

= P

 1
N

N∑
k=1

W 2
i (k/N)

)1/2

≤ y

∣∣∣∣∣∣W 2
i (1) = 2x+ 1


= P

( 1
N

[
N−1∑
k=1

W 2
i (k/N) + 2x+ 1

])1/2

≤ y


= P

(
N−1∑
k=1

W 2
i (k/N) + 2x+ 1 ≤ Ny2

)

= P

(
N−1∑
k=1

W 2
i (k/N) ≤ Ny2 − 2x− 1

)
. (13)

Equation (13) suggests that we need to discuss the distribution of a sum of squared non-independent
zero-mean Gaussian variables.
Denote the Cramér-von Mises distribution as

V :=
N−1∑
k=1

W 2
i (k/N) , (14)

and
FV (v) = P (V ≤ v) , v ∈ R+. (15)

Our approach relies on an invariant symmetry property of the random V (see Ruben, 1962). In
particular, Ruben (1962) shows that the cumulative distribution function of V can be written as
series expansions of Chi-squared cumulative distribution functions, i.e. there exists a sequence of
real numbers {λj}j∈N such that

FV (v) =
+∞∑
j=0

λjFN−1+2j(v) , (16)

where FN−1+2j is the cumulative distribution function of a Chi-squared random variable with
(N − 1 + 2j) degrees of freedom. By substituting the explicit expression of the F ’s in (16), we
obtain

FV (v) =
+∞∑
j=0

λj

∫ w

0
e−s/2s(N−3+2j)/2ds , (17)

where we assume without loss of generality that the λ’s contain also the normalizing constants
related to the Chi-squared distributions. By (17), then (13) can be written as

FYi|Xi(y|Xi = x) = P

(
N−1∑
k=1

W 2
i (k/N) ≤ Ny2 − 2x− 1

)

=
+∞∑
j=0

λj

∫ Ny2−2x−1

0
e−s/2s(N−3+2j)/2ds . (18)
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The conditional density function fYi|Xi is

fYi|Xi(y|Xi = x) =
+∞∑
j=0

λj
∂

∂y

[∫ Ny2−2x−1

0
e−s/2s(N−3+2j)/2ds

]

= 2Ny · exp
[
−Ny

2 − 2x− 1
2

]
×

×
+∞∑
j=0

λj [Ny2 − 2x− 1](N−3+2j)/2 . (19)

By substituting (12) and (19) into (10), we have

fXi,Yi(x, y) = 4NK̄Xi

y√
2x+ 1

· exp
[
−Ny

2 − 2(2x− 1)
2

]
×

×
+∞∑
j=0

λj [Ny2 − 2x− 1](N−3+2j)/2 . (20)

Finally, from (9) and (20) we have

fZi(z) = 4NK̄Xi

∫ +∞

0

y2

√
2yz + 1

· exp
[
−Ny

2 − 2(2yz − 1)
2

]
×

×
+∞∑
j=0

λj [Ny2 − 2yz − 1](N−3+2j)/2dy . (21)

Although rather involved, (21) can in principle be used to derive analytical results on the Dickey-
Fuller distribution.

3 The Multivariate Dickey-Fuller Distribution

This section is devoted to the analysis of the distribution of the multivariate Dickey-Fuller t-ratio.
Let’s define the random vector (Z1, . . . , Zn) of asymptotic distributions under the null, ac-

cordingly with (3) and (6). More precisely, we can write

Zi :=
1
2
(
W 2
i (1)− 1

)( 1
N

N∑
k=1

W 2
i (k/N)

)− 1
2

i = 1, . . . , n . (22)

Our aim is to provide a closed form expression for the joint density function fZ1,...,Zn of the
random vector (Z1, . . . , Zn).

Here we study the two extreme cases where the series are either independent or perfectly
correlated.

3.1 Independent Series

Assume that the series y’s are cross sectional independent. Once that the univariate (marginal)
density has been derived, this case becomes trivial. Indeed, for each (z1, . . . , zn) ∈ Rn, we can
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write the density function fZ1,...,Zn simply as

fZ1,...,Zn(z1, . . . , zn) =
n∏
i=1

fZi(zi) , (23)

where fZi(zi) is given by (21).

3.2 Perfectly Correlated Series

Fixed i = 2, . . . , n, we assume that yi and yi−1 are perfectly correlated, and there exists a constant
αi such that

yi = αiyi−1 . (24)

Of course, the ordering of the series is purely conventional. Any ordering would be possible just
by changing the parameter αi.
The dependence among the variables is reflected on the dependence among the Wiener processes
Wi. In particular, by using the derivation of the Dickey-Fuller asymptotic distribution, then con-
dition (24) can be rewritten in terms of the Wiener processes Wi:

Wi = αiWi−1 . (25)

By substituting (25) into (22), we obtain

Zi :=
1
2

(
(αiWi−1(1))2 − 1

)(
1
N

∑N
k=1(α2

iW
2
i−1(k/N)

) 1
2

= |αi|Zi−1 +
1
2(α2

i − 1)(
α2
i
N

∑N
k=1W

2
i−1(k/N)

) 1
2

i = 1, . . . , n . (26)

Formula (26) allows us to write explicitly the conditional cumulative distribution of Zi given Zi−1.
Consider zi, zi−1 ∈ R. Then (18) gives

P (Zi ≤ zi|Zi−1 = zi−1) =

= P

 |αi|Zi−1 +
1
2(α2

i − 1)(
α2
i
N

∑N
k=1W

2
i−1(k/N)

) 1
2

≤ zi

∣∣∣∣∣∣∣Zi−1 = zi−1


= P

 N∑
k=1

W 2
i−1(k/N) ≤

[
2|αi|(zi − |αi|zi−1)√

N(α2
i − 1)

]2
 . (27)

Now, consider the joint density function of the random variable (Z1, . . . , Zn). Given (z1, . . . , zn) ∈
Rn, the dependence condition (25) implies

fZ1,...,Zn(z1, . . . , zn) = fZ1(z1) ·
n∏
i=2

fZi|Zi−1
(zi|Zi−1 = zi−1) , (28)
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where
fZi|Zi−1

(zi|Zi−1 = zi−1) =
∂

∂zi
[P (Zi ≤ zi|Zi−1 = zi−1)] . (29)

Consider i = 1 . . . , n and zi, zi−1 ∈ R. Then (18) gives

P (Zi ≤ zi|Zi−1 = zi−1) =
+∞∑
j=0

λj

∫
»

2|αi|(zi−|αi|zi−1)
√
N(α2

i
−1)

–2

0
e−s/2s(N−1+2j)/2ds

 . (30)

The density function of Zi conditional on Zi−1, fZi|Zi−1
, is then

fZi|Zi−1
(zi|Zi−1 = zi−1) =

+∞∑
j=0

λj
∂

∂zi

∫
»

2|αi|(zi−|αi|zi−1)
√
N(α2

i
−1)

–2

0
e−s/2s(N−1+2j)/2ds


=

8α2
i (zi − |αi|zi−1)
N(α2

i − 1)2
· exp

−1
2

[
2|αi|(zi − |αi|zi−1)√

N(α2
i − 1)

]2
×

×
+∞∑
j=0

λj

[
2|αi|(zi − |αi|zi−1)√

N(α2
i − 1)

]N−1+2j

. (31)

4 Conclusions

In this paper an explicit approximation of the density function of the multivariate Dickey-Fuller
random variable is provided. We proceed by analyzing at first the univariate case. Our result is
grounded on an invariant symmetry property of some random variables involved in the Dickey-
Fuller distribution (see Ruben, 1962).

As in Abadir (1995), the followed approach allows us to avoid the conventional simulation-
based approach. The theoretical results regarding the univariate case are then extended to the
multivariate framework under the assumptions of independent and perfectly correlated series.

Although the independent and the perfectly correlated cases are two extreme settings, they
represent the starting point for exploring models with less restrictive assumptions. In this respect,
the analysis of a general cross sectional dependence case is already in our research agenda.

Moreover, while we deal here only with the Dickey-Fuller distribution in the absence of de-
terministic terms, further extensions are under scrutiny to cope with the “constant” and “constant
plus linear trend” cases.
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