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Abstract

The false discovery rate (FDR, Benjamini and Hochberg 1995) is a powerful approach
to multiple testing. However, the original approach developed by Benjamini and Hochberg
(1995) applies only to independent tests. Yekutieli (2008) showed that a modification of
the Benjamini-Hochberg (BH) approach can be used in the presence of dependent tests
and labelled his procedure as separate subsets BH (ssBH). However, Yekutieli (2008) left
the practical specification of the subsets of p values largely unresolved. In this paper we
propose a modification of the ssBH procedure based on a selection of the subsets that
guarantees that the dependence properties needed to control the FDR are satisfied. We
label this new procedure as the separate pairs BH (spBH). An extensive Monte Carlo
analysis is presented that compares the properties of the BH and spBH procedures.

Keywords: Multiple testing, False discovery rate, Copulas.
JEL codes: C10, C12.

1. Introduction

When many hypotheses are tested simultaneously, the risk of falsely rejecting truly null hy-
potheses increases dramatically. In one single test we usually reject the null if the test p value,
p, is such that p   α, for a pre-specified level α. Since p � Up0,1q under the null, we have that
Prpp   α|H0q � α. But when m " 1 hypotheses are tested simultaneously it is likely that at
least one of the p values is less than α even if all the hypotheses are truly null. In general it
is possible to derive that

Prpat least one of tp1, . . . , pmu   α|H01, . . . ,H0mq ¤
m̧

i�1

Prppi   α|H0iq

� mα (1)

from which we can set the decision rule of rejecting H0i iff pi   α{m, which is the base of
the so-called “Bonferroni procedure”. In this way we can control the Familywise Error Rate
(FWER) in such a way that

Pr
�

at least one of tp1, . . . , pmu  
α

m

���H01, . . . ,H0m

	
¤ α . (2)

It is well known that procedures that control the FWER tend to have low power, with the
power decreasing as the number of tested hypotheses increases. However, depending on the
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focus of the analysis, it might well be that strict control of the FWER is not even needed. In
practice, we need such a strict control only if we want to have Prp# of false positives ¥ 1q ¤ α,
but we might think that the harm of falsely rejecting the null should be inversely related
to the number of hypotheses that are tested. In fact, one would like to identify as many
“discoveries” as possible (Sorić 1989), while incurring in a small proportion of false positives.
This is the motivation of the concept of False Discovery Rate (FDR) introduced by Benjamini
and Hochberg (1995). In plain words, the FDR is the expected value of the proportion of
errors among the rejected hypotheses (FDP, the False Discovery Proportion). It can be
shown (Benjamini and Hochberg 1995; Storey, Taylor, and Siegmund 2004) that when all the
m hypotheses are truly null the FDR equals the FWER, which implies that controlling the
FDR implies (weak) control of the FWER, with substantial gains in power.

More formally, denoting the number of “false discoveries” by F and the number of significant
results by R, the FDR can be defined as

FDR :� E

�
F

R_ 1



� E

�
F

R

����R ¡ 0



PrpR ¡ 0q . (3)

Using R_ 1 in the denominator of (3) sets the FDR to zero when there are no rejections.

Let us introduce a collection of m statistics t as follows:

t :�
�pt1, . . . ,ptm� . (4)

In multiple testing, the False Discovery Rate (FDR) control is attained when the individual
test statistics pt’s in t are independent (Benjamini and Hochberg 1995), or exhibit a particular
dependence structure (Benjamini and Yekutieli 2001). Yekutieli (2008) showed that a modi-
fication of the Benjamini-Hochberg (BH) approach can be used in the presence of dependent
tests. The separate subsets BH (ssBH) procedure proposed by Yekutieli (2008) is based on
the idea of using the BH approach not on all the p values simultaneously, but on separate
subset of p values, each satisfying certain dependence properties. However, Yekutieli (2008)
left the practical specification of the subsets of p values largely unresolved. Our paper fills a
gap remained empty in the literature and provides a generalization of the results regarding the
relationship between the control of the FDR and the dependence structure of the individual
statistics involved. The approach we propose in this paper is a special version of Yekutieli’s
ssBH that we call the separate pairs BH procedure (spBH). We also show how the spBH
procedure can be used in practice in the presence of correlated tests.

The rest of the paper is organized as follows: the next Section derives the main theoretical
results of the paper and details an operating procedure to carry out multiple testing with
FDR control. Section 3 offers a Monte Carlo analysis of the performance of the proposed
procedure under different correlation of the test statistics. We also shed new light on the
ability of the BH procedure to control the FDR in a rather general setting. The final Section
concludes.

2. The statistical model and the main result

Benjamini and Yekutieli (2001) propose a procedure to control the FDR at level q for all
joint test statistics, under a particular dependence hypothesis, consisting in the application

of the Benjamini-Hochberg (BH) at level q
M�°M

i�1 i
�1
	

. An even more general procedure,
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the separate subsets BH (ssBH) procedure, has been introduced recently by Yekutieli (2008)
in order to deal with more general forms of dependence. Here it is an explanation on how the
ssBH works.

Define the vector p of the m p values associated to the components of the set t. Divide p in S
sub-vectors ps, for s � 1, . . . , S. With a very intuitive notation, the statistics corresponding
to ps constitute a vector, that will be indicated with ts. Assume that the cardinality of ps is
ms and denote as ps0 the p values corresponding to the true null hypotheses in ps. The level
q ssBH procedure runs into two steps as follows:

i. For s � 1, . . . , S, apply the BH procedure at level qms{m to test ps, and denote as rsBH
the p values corresponding to the rejected hypotheses.

ii. Reject the null hypothesis corresponding to rssBH �
�S
s�1 r

s
BH .

This section aims at developing a formal argument to generalize the relationship between the
FDR control and the dependence properties of the individual statistics involved by means of
the ssBH procedure.

We first notice that the statistics t defined in (4) are introduced to test the same null hypoth-
esis across different units (experiments, time series). Hence, the individual statistics should
follow the same distribution under the null. Therefore, it is not too restrictive to state the
next assumption.

Assumption 2.1. The individual statistics pt1, . . . ,ptm are pair-wise exchangeable, i.e.

Fi,jpx, yq � Fj,ipy, xq, @x, y P R, (5)

where Fi,j is the bivariate cumulative joint distribution function of the couple ppti,ptjq, with
i, j � 1, . . . ,m.

Assumption 2.1 guarantees that the testing procedure disregards on an eventual cross-sectional
index permutation of the experiments.

We stress that the FDR control is strongly related to the stochastic dependence among the
individual statistics belonging to t. Therefore, a detailed discussion on the dependence struc-
ture underlying the pt’s is needed. In this respect and to be self-contained, we recall here
the concept of positive regression dependency on each one from a subset I0 � t1, . . . , nu or,
briefly, PRDS on I0:

Definition 2.2. Consider an increasing set1 D. The vector t is assumed to satisfy the PRDS
on I0 if, for each i P I0, the conditional probability Prpt P D |pti � xq is nondecreasing in x. �

Benjamini and Yekutieli (2001) prove that the PRDS property on subset of the test statisticspt’s corresponding to the true null hypothesis assures the control of the FDR at a certain level
by the Benjamini and Hochberg procedure. Unfortunately, this result meets severe drawbacks
in practice, because of the difficulty in showing the PRDS property. To overcome this problem,
the multivariate total positivity of order 2 or, briefly, MTP2 property — a stronger dependence
structure — has been introduced. We recall here the definition of MTP2:

1A set D is said to be increasing when, if x P D and y ¥ x, then y P D.
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Definition 2.3. Let f be the joint density function of the n-variate random variable t. t is
said to be MTP2 if and only if, for each x and y, it results:

f pxq � f pyq ¤ f pmintx,yuq � f pmaxtx,yuq (6)

where the min and max operators have to be intended componentwise. �

A well-known statistical result assures that MTP2 ùñ PRDS on I0 @ I0. Therefore, the
dependence described by the MTP2 can be used instead of the PRDS on I0, having in mind
that the former condition is stronger.

A rather general way to capture the stochastic dependence structure among random variables
is the introduction of the concept of copula. Since the development of our model will involve
only pairs of statistics, we focus on the bivariate copulas, leaving a more general discussion
on the multivariate case to Nelsen (1999).

Definition 2.4. The function C : r0, 1s2 Ñ r0, 1s is a copula if and only if:

piq Cp0, uq � Cpv, 0q � 0;

piiq Cp1, uq � Cpu, 1q � u;

piiiq Cpu2, v2q � Cpu2, v1q � Cpu1, v2q � Cpu1, v1q ¥ 0, for each 0 ¤ u1 ¤ u2 ¤ 1 and
0 ¤ v1 ¤ v2 ¤ 1.

The classical Sklar’s Theorem (Sklar 1959) highlights how the bivariate copula introduced in
Definition 2.4 models the dependence structure between pairs of random variables. We report
here the enunciation of this result adapted to our case, for sake of completeness.

Theorem 2.5 (Sklar, 1959). Let Fi,j be the bidimensional joint distribution function of the
couple ppti,ptjq, with i, j � 1, . . . , N . Define the margins as Fi and Fj. Then there exists a
bivariate copula Ci,j such that, for each x, y P R,

Fi,jpx, yq � Ci,jpFipxq, Fjpyqq. (7)

If the margins Fi and Fj are continuous, then the copula Ci,j is unique. Conversely, if Ci,j
is a bivariate copula and Fi and Fj are distribution functions, then the function Fi,j defined
in (7) is a bidimensional distribution function with margins Fi and Fj.

Sklar’s Theorem points out that, given a couple of random variables, the relationship between
joint and marginal distributions is stated through copulas. As an illustrative example, it is
worth noting that (7) implies that the product copula Ci,jpu, vq � uv represents the case of
independence between pti and ptj .
Furthermore, the cross-sectional dependence between the individual pt’s of (4) can also be well
represented by a non-diagonal variance/covariance matrix pσi,jqi,j�1,...,N , where the variance
is indicated with a unique index as: σi,i � σ2i . Hence, it is natural to guess a derivation of
the value of the covariances through copulas. This problem has a formal solution by means
of the Sklar’s Theorem, in virtue of which we immediately have:
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Proposition 2.6.

σi,j �
1

σiσj

» »
R2

rCi,jpFipxq, Fjpyqq � FipxqFjpyqsdxdy,

where Ci,j is the copula defined as in (7).

Proposition 2.6 shows that the introduction of copulas allows us to deal with a dependence
structure simply described through a variance/covariance matrix.

The argument on the stochastic dependence developed above can be applied to the FDR
control of the multiple statistics t. In order to proceed, we need a condition on the sets ps

introduced above:

Condition 2.7. One of the following assumptions holds:

(i) if pi P p0, then there exists a unique si P t1, . . . , Su such that pi P p
si. Moreover, for

each s � 1, . . . , S, it must be:

ms �

"
2, if ps0 � H;
arbitrary, otherwise.

(ii) psi X psj � H, for si � sj, and ms � 2, for each s � 1, . . . , S.

Condition 2.7 means that the division of the set p in the subsets ps is such that each p value
of a true null hypothesis is contained in one ps, and each ps containing a p value of a true
null hypothesis has cardinality equals to 2. This is not a restrictive hypothesis, since the
decomposition of tpsus�1,...,S to be used for the ssBH procedure can be arbitrarily chosen. It
is worth noting that when piiq of Condition 2.7 holds, then ms � 2, for each s � 1, . . . , S; if
piq is true, then ms � 2, for each s � 1, . . . , S̃, with S̃ ¤ S. In the simulation analysis we will
deal with Condition 2.7-piiq. Hence, in our version of the ssBH, all the separate subsets have
cardinality equal to 2: for this reason we label the procedure we adopt as the separate pairs
BH (spBH).

We are now able to state the main result of this section.

Proposition 2.8. Assume that Condition 2.7 holds and that the dependence between the
statistics in ts is described by a copula Cs such that:

Cspu, vq � uv � θφpuqφpvq, (8)

for each s � 1, . . . , S, with θ P r�1, 1s and φ convex or concave.

Then the level q spBH procedure controls the FDR at level qm0{m.

Proof. Denote as X and Y the individual statistics in ts. By Assumption 2.1, X and Y are
exchangeable. Amblard and Girard (2002) showed that, if the dependence between X and Y
is described through the copula Cs in (8), then Y is stochastically increasing in X and X is
stochastically increasing in Y , i.e. the following conditions hold:"

P pY ¡ y |X � xq is nondecreasing in x, @ y;
P pX ¡ x |Y � yq is nondecreasing in y, @x.

(9)

The system (9) is equivalent to the TP2 property for the set ts (see Nelsen, 2006). Hence,
Condition 2.7 and Proposition 2.2 in Yekutieli (2008) give the thesis.
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Remark 2.9. The pairwise dependence introduced in the set up given by family of tpsus�1,...,S,
Condition 2.7 and the copulas in (8) allow us to describe a system with both positively and
negatively correlated units. Indeed, the positive dependence condition formalized by TP2 is
required only for some pairs of statistics in t (the ones appearing in the ts’s), while no as-
sumptions are stated on the remaining couples.

Remark 2.10. Copula defined in (8) allows to derive explicitly the correlation between the
individual statistics in ts. Indeed, some algebra provides that if the stochastic dependence
between X and Y is described through copula Cs in (8), then the correlation coefficient ρX,Y
between X and Y can be written as:

ρX,Y � 12θ

�» 1

0
φpξqdξ


2

.

3. Monte Carlo analysis

In this Section we compare the performance of the BH with that of the spBH procedure, using
an extensive simulation study. As far as the formation of the sub-vectors ps are concerned,
in the simulations we refer to Condition 2.7-piiq, so that ms � 2 for each s � 1, . . . , S. In
particular, the s-th pair ps is formed by the s-th smallest and the s-th largest p values.

We sample m0 p values under the null and m1 p values under the one-sided alternative, with
m :� m0 �m1 being the number of hypotheses to be tested. We consider one-sided alterna-
tives, because the one-sided p values are co-monotone transformations of the corresponding
test statistics, from which they inherit their dependence properties. However, considering
one-sided alternatives is not restrictive, given that two-sided tests can be built on two one-
sided procedures. We want to allow the p values to come from positively correlated tests
(both under the null and the alternative). The kind of experiments we consider are exten-
sions of those carried out e.g. in Benjamini and Hochberg (1995), Brown and Russell (1997)
and Verhoeven, Simonsen, and McIntyre (2005).

Dependent p values can be simulated by generating first the m-variate normal y � Np0,Σq.
In order to generate m1 p values under the alternative, we shift the last m1 components of
the multivariate normal y by a quantity such that the probability of obtaining a p value less
than α (the significance level) is equal to πα (the power at the given significance level α).
Then, the m one-sided p values are generated as pi � 1� Φpyiq with i � 1, . . . ,m.

The matrix Σ is also randomly drawn at each replication and is such that the average (off-
diagonal) correlation is �σij :� pβ1 � β2q

2{4, for given design parameters β1 and β2.
2

In order to cover different dependence structures we consider 10 combinations of the β1 and
β2 parameters as detailed in Table 1. Furthermore, we set m P t16, 32, 64, 128, 256u, m0 P 
1
4m,

1
2m,

1
3m,

2
3m,

3
4m

(
, α � 0.05 and πα P t0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90u.

Therefore, the experimental design gives rise to 2, 250 experiments, each carried out using
10, 000 replications.3

2A detailed explanation of the simulation algorithm for the p values is offered in Appendix A.
3Simulations have been carried out using R version 2.12.1 (R Development Core Team 2011).
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β1 β2 �σij
0.0 0.0 0.0000
0.0 1.0 0.2500
0.1 1.0 0.3025
0.2 1.0 0.3600
0.3 1.0 0.4225
0.4 1.0 0.4900
0.5 1.0 0.5625
0.6 1.0 0.6400
0.7 1.0 0.7225
0.8 1.0 0.8100

Table 1: Combinations of the β1 and β2 parameters. �σij represents the average off-diagonal
element of Σ.

3.1. Simulation results

The first quantity of interest in our simulations is the actual FDR, defined as the percentage of
falsely rejected hypotheses over the total number of rejected hypotheses. In our experiments
we use a nominal 10% FDR level. The second quantity of interest is the average power, defined
as the percentage of correctly rejected hypotheses over the total number of false hypotheses
(see, e.g., Benjamini and Hochberg 1995, p. 296).

Prior to proceeding to the detailed analysis of the results, it is worth noting that the median
FDR for the BH procedure is about 8.1%, but in 41.4% of the experiments the actual FDR
was higher than the nominal 10% level with values as high as about 38%. On the contrary,
only 3 out of 2, 250 experiments resulted in an actual FDR greater than 10% when using
the spBH procedure and the maximum FDR was in this case equal to 11.6%. This confirms
our conjecture that our spBH procedure is effective in controlling the FDR in the presence
of correlated experiments. Of course, we expect to pay the better FDR control performance
of the spBH procedure in terms of lower power, as compared to the original BH procedure.
Indeed, the median average power of the spBH procedure is 23.6% as opposed to the 58.8% of
the BH procedure; the maximum average power is 72.7% and 92.8%, respectively. However,
it is fair to say that the power of the two procedures should not be compared face value,
because the fraction of erroneously rejected null hypotheses in the BH procedure is much
higher than when using the spBH approach. It is therefore natural that the BH procedure is
“more powerful”.

We now proceed by synthesising the 2, 250 simulation outcomes for the FDR using response
surfaces (see e.g., Hendry 1984). First, we transform the actual FDR using the logit transform
x� :� log rx{p1� xqs; then we fit a linear model to the transformed outcomes, using m0{m,
πα and �σij as explanatory variables. We use heteroskedasticity-consistent standard errors
(Cribari-Neto 2004). The response surfaces for the FDR are reported in Tables 2 and 3.

Actual BH’s FDR increases significantly with the proportion of null hypotheses as well as
with the correlation among the tests, while it tends to decrease with the power of the single
test. These paths are present, but much less pronounced, also in the spBH procedure.

Direct interpretation of the coefficients reported in Tables 2 and 3 is somewhat cumbersome
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Estimate Std. Error t value Pr(>|t|)
Intercept -4.190389 0.040366 -103.8093 <2e-16
m0{m 4.008254 0.073114 54.8218 <2e-16
πα -0.004207 0.049951 -0.0842 0.9329�σij 1.556458 0.064716 24.0507 <2e-16
m0{m:πα -1.729597 0.074707 -23.1516 <2e-16
m0{m:�σij 1.441892 0.061784 23.3375 <2e-16
πα:�σij -1.951205 0.087856 -22.2091 <2e-16

Residual standard error: 0.07867 on 2243 degrees of freedom
Multiple R-squared: 0.9887, Adjusted R-squared: 0.9887
F-statistic: 3.276e+04 on 6 and 2243 DF, p-value: < 2.2e-16

Table 2: Estimated response surface for the FDR of the BH procedure. The terms indicated
by “:” are interaction terms.

Estimate Std. Error t value Pr(>|t|)
Intercept -4.71734 0.25170 -18.7416 < 2.2e-16
m0{m 4.63742 0.37809 12.2655 < 2.2e-16
πα -3.00331 0.36362 -8.2594 2.470e-16�σij 1.19758 0.33000 3.6290 0.0002909
m0{m:πα -1.15899 0.52702 -2.1991 0.0279708
m0{m:�σij -0.69754 0.28967 -2.4081 0.0161165
πα:�σij -0.27562 0.44988 -0.6126 0.5401715

Residual standard error: 0.6316 on 2243 degrees of freedom
Multiple R-squared: 0.6388, Adjusted R-squared: 0.6379
F-statistic: 661.3 on 6 and 2243 DF, p-value: < 2.2e-16

Table 3: Estimated response surface for the FDR of the spBH procedure. The terms indicated
by “:” are interaction terms.
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Figure 1: Fitted response surfaces (in original FDR untransformed scale) as functions of
m0{m for various values of πα and �σij . In panels (a), solid lines are used to represent πα � 0.6
and �σij � 0.5; dashed lines for πα � 0.7 and �σij � 0.5; dotted lines for πα � 0.4 and �σij � 0.5.
In panels (b), solid lines are used to represent πα � 0.8 and �σij � 0.5; dashed lines for πα � 0.8
and �σij � 0.7; dotted lines for πα � 0.8 and �σij � 0.3. The thin horizontal lines represent the
nominal 10% FDR.
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because of the presence of interaction terms and because the dependent variable is transformed
to the logit scale. Therefore, making use of the estimated response surfaces, in Figure 1 we
offer a more intuitive approach. In fact, Figure 1 represents the fitted response surfaces
as functions of m0{m for different values of the power of the individual tests, πα, and of
the average correlation among the test statistics, �σij . In particular, in panels (a) �σij is held
constant and equal to 0.5, while πα is set to 0.5 (solid lines), 0.7 (dashed lines) and 0.4 (dotted
lines). It is clear that, for the same proportion of null hypotheses and constant correlation
among tests, the FDR increases for lower values of the power of the individual tests. While
the increase in the spBH procedure is not such to jeopardise FDR control, the influence of
πα on the ability of the BH procedure to control the FDR can be extremely important. In
panels (b) we consider quite powerful individual tests (πα � 0.8) and let the correlation among
tests free to vary by setting �σij � 0.5 (solid lines), �σij � 0.7 (dashed lines) and �σij � 0.3
(dotted lines). The results show that the FDR of the BH procedure increases for increasing
values of the dependence of the individual tests, as expected, even in the presence of rather
powerful individual tests. On the contrary, the FDR of the spBH procedure does not change
significantly with �σij . From Figure 1 it could be argued that the BH procedure could safely be
used when the individual tests have good power and the expected number of null hypothesis
is small relative to the total number of tested hypothesis (m0{m   0.20, say), but in many
practical circumstances the situation is quite the opposite, where the investigator has to
identify a small number of alternative hypothesis within a large number of tested hypotheses.
In this situation, the use of the BH procedure can give misleading results, as far as the tests
are dependent.

Figure 2 represents the fitted response surfaces for the FDR as functions of the power of the
individual tests, πα. The FDR decreases as πα increases, especially for the BH procedure, as
anticipated. In panels (a) the correlation among tests is held constant at �σij � 0.5 and the
proportion of null hypothesis is set to m0{m � 0.6 (solid lines), m0{m � 0.8 (dashed lines) and
m0{m � 0.4 (dotted lines). Of course, for constant values of πα the FDR is larger for larger
m0{m. The indication that emerges is that, in order to use FDR procedures successfully, they
must be based on powerful individual tests. The relation between the FDR and the power of
the underlying test is a novel result of our paper. In panels (b) of Figure 2 it is the correlation
among the test statistics, �σij , that is made to vary between 0.5 (solid lines), 0.7 (dashed lines)
and 0.3 (dotted lines), while m0{m is held constant at 0.5. It is again very well visible that
the correlation influences the FDR in the BH procedure, but not in the spBH one.

Finally, the response surfaces as functions of the average correlation among the test statistics
are plotted in Figure 3. Looking at the figure, it is again clear how the FDR in the BH
increases as the correlation across tests increases, while the FDR in the spBH procedure
is largely independent of the correlation existing across the test statistics, again confirming
our theoretical results. Furthermore, the FDR depends positively on the proportion of null
hypotheses (panels a in Figure 3) and negatively on the power of the individual tests (panels
b in Figure 3), as already highlighted. This dependence is considerably smaller in the spBH
procedure, as compared to the BH one.

We turn now to examine the power of the two procedures. Given that the spBH procedure is
based on the repeated application of the BH procedure on pairs of p values, we expect it to
have lower power than the BH procedure (see e.g., Yekutieli 2008, p. 407).

The estimated response surfaces are reported in Tables 4 and 5. For both procedures the
average power increases with the power of the single tests (πα, as expected), but BH’s power
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Figure 2: Fitted response surfaces (in original FDR untransformed scale) as functions of πα
for various values of m0{m and �σij . In panels (a), solid lines are used to represent m0{m � 0.6
and �σij � 0.5; dashed lines for m0{m � 0.8 and �σij � 0.5; dotted lines for m0{m � 0.4 and�σij � 0.5. In panels (b), solid lines are used to represent m0{m � 0.5 and �σij � 0.5; dashed
lines for m0{m � 0.5 and �σij � 0.7; dotted lines for m0{m � 0.5 and �σij � 0.3. The thin
horizontal lines represent the nominal 10% FDR.

Estimate Std. Error t value Pr(>|t|)
Intercept -3.612765 0.052739 -68.5029 < 2.2e-16
m0{m -1.346034 0.088237 -15.2548 < 2.2e-16
πα 7.282354 0.075146 96.9098 < 2.2e-16�σij 0.675278 0.075907 8.8961 < 2.2e-16
m0{m:πα -0.800207 0.117893 -6.7875 1.455e-11
m0{m:�σij 0.547344 0.057548 9.5111 < 2.2e-16
πα:�σij -1.677226 0.105609 -15.8815 < 2.2e-16

Residual standard error: 0.1233 on 2243 degrees of freedom
Multiple R-squared: 0.9797, Adjusted R-squared: 0.9796
F-statistic: 1.801e+04 on 6 and 2243 DF, p-value: < 2.2e-16

Table 4: Estimated response surface for the power of the BH procedure. The terms indicated
by “:” are interaction terms.
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Figure 3: Fitted response surfaces (in original FDR untransformed scale) as functions of �σij
for various values of m0{m and πα. In panels (a), solid lines are used to represent m0{m � 0.5
and πα � 0.6; dashed lines for m0{m � 0.7 and πα � 0.6; dotted lines for m0{m � 0.3 and
πα � 0.6. In panels (b), solid lines are used to represent m0{m � 0.5 and πα � 0.6; dashed
lines for m0{m � 0.5 and πα � 0.8; dotted lines for m0{m � 0.5 and πα � 0.4. The thin
horizontal lines represent the nominal 10% FDR.

Estimate Std. Error t value Pr(>|t|)
Intercept -5.196950 0.241581 -21.5123 <2e-16
m0{m 0.255360 0.375858 0.6794 0.4970
πα 5.696634 0.325764 17.4870 <2e-16�σij 0.181832 0.320364 0.5676 0.5704
m0{m:πα -0.405152 0.493091 -0.8217 0.4114
m0{m:�σij -0.235477 0.271061 -0.8687 0.3851
πα:�σij -0.033556 0.403644 -0.0831 0.9338

Residual standard error: 0.5559 on 2243 degrees of freedom
Multiple R-squared: 0.6194, Adjusted R-squared: 0.6183
F-statistic: 608.3 on 6 and 2243 DF, p-value: < 2.2e-16

Table 5: Estimated response surface for the power of the spBH procedure. The terms indicated
by “:” are interaction terms.
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Figure 4: Fitted response surfaces for power as functions of πα for various values of m0{m
and �σij . In panels (a), solid lines are used to represent m0{m � 0.6 and �σij � 0.5; dashed
lines for m0{m � 0.8 and �σij � 0.5; dotted lines for m0{m � 0.4 and �σij � 0.5. In panels
(b), solid lines are used to represent m0{m � 0.5 and �σij � 0.5; dashed lines for m0{m � 0.5
and �σij � 0.7; dotted lines for m0{m � 0.5 and �σij � 0.3. spBH figures present a single line,
because in the spBH procedure power depends only on πα.
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Figure 5: Fitted response surfaces for power of the BH procedure. In panels (a) and (b) the
response surfaces are represented as functions of m0{m for various values of πα and �σij . In
panel (a) �σij is held fixed at 0.5 and the solid, dashed and dotted lines are used to represent
πα � 0.6, πα � 0.7, and πα � 0.4, respectively: in panel (b) πα is held fixed at 0.6 and �σij is
set to 0.5 (solid), 0.7 (dashed) and 0.3 (dotted). In panels (c) and (d) the response surfaces
are represented as functions of �σij . In panel (c), πα is held fixed at 0.6 and m0{m is set to
0.5 (solid), 0.7 (dashed) and 0.3 (dotted): in panel (d) m0{m is held fixed at 0.5 and πα is
set to 0.6 (solid), 0.8 (dashed) and 0.4 (dotted).
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decreases with the fraction of null hypotheses, m0{m. Benjamini and Hochberg (1995) already
found that the power decreases when the number of tested hypothesis increases. Here we
emphasize that is the fraction of null hypotheses that really matters most. Furthermore, the
power of the BH procedure depends also on the average correlation among the tests, �σij ,
although the effect of �σij is small. Quite on the contrary, the power of the spBH procedure
depends exclusively on the power of the single tests.

Again, in order to have a more direct interpretation of the results, we report the estimated
response surfaces in graphical form in Figures 4 and 5.

From Figure 4 it is clear that both procedures are less powerful than the individual tests they
are based on: this is the price of correcting for multiplicity. Therefore, it is recommended
that these procedures are applied to rather powerful tests. Figure 5 shows that the power
of the BH procedure decreases quite sharply when m0{m increases. Therefore, in a typical
situation where m1 :� m�m0 is small relative to m, in the presence of dependent tests the
BH procedure is likely to have FDR larger than the nominal level, and reduced power. The
adverse effect of m0{m on power is not present in the spBH procedure whose power depends
only on the power of the individual tests. As anticipated, the effect of the average correlation
on the power of the BH procedure is instead very small indeed.

4. Concluding remarks

The false discovery rate (FDR, Benjamini and Hochberg 1995) is a powerful approach to
multiple testing, where the expected proportion of falsely rejected hypotheses is controlled
instead of the familywise error rate (FWER), i.e. the probability of making at least one
Type I error. Yekutieli (2008) showed that a modification of the Benjamini-Hochberg (BH)
approach can be used in the presence of dependent tests and labelled his procedure as separate
subsets BH (ssBH). The ssBH procedure is based on the idea of using the BH approach
not on all the p values simultaneously, but on separate subset of p values, each satisfying
certain dependence properties. However, Yekutieli (2008) left the practical specification of
the subsets of p values largely unresolved. In this paper we propose a modification of the ssBH
procedure based on a selection of the subsets that guarantees that the dependence properties
needed to control the FDR are satisfied. In our version of the ssBH all the separate subsets
have cardinality equal to 2: for this reason we label it as the separate pairs BH (spBH).
We prove that the spBH procedure is indeed able to control the FDR in the presence of
correlated tests. However, given that the spBH procedure is based on the application of the
BH procedure on pairs of p value, we expect its power to be lower than that of both the
BH and ssBH procedure. In order to compare the FDR and power properties of the BH and
spBH procedures, we run an extensive Monte Carlo analysis over 2,250 experiments. The
results are summarised via response surfaces (Hendry 1984). We show that, contrary to the
BH procedure, the spBH procedure is indeed able to control the FDR in the presence of
correlated tests. Furthermore, based on our simulations we show that actual FDR in the
BH procedure increases significantly with the proportion of null hypotheses, with the average
correlation among the tests and decreases with the power of the individual tests. As expected,
the power of the spBH procedure is lower than the power of the BH one which, however, can
be used only in the presence of independent tests. All in all, the spBH procedure gives a
very reliable, but rather conservative, test that should be used whenever the cost of falsely
rejecting is high.
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Appendix A: Monte Carlo details

This Appendix provides some details about the algorithm used for the the generation of the
p values utilized in the Monte Carlo experiments.

In all Monte Carlo experiments m0 out of m p values are generated under the null; the
remaining m1 :� m�m0 p values are generated under the alternative:

1. Generate a random m-vector ρ with generic i-th element ρi � Upβ1,β2q (0   β1  
β2   1) and compute Σ� � ρρ1. Set diagpΣ�q � ı, with ı � p1, 1, . . . , 1q, and call
Σ the resulting matrix. Σ is a proper symmetric positive definite correlation matrix.
Furthermore, given that ρi and ρj are independent, Epρiρjq � EpρiqEpρjq so that the

expected value of the off-diagonal elements of Σ is �σij :� Epσijq � pβ1 � β2q
2
M

4.

2. Generate the m-variate normal y � Np0,Σq.

3. Shift the mean of the last m1 normals in y of a quantity µ1 :� Φ�1pπαq�Φ�1pαq. This
ensures that the simulated power at the significance level α is πα.

4. The i-th p value (with i � 1, . . .m) is 1� Φpyiq.
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