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Covariate Augmented Dickey-Fuller Tests with R

Claudio Lupi
University of Molise

Abstract

This paper describes CADFtest, a R (R Development Core Team 2008) package for
testing for the presence of a unit root in a time series using the Covariate Augmented
Dickey-Fuller (CADF) test proposed in Hansen (1995). The procedures presented here
are user friendly, allow fully automatic model specification, and allow computation of the
asymptotic p-values of the test.
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1. Introduction and statistical background

Testing for unit roots is a frequent problem in macroeconomic modeling and forecasting.
However, many commonly used tests have low power (see e.g. Campbell and Perron 1991;
DeJong, Nankervis, Savin, and Whiteman 1992b,a; Phillips and Xiao 1998). In recent years,
an important strand of research has been devoted to finding unit root tests with better power
properties (see Haldrup and Jansson 2006, for a recent survey of some of these approaches).

The strategy suggested in a seminal paper by Hansen (1995) in order to increase the power of
unit root tests is to consider stationary covariates in an otherwise conventional Augmented
Dickey-Fuller (ADF) framework (Dickey and Fuller 1979, 1981; Said and Dickey 1984). The
intuition lying behind the approach is very simple: if the stationary covariates have explana-
tory power within the ADF equation, then the regression parameters will be more precisely
estimated and the test statistic will be more powerful. Indeed, also the estimate of the autore-
gressive parameter can be affected by the inclusion of the stationary covariates (see Caporale
and Pittis 1999; Costantini, Lupi, and Popp 2007). More precisely, Hansen (1995, p. 1152)
shows that, unless the variable of interest is independent of the stationary covariates, the most
powerful test makes use of the information embodied in the stationary covariates themselves.
As a consequence, not considering the covariates leads to a loss in the power of the test.

Formally, Hansen (1995) considers a univariate time series yt composed of a deterministic and
a stochastic component such that

yt = dt + st (1)
a(L)∆st = δst−1 + vt (2)

vt = b(L)′ (∆xt − µ∆x) + et (3)

where dt is the deterministic term (usually a constant or a constant and a linear trend),
a(L) := (1−a1L−a2L

2− . . .−apLp) is a polynomial in the lag operator L, ∆xt is a vector of
stationary covariates, µ∆x := E(∆x), b(L) := (bq2L

−q2 + . . . + bq1L
q1) is a polynomial where



2 CADF tests with R

both leads and lags are allowed for. Furthermore, the long-run (zero-frequency) covariance
matrix

Ω :=
∞∑

k=−∞
E

[(
vt
et

)(
vt−k et−k

)]
=

(
ωvv ωve
ωve ωee

)
(4)

can be defined on which the long-run squared correlation between vt and et can be derived as

ρ2 :=
ω2
ve

ωvv ωee
. (5)

When ∆xt has no explicative power on the long-run movement of vt, then ρ2 ≈ 1. On the
contrary, when ∆xt explains nearly all the zero-frequency variability of vt, then ρ2 ≈ 0. The
case ρ2 = 0 is ruled out for technical reasons (see Hansen 1995, p. 1151).1

As with the ADF test (Said and Dickey 1984), Hansen’s Covariate-Augmented Dickey-Fuller
(CADF) test is based on different models, according to the different deterministic kernels that
the investigator may wish to consider:

a(L)∆yt = δyt−1 + b(L)′∆xt + et ; (6)
a(L)∆yt = µ+ δµyt−1 + b(L)′∆xt + et ; (7)
a(L)∆yt = µ∗ + θ t+ δτyt−1 + b(L)′∆xt + et . (8)

Similarly to the conventional ADF test, the CADF test is based on the t-statistic for δ, t̂(δ),
with the null hypothesis being that a unit root is present, i.e. H0 : δ = 0 against the one-sided
alternative H1 : δ < 0. Hansen (1995) refers to the test statistic derived from (6)-(8) as the
CADF(p, q1, q2) statistic.

Hansen (1995, p. 1154) proves that under the unit-root null, t̂(δ) in (6) is such that

t̂(δ)⇒ ρ

∫ 1
0 W dW(∫ 1
0 W

2
)1/2

+
(
1− ρ2

)1/2
N(0, 1) (9)

where⇒ denotes weak convergence, W is a standard Wiener process, and N(0, 1) is a standard
normal independent of W .2 It is interesting to note that (9) is the distribution of a weighted
sum of a Dickey-Fuller and a standard normal random variable. If a model with constant
( ̂t(δµ)) or a model with constant and trend ( ̂t(δτ )) are considered, the standard Wiener process
W in (9) has to be replaced by a demeaned or a detrended Wiener process, respectively. Note
that the asymptotic distribution of the test statistic depends on the nuisance parameter ρ2

but, provided ρ2 is given, it can be simulated using standard techniques.3

Hansen (1995, p. 1155) provides the asymptotic critical values of the test. However, while
procedures are readily available to compute the p-values from standard ADF tests,4 no pro-
cedure is available to compute the p-values of Hansen’s CADF test.5 In many cases this can

1This excludees that the variable to be tested is cointegrated with the cumulated covariate(s).
2The asymptotic distribution of the test statistic is derived under conventional weak dependence and mo-

ment restrictions (see Hansen 1995, p. 1151).
3See, e.g., Hatanaka (1996).
4For example, p-values of the standard ADF test can be computed using the function punitroots() imple-

mented in the R package fUnitRoots (Wuertz 2008).
5To the best of our knowledge, there are only two other procedures that compute Hansen’s CADF test

that have been witten by Bruce Hansen himself in Gauss and Matlab. These procedures can be freely down-
loaded from http://www.ssc.wisc.edu/~bhansen/progs/et_95.html. However, Hansen’s code does not allow
automatic model identification and the computation of the p-value of the test.

http://www.ssc.wisc.edu/~bhansen/progs/et_95.html
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be a serious limitation to the application of the test. This is especially true if meta-analytic
techniques have to be applied that combine p-values from individual tests (see e.g. Costantini
et al. 2007).

Indeed, Elliott and Jansson (2003) show that Hansen’s CADF test is not the point optimal
test and that it can be “nearly efficient” only in the absence of deterministic terms. Feasible
point optimal tests in the presence of deterministic components are developed in Elliott and
Jansson (2003). However, Monte Carlo simulations reported in Elliott and Jansson (2003)
show that power gains can be obtained with respect to the CADF test at the cost of slightly
worse size performances.

In this paper we present the R (R Development Core Team 2008) package CADFtest that
allows to perform the unit root CADF test easily.6 The main test function, CADFtest(),
computes the CADF test in a very flexible way, allowing the user to apply different criteria
and even to select the model to be used from within a set of models via the AIC or the BIC
information criterion automatically. The main function CADFtest() returns a CADFtest class
object that not only contains the test statistic, but also its asymptotic p-value and many other
useful details. In fact, the class CADFtest inherits from the class htest,7 so that no special
print() method is needed. However, a dedicated summary() method has been developed to
report the detailed test results.

The algorithm to compute the p-values, implemented in the function CADFpvalues(), has
been originally proposed in Costantini et al. (2007) and it is described here in more detail,
along with the instructions on how to use the function CADFpvalues() as a stand-alone
function. In fact, the function CADFpvalues() can also be used separately from the main
function CADFtest().

The remainder of this paper is structured as follows: Section 2 discusses the way the CADF
test has been implemented in the function CADFtest(), also illustrating some applications.
In Section 3, the method to compute the asymptotic p-values is illustrated in detail along
with the use of the function CADFpvalues(). A summary is offered in Section 4.

2. Implementation and use of the function CADFtest()

In principle, carrying out a CADF test is no more complicated than carrying out an ordinary
ADF test. What makes things more complicated is the presence of the nuisance parameter ρ2

in the asymptotic distribution (9). In fact, a consistent estimate of ρ2 has to be used to choose
the correct asymptotic critical value and/or to compute the correct asymptotic p-value of the
test. The problem is solved into two steps. First, êt and v̂t are derived; then, their long-run
covariance matrix Ω is estimated using a HAC covariance estimator (see e.g. Andrews 1991;
Zeileis 2004, 2006; Kleiber and Zeileis 2008).

Once the kind of model (no constant, with constant, with constant and trend) has been
chosen, using CADFtest() the investigator can either set the polynomial orders p, q2 and q1

to fixed values, or can decide the maximum value for each and let the procedure to select and
estimate the model according to the AIC or the BIC.

In order to estimate ρ2 it is necessary to estimate et and vt first. For example, if the model
6The present paper describes version 0.1-0 of the package. Other versions of the package are planned which

will include further extensions and refinements.
7A fairly detailed description of the htest class can be gathered from within R by typing ?t.test.
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with constant and trend (8) is used, then et and vt are estimated as

êt = â(L)∆yt − µ̂∗ − θ̂ t− δ̂τyt−1 − b̂(L)
′
∆xt (10)

v̂t = b̂(L)
′ (

∆xt −∆x
)

+ êt (11)

where“̂”denote parameters estimated by ordinary least squares and ∆x is the sample average
of ∆xt. Once êt and v̂t have been computed, a kernel-based HAC covariance estimator
(Andrews 1991) is used to estimate Ω and hence ρ2. In order to estimate ρ2 in a rather
flexible way, in CADFtest() the kernHAC() function included in the sandwich package (Zeileis
2004, 2006) is used. This allows the investigator to chose the kernel to be applied and if and
how prewhitening should be performed. A Parzen kernel without prewhitening is the default
choice as in Hansen (1995). The bandwidth is always adaptively chosen using the method
proposed in Andrews (1991).

The usage of the function is extremely simple:

CADFtest(model, X=NULL, trend=c("c", "nc", "ct", "none", "drift", "trend"),

data=list(), max.lag.y=1, min.lag.X=0, max.lag.X=0, dname="",

Auto=FALSE, criterion=c("BIC", "AIC"), prewhite=FALSE,

kernel = c("Parzen", "Quadratic Spectral", "Truncated",

"Bartlett", "Tukey-Hanning"))

The minimal required input is CADFtest(y), where y can be either a vector or a time series.
However, if no stationary covariate is specified, an ordinary ADF test is performed. In fact,
the ordinary ADF test can be carried out with R using other existing packages such as
fUnitRoots (Wuertz 2008), tseries (Trapletti and Hornik 2008), urca (Pfaff 2008), uroot
(López-de Lacalle and Dı́az-Emparanza 2005). In this respect there is no need to add one
further package. However, given that the ADF test can be seen as a particular case of the
more general CADF test, it seems logical to leave the user the opportunity to carry out both
tests in the same framework, using the same conventions and allowing for the computation
of the test p-values. In fact, as far as the computation of the p-values for the ADF case is
concerned, CADFtest() exploits the facilities offered by punitroots() implemented in the
package fUnitRoots that uses the method proposed in MacKinnon (1994, 1996). In principle,
it would have been possible (and easy) also to use the function CADFpvalues described in the
next section, but given that MacKinnon (1996) describes what is probably the state-of-the-
art of the computation of the ADF test p-values, it seems fair to refer directly to a function
that implements this procedure. On the other hand, the package tseries allows instead the
computation of the p-values of the ADF test using a simpler method based on the interpolation
of the empirical cumulative distribution of the test statistic reported in Table 4.2 of Banerjee,
Dolado, Galbraith, and Hendry (1993).

If a proper CADF test has to be performed, at least a stationary covariate should be passed
to the procedure. The covariates are passed in a very simple way, using a formula (model)
statement. For example, suppose we want to test the variable y using x1 and x2 as stationary
covariates: if the other default options are accepted, then it is sufficient to specify CADFtest(y
~ x1 + x2). Note that the formula that is passed as argument to the CADFtest() function
is not the complete model to be used, but it just indicates which variable has to be tested for
a unit root (y) and which are to be used as stationary covariates in the test (x1 and x2).
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The following arguments specify the deterministic kernel to be used in the model, the lead
and lag orders, and if the model has to be selected using the AIC or the BIC information
criterion. In particular, trend specifies the deterministic components to be used in the model,
using the conventions utilized either in the R package urca (Pfaff 2008) or in the package fU-
nitRoots (Wuertz 2008). The default value (trend="c") implies that the model with constant
is used. The same result can be obtained by specifying trend="drift". If trend="nc" or
trend="none" is specified, then the model without constant is used. In order to use the model
with constant and trend, trend="ct" or trend="trend" must be passed to the procedure.
max.lag.y corresponds to p, the lag order of a(L) in (6)-(8), and it is set to 1 by default: it
can be set equal to 0 or to a positive integer. min.lag.X corresponds to q2, the maximum lead
in b(L) in (6)-(8), and it is equal to 0 by default: if modified, it must be set equal to a negative
integer (a negative lag is a lead). max.lag.X correspond to q1, the maximum lag in b(L) in
(6)-(8), and the default choice is 0: if modified, it must be set equal to a positive integer. data
is the data set to be used and dname is the name of data: in general there is no need to change
dname, given that it is automatically computed by the function itself. Auto=FALSE indicates
that no model search is performed. If Auto is set to TRUE, then all the models included in the
maximum and minimum lag orders are estimated and the final model to be used is selected
on the basis of the chosen criterion that can be either criterion="BIC" (the default) or
criterion="AIC". The remaining two arguments are used to select the kernel to be used
in the HAC covariance estimation. These two arguments are the same as in the package
sandwich and can take all the values allowed for in kernHAC() (see the package sandwich:
Zeileis 2004, 2006). In fact, though the default is kernel="Parzen", the kernel can be any
of "Quadratic Spectral", "Truncated", "Bartlett", "Parzen", "Tukey-Hanning". Also
prewhite is defined as in kernHAC(). The default (prewhite=FALSE) is that no prewhitening
is performed. Alternatively, prewhite can either be set to prewhite=TRUE, in which case a
VAR(1) prewhitening is used, or it can be set to a positive number, in which case a VAR of
order as.integer(prewhite) is used for prewhitening.

The function CADFtest() returns an object of class CADFtest containing the test statistic
(statistic), the p-value of the test (p.value), the lag structure of the model (max.lag.y,
min.lag.X, max.lag.X), the value of the information criteria (AIC, BIC), the estimated value
of ρ2 (parameter), and the full estimated model (est.model). Other information returned
regards the nature of the test (either CADF or ADF) stored in method, the name of data used
(data.name), the value of δ under the null (null.value), the description of the alternative
(alternative) and the estimated value of δ (estimate).

A summary of the test can be obtained just by using a print() command. Given that the
class CADFtest inherits from the class htest, the print() command produces the standard
R output of the htest class. However, the summary() command is also allowed that returns
a more detailed account of the test results.

We provide here a simple example of application of the function CADFtest(). Data are taken
from the R package urca (Pfaff 2008) and refer to the extended Nelson and Plosser (1982)
data set used in Schotman and Van Dijk (1991). These are the same data used in Hansen
(1995), so that we will be able to replicate one of the empirical applications proposed there.

First, we load the required package CADFtest using the usual library() command. All the
following examples assume that CADFtest has been loaded.

> library(CADFtest)
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The data are easily loaded from the package urca

> data(npext, package = "urca")

A complete description of the data can be retrieved simply by typing ?npext in R.

We replicate the analysis carried out in Hansen (1995, p. 1165) by testing first for the presence
of a unit root in the log per capita US real GNP using a standard ADF test with constant
and trend and three lags (the convention trend="trend" of urca is used here, but we could
have used trend="ct" as in fUnitRoots instead):

> ADFt <- CADFtest(npext$gnpperca, max.lag.y = 3, trend = "trend")

The p-value of the test is stored in ADFt$p.value and it is easily accessible:

> ADFt$p.value

[1] 0.07292127

Here a standard Dickey-Fuller test is performed so that equation (8) is simply estimated
using the package dynlm (Zeileis 2008) and the test p-value is computed using punitroots()
implemented in the package fUnitRoots (Wuertz 2008).8 We cannot reject the null of the
presence of a unit root in the log-real GNP series using the standard 5% significance level,
although we can reject the null at the 10% level.

Even if all the results are readily accessible, a summary of the test can be obtained just by
typing

> print(ADFt)

ADF test

data: npext$gnpperca
ADF(3) = -3.2606, p-value = 0.07292
alternative hypothesis: true delta is less than 0
sample estimates:

delta
-0.2014652

The function correctly warns the user that a conventional ADF test has been performed and
reports the main results along with the number of lags used in the test.

If we want to obtain a more detailed summary that includes the details of the estimated
model, we can just type

> summary(ADFt)

8This function is directly derived from MacKinnon (1994, 1996) and returns finite sample, rather than
asymptotic, p-values.
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Covariate-Augmented Dickey Fuller (CADF) test.
No covariate used in the analysis: standard ADF is performed.
Test statistic t: -3.2606
Test p-value: 0.0729
Max lag of the diff. dependent variable: 3

Call:
dynlm(formula = formula(model))

Residuals:
Min 1Q Median 3Q Max

-0.163620 -0.025697 0.007439 0.026647 0.147798

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.201825 0.370695 3.242 0.00182
t 0.004016 0.001203 3.339 0.00135
L(y, 1) -0.201465 0.061788 -3.261 0.00172
L(d(y), 1) 0.391840 0.110751 3.538 0.00072
L(d(y), 2) 0.060429 0.119135 0.507 0.61358
L(d(y), 3) -0.052543 0.115921 -0.453 0.65176

Residual standard error: 0.05309 on 70 degrees of freedom
Multiple R-squared: 0.2586, Adjusted R-squared: 0.2057
F-statistic: 4.884 on 5 and 70 DF, p-value: 0.0006861

The model output uses the same conventions utilized in the package dynlm (Zeileis 2008): t
is the deterministic trend, L(y, 1) stands for yt−1 and L(d(y), i) represents ∆yt−i.
In order to replicate the analysis developed in Hansen (1995), we need now to carry out a few
data transformations:

> npext$unemrate <- exp(npext$unemploy)

> L <- ts(npext, start = 1860)

> D <- diff(L)

> S <- window(ts.intersect(L, D), start = 1909)

Data are now interpreted as annual time series starting in 1860. The sample ends in 1988
(this is easy to verify by invoking the tsp() function). Given that unemploy is the log of
the unemployment rate, while we need the unemployment rate, the series in levels used by
Hansen (1995) is computed. The time series in levels are stored in L, while D stores the first
differences of the original variables, that will be used as stationary covariates in the CADF
tests. S contains all the series over a common sample that starts in 1909, as in Hansen (1995).
We now run Hansen’s CADF test on the log-real GNP per capita by using the first difference
of the unemployment rate as stationary covariate. The test is carried out with constant and
trend and allowing 3 lags for the (differences of the) dependent variable and 0 lags of the
covariate, without automatic model selection and using the default Parzen kernel. This is the
same model as the one reported in Hansen (1995, Table 8, column 2, p. 1166).
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> CADFt <- CADFtest(L.gnpperca ~ D.unemrate, data = S, trend = "ct",

+ max.lag.y = 3)

> print(CADFt)

CADF test

data: L.gnpperca ~ D.unemrate
CADF(3,0,0) = -3.413, rho2 = 0.064, p-value = 0.001729
alternative hypothesis: true delta is less than 0
sample estimates:

delta
-0.08720302

Consistently with Hansen’s results (see Hansen 1995, Table 8, column 2, p. 1166), the esti-
mated value of ρ2 is very low and we can now strongly reject the null. However, differently
from Hansen (1995), we not only verify that the test is significant at the asymptotic 1% level,
but we can also give a precise assessment of the test p-value. From the detailed results we
can also easily check that the stationary covariate is highly significant:

> summary(CADFt)

Covariate-Augmented Dickey Fuller (CADF) test.
Test statistic t: -3.413
Estimated rho^2: 0.0635
Test p-value: 0.0017
Max lag of the diff. dependent variable: 3
Max lag of the stationary covariate(s): 0
Max lead of the stationary covariate(s): 0

Call:
dynlm(formula = formula(model))

Residuals:
Min 1Q Median 3Q Max

-0.096966 -0.010025 0.001116 0.010832 0.037384

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.6142646 0.1766271 3.478 0.000880
t 0.0017930 0.0004973 3.605 0.000584
L(y, 1) -0.0872030 0.0255505 -3.413 0.001079
L(d(y), 1) -0.0117603 0.0492906 -0.239 0.812130
L(d(y), 2) 0.1658117 0.0482098 3.439 0.000993
L(d(y), 3) -0.0675385 0.0466073 -1.449 0.151840
L(X, 0) -0.0211035 0.0011059 -19.083 < 2e-16

Residual standard error: 0.02134 on 69 degrees of freedom
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Multiple R-squared: 0.8819, Adjusted R-squared: 0.8716
F-statistic: 85.88 on 6 and 69 DF, p-value: < 2.2e-16

Besides the CADF(3,0,0) test, Hansen’s original analysis includes some other CADF tests,
namely the CADF(3,2,0), CADF(3,2,2), CADF(3,0,2). Instead of using different tests in this
way, we rather specify the maximum lead and lag, and leave the model to be selected by using
the BIC:

> CADFt <- CADFtest(L.gnpperca ~ D.unemrate, data = S, max.lag.y = 3,

+ max.lag.X = 3, min.lag.X = -3, Auto = TRUE, criterion = "BIC",

+ trend = "ct")

> print(CADFt)

CADF test

data: L.gnpperca ~ D.unemrate
CADF(0,2,0) = -4.4157, rho2 = 0.012, p-value = 8.114e-05
alternative hypothesis: true delta is less than 0
sample estimates:

delta
-0.1023180

The selected model is CADF(0,2,0) and clearly rejects the null of a unit root for any reasonable
confidence level.

The test can be easily carried out using more than just one covariate. In fact, we can easily
perform a more general test by using two stationary covariates and leaving the model to be
selected by the BIC, after the maximum lag orders have been again set to 3:

> CADFt <- CADFtest(L.gnpperca ~ D.unemrate + D.indprod, data = S,

+ max.lag.y = 3, min.lag.X = -3, max.lag.X = 3, Auto = TRUE,

+ criterion = "BIC", trend = "ct")

> print(CADFt)

CADF test

data: L.gnpperca ~ D.unemrate + D.indprod
CADF(0,2,0) = -4.0793, rho2 = 0.002, p-value = 0.0001236
alternative hypothesis: true delta is less than 0
sample estimates:

delta
-0.0850728

The two covariates explain a great deal of the zero-frequency variation of the dependent
variable (see the value of ρ̂2). The p-value of the test is again extremely low and we can reject
the null at any reasonable significance level.

In the next section we describe in detail how the asymptotic p-values of the test are computed.
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3. P-values computation and the function CADFpvalues()

The possibility of computing the p-values of a test greatly increases the chances that the test
is effectively used by practitioners. This is a fortiori true when the test procedure requires the
use of non-standard tables available only in few specialized papers. There are even instances
where computation of the p-values is necessary for further investigations, as is the case for
some panel unit root tests (see e.g. Maddala and Wu 1999; Choi 2001; Costantini et al. 2007).
The R function CADFpvalues() presented here allows the computation of asymptotic p-values
of the CADF test proposed in Hansen (1995). CADFpvalues() is used within the CADFtest()
function to compute the p-values of the test along with the other test results already discussed.
However, CADFpvalues() can also be used separately from the main testing procedure.

The method used to compute the p-values is similar to that proposed in MacKinnon (1994,
1996) for the p-values of the ADF test and has been proposed in Costantini et al. (2007).
Differently to what happens with reference to the Dickey-Fuller distribution, the asymptotic
distribution of the CADF test statistic depends on the nuisance parameter 0 < ρ2 ≤ 1, so that
the asymptotic distribution (9) has to be simulated over a grid of values for ρ2. In order to
obtain fairly good approximations, here a grid of 40 values ρ2 ∈ {0.025, 0.050, 0.0725, . . . , 1}
is considered.

For each of the three models (6)-(8), 100,000 replications9 have been used for each value of ρ2.
The Wiener functionals have been simulated using a standard approach (see e.g. Hatanaka
1996, p. 67) with T = 5, 000 (for the “no constant”, “constant” and “constant plus trend” case,
standard, demeaned and detrended Wiener processes have been used). On the basis of the
simulated values, for each value of ρ2 1,005 asymptotic quantiles qρ are derived corresponding
to the probabilities p = (0.00025, 0.00050, 0.00075, . . ., 0.001, 0.002, . . ., 0.998, 0.999, 0.99925,
0.99950, 0.99975). As a result, we obtain a 1, 005× 40 matrix of estimated quantiles. Along
the rows of the matrix it is possible to read how a given quantile varies with ρ2. Indeed, the
estimated quantiles vary very smoothly with ρ2 (see Costantini et al. 2007).

For each row of the quantile matrix the model

qρ(p) = β0 + β1ρ
2 + β2

(
ρ2
)2

+ β3

(
ρ2
)3

+ ε (12)

is estimated and the β̂’s are saved in a 1, 005×4 table. Tables of estimated coefficients for the
“no constant”, “constant” and “constant plus trend” case, respectively are used by the function
CADFpvalues() in order to compute the asymptotic p-values for any value of 0 < ρ2 ≤ 1 for
the relevant model.

The way the computation of the p-values proceeds in CADFpvalues() is essentially the fol-
lowing:

1. The relevant table of parameters is read, depending on the specific model used (“no
constant”, “constant” or “constant plus trend”).

2. For any desired value ρ2
0 of ρ2, the estimated parameters are used to compute for all the

1,005 probability values p the fitted quantiles q̂ρ0(p) as

q̂ρ0(p) = β̂0 + β̂1ρ
2
0 + β̂2

(
ρ2

0

)2
+ β̂3

(
ρ2

0

)3
. (13)

9Simulations have been carried out using R.
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3. The approach suggested in MacKinnon (1994, 1996) can now be used on q̂ρ0 to derive
the p-value. First, given the value t̂(δ) of the test statistic, it is necessary to find the
fitted quantile q̂ρ0 that is closest to t̂(δ) and the corresponding probability p̃.

4. The regression

Φ−1(p) = γ0 + γ1q̂ρ0(p) + γ2q̂ρ0
2(p) + γ3q̂ρ0

3(p) + νp (14)

where Φ−1(p) is the inverse of the cumulative standard normal distribution is estimated
locally on an interval of p centered on p̃. In CADFpvalues() local interpolation takes
place using 11 values centered on p̃.

5. The p-value associated with the estimated test statistic t̂(δ) is finally obtained from

Φ
(
γ̂0 + γ̂1t̂(δ) + γ̂2t̂(δ)

2
+ γ̂3t̂(δ)

3
)
. (15)

The usage of the function is extremely simple:

CADFpvalues(t0, rho2=0.5, trend="c")

where t0 is the value of the test statistic t̂(δ), rho2 is the estimated value of ρ2, and trend
assumes the values "nc" (or "none"), "c" (or "drift"), and "ct" (or "trend") as above
when a model without constant, with constant, or with constant plus trend is considered.

For example, suppose that we want to know the p-values of the tests reported in Hansen (1995,
Table 10). The tests are carried out using models with constant and trend. Specifically,
consider the CADF(3,0,0) and CADF(3,2,0) whose test statistics are -2.2 and -1.7, with
ρ̂2 equal to 0.53 and 0.20, respectively. The computation of the p-values of these tests is
immediate:

> CADFpvalues(t0 = -2.2, rho2 = 0.53, trend = "ct")

[,1]
[1,] 0.2447352

> CADFpvalues(t0 = -1.7, rho2 = 0.2, trend = "ct")

[,1]
[1,] 0.2189253

It is now clear that both tests do not reject the null.

If desired, CADFpvalues() can be used also to compute the asymptotic p-values of the ordinary
ADF test. In fact, it is sufficient to set rho2=1 to obtain the p-values of the Dickey-Fuller
distribution. For example

> CADFpvalues(-0.44, trend = "drift", rho2 = 1)
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[,1]
[1,] 0.9018844

computes a p-value that can be compared directly with the values reported in Table 4.2 in
Banerjee et al. (1993).

4. Summary

This paper presents the R package CADFtest that allows unit root testing using the Covariate-
Augmented Dickey Fuller (CADF) test advocated in Hansen (1995).

Differently from the already available routines written in Gauss and in Matlab (dowload-
able from Bruce Hansen’s home page at http://www.ssc.wisc.edu/~bhansen/progs/et_
95.html), the present functions are easy to use, do not require the user to modify the pro-
grams, and allow the computation of the asymptotic p-values of the tests. Beside being
extremely useful in general, p-values computation opens to the possibility of using the CADF
tests in unit root combination tests, for example in the context of macro panels (see e.g.
Maddala and Wu 1999; Choi 2001; Costantini et al. 2007).

CADFtest can be downloaded from the Comprehensive R Archive Network (CRAN) at http:
//CRAN.r-project.org/package=CADFtest.

Computational details

The functions illustrated in this paper use the following R (R Development Core Team 2008)
packages, listed in alphabetical order:

• dynlm: Zeileis (2008)

• fUnitRoots: Wuertz (2008)

• sandwich: Zeileis (2004, 2006)
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Analysis.” In W Härdle, B Rönz (eds.), “Compstat 2002 — Proceedings in Computational
Statistics,” pp. 575–580. Physica Verlag, Heidelberg. ISBN 3-7908-1517-9, URL http:
//www.stat.uni-muenchen.de/~leisch/Sweave.
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