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Abstract. We consider the problem of assessing new and existing technologies for their

cost-effectiveness in the case where data on both costs and effects are available from a

clinical trial, and we address it by means of the cost-effectiveness acceptability curve. The

main difficulty in these analyses is that cost data usually exhibit highly skew and heavy-

tailed distributions, so that it can be extremely difficult to produce realistic probabilistic

models for the underlying population distribution, and in particular to model accurately the

tail of the distribution, which is highly influential in estimating the population mean. Here,

in order to integrate the uncertainty about the model into the analysis of cost data and into

cost-effectiveness analyses, we consider an approach based on Bayesian model averaging:

instead of choosing a single parametric model, we specify a set of plausible models for

costs and estimate the mean cost with its posterior expectation, that can be obtained as

a weighted mean of the posterior expectations under each model, with weights given by

the posterior model probabilities. The results are compared with those obtained with a

semi-parametric approach that does not require any assumption about the distribution of

costs.

1 Introduction

The increasing burden on the budgets of health care providers has resulted in con-

siderable interest in assessing new and existing technologies for their clinical effec-

tiveness and cost-effectiveness.

Suppose that two health care technologies T1 and T2 are to be compared in a

randomised controlled trial; data are direct measurements of effect and cost:

D =
{

xij = (eij, cij)
T : i = 1, 2; j = 1, 2, ..., ni

}

where eij and cij are the effect and the cost of treatment i on patient j respectively.

In order to assess if T2 is more cost-effective than T1, we need to compare expected

effects γi and expected costs µi for each treatment. Let ∆e = γ2−γ1 and ∆c = µ2−µ1

be the effect and cost differentials. Moreover, let K be a decision-maker’s willingness

to pay coefficient, that is the units of money a decision maker is prepared to pay to

obtain one unit of effectiveness.

The primary measure of cost-effectiveness of T2 relative to T1 is usually consid-

ered to be the incremental cost-effectiveness ratio, defined as ρ = ∆c/∆e. However,

as pointed out for instance in O’Hagan et al. (2000), cost-effectiveness of T2 does

not simply equate to ρ being less than K. It also depends on the sign of ∆e, so
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that it is the sign of the net monetary benefit K∆e − ∆c that is of interest: T2 is

cost-effective relative to T1 if K∆e − ∆c > 0, i.e. if in the plane of possible pairs

of values of the population mean increments of effect and cost, (∆e, ∆c) is below

a sloping line of gradient K. This is usually referred as the Net Benefit approach

(Stinnett and Mullahy, 1998), and inference about the net monetary benefit is gen-

erally presented by means of a Cost-Effectiveness Acceptability Curve (CEAC), that

plots the probability Q (K) that the net benefit is positive against the coefficient

K (van Hout et al., 1994), which is rarely unambiguously determined in practice.

In this sense, a Bayesian approach is particularly natural, since no such probability

exists or has any meaning in frequentist statistics (O’Hagan et al., 2000). Thus, in

the rest of the paper we assume that Q (K) is the posterior probability

Q (K) = P (K∆e −∆c > 0 |D) .

Clearly these cost-effectiveness analyses of clinical trial data rely on statistical

models which describe the distribution of costs and effects and their interrelation

across individual in the trial. The choice of models used in practice is often deter-

mined by convenience, and in particular it is often assumed that the data on costs

and effects follow a bivariate normal distribution in each arm of the trial. How-

ever, although such assumption may be convenient for computational purposes, it

is rarely realistic. In particular, cost data obtained for individual patients in health

economic studies typically exhibit highly skew and heavy tailed distributions, and

many problems arise with the various approaches currently available for analysing

such data.

In fact, as discussed in O’Hagan and Stevens (2002, 2003), non-parametric meth-

ods, such as those based on the asymptotic normality of the sample mean or nonpara-

metric bootstrapping, may be inefficient and their justification breaks down in small

samples. See Dinh and Zhou (2006) for some recent developments on such methods.

On the other hand, parametric modelling may lead to more efficient inference, but

is dependent on the population distribution matching the model adequately. The

main difficulty in this sense, as pointed out for instance in Nixon and Thompson

(2004) and Thompson and Nixon (2005), is that the high skewness and kurtosis

usually found in cost data imply that the population mean can be very sensitive to

the tail of the distribution, that it is quite complicated to model accurately. One

consequence of this is that parametric models that fit the data equally well can pro-

duce very different answers; conversely, in some cases models that fit badly can give
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similar inferences to those that fit well. For these reasons, Thompson and Nixon

(2005) recommend that the sensitivity of conclusions to the choice of the model is

always investigated, so that model uncertainty becomes a crucial aspect of analysing

cost data. They also suggest that, instead than allowing an arbitrary long tail for

cost distributions, it might be more plausible to consider truncated distributions (for

instance at twice the maximum observed cost), because costs for individual patients

are bound to have some finite limit in practice. It is also interesting to note the pa-

per by Briggs et al. (2005), where it is shown that (frequentist) inferences based on

incorrect parametric assumptions, and in particular on the assumption of lognormal-

ity when the data come from a different distribution, can lead to totally misleading

conclusions. Another problem related to the parametric modelling of costs concerns

possible transformations of the data; in fact, as discussed in Thompson and Bar-

ber (2000) and Briggs and Gray (1998), mean values and confidence limits may be

difficult to interpret on the transformed scales, and back-transformation onto the

original scale is not always straightforward.

Here, in order to integrate the uncertainty about the model into the analysis

of cost data and into cost-effectiveness analyses, we consider an approach based on

Bayesian model averaging. This is presented in details in Section 2, and is compared

with the semi-parametric approach of Conigliani and Tancredi (2005a, 2005b), that

was introduced with the same aim of reporting model-based inference for mean

costs without having to be too concerned about model misspecification problems.

In Section 3 we consider the relative performance of the two approaches simulating

cost data from a number of assumed parametric distributions. In Section 4 we

repeat the comparison in an empirical context using a study on low back pain. A

few concluding remarks are presented in the final section.

2 The model

In order to focus the attention on the distribution of costs, we find convenient to

write the distribution for a single observation xij under treatment Ti as:

gi (xij |θi, φi ) = fi (cij |θi ) hi (eij |cij, φi )

where fi (cij |θi ) is the unconditional distribution for the cost of patient j under

treatment Ti and hi (eij |cij, φi ) is the conditional distribution for the effect on pa-

tient j under treatment Ti given the cost cij. In the remaining of this section we
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will focus on the problem of specifying fi (cij |θi ); the choice of hi (eij |cij, φi ) usually

does not present too many problems, and will be addressed only in the example.

2.1 Bayesian model averaging

Suppose that under both treatment groups, instead of choosing a single paramet-

ric model for a cost observation cij, we specify a set of plausible models M =

{m = 1, 2, ..., M}. Also assume that the mean cost µi is an unknown parameter of

all models in M, and that aim of the analysis is obtaining the marginal posterior

mean of µi. This is exactly a setting where Bayesian model averaging (BMA) can be

applied to obtain the desired summary (Hoeting et al. 1999). In fact, the posterior

marginal distribution of µi can be obtained as a mixture of its posterior marginal

distributions under each of the models in M:

π(µi|ci1, ..., cini
) =

M∑
m=1

π(µi|ci1, ..., cini
,m)π(m|ci1, ..., cini

),

and the posterior expectation of µi can be expressed as a weighted mean of its

posterior expectations under each model:

E(µi|ci1, ..., cini
) =

M∑
m=1

E(µi|ci1, ..., cini
,m)π(m|ci1, ..., cini

),

with the mixing probabilities given by the posterior model probabilities π(m|ci1, ..., cini
).

2.1.1 Prior assumptions and computational issues

Here we assume that the set M is made of the log-normal, the gamma, the Weibull,

the log-logistic and the generalised Pareto distribution (GPD), not all necessarily

having non-zero prior model probabilities; the probability density function, the mean

and the coefficient of variation of these distributions are shown in Table 1. Moreover,

we assume that the five distributions have finite mean and variance, so that for the

GPD and the log-logistic we need to constrain the shape parameter to be less than

0.5. Then all models can be re-parametrized in terms of the mean cost µi and the

coefficient of variation τi, and this is particularly useful when specifying the prior

distributions for the parameters of the different models. In fact, it implies that the

same prior distribution can be introduced under the various models in M, and that
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Table 1: Single parametric models included in the BMA procedure

Pdf Mean CV

Log − normal
p (x |µ, σ ) =

1

x
√

2πσ2
e−

[log(x)−µ]2

2σ2 eµ+σ2

2

√
eσ2 − 1

Gamma
p (x |ν, λ) =

xν−1λν

Γ (ν)
e−xλ ν

λ

1√
ν

GPD
p (x |σ, ξ ) =

1
σ

(
1 +

xξ

σ

)−1/ξ−1 σ

(1− ξ)
1√

1− 2ξ
(ξ < 1) (ξ < 1/2)

Weibull
p (x |β, δ ) =

βxβ−1e−(x/δ)β

δβ

δ

β
Γ

(
1
β

)
√√√√√√√

2βΓ
(

2
β

)

Γ2

(
1
β

) − 1

Log − logistic
p (x |ρ, β ) =

(x/β)1/ρ

xρ
[
1 + (x/β)1/ρ

]2 πρβ csc (πρ)
√

tan (πρ)
πρ

− 1

(ρ < 1) (ρ < 1/2)

the unknown parameters have a clear meaning, so that it is not difficult to elicit

such prior from the experts’ opinions. In particular, we assume that

πi (µi, τi) = πi (µi |τi ) πi (τi)

where

µi |τi ∼ N
(
µ0

i , (τiτ
0
i )2

)

τi ∼ Γ
(
λ0

i , ν
0
i

)

and µ0
i ,τ

0
i , λ0

i and ν0
i are known constants.

Finally note that Bayesian inference for this model is possible using Markov chain

Monte Carlo (MCMC) methods (see, for instance, Robert and Casella, 1999). In

particular, one can simulate from the posterior distributions of the parameters under

each of the models in M, and then compute the marginal likelihoods required for

obtaining the posterior model probabilities for instance with the method of Chib and

Jeliazkov (2001). Alternatively, it is usually more efficient to use a single Markov

Chain with Metropolis Hastings moves to explore both the parametric space within

each model and to switch among models (see, for instance, O’Hagan and Forster,

2004, Chapter 10). Note that when all the models in M have the same number
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of parameters, there is no need to apply the reversible jump methodology (Green,

2000), which anyway can be easily implemented to handle more general situations.

2.2 A semi-parametric approach

In recognising the extreme complexity of cost distributions (the construction of cost

data as a weighted sum of different resource counts implies that cost distributions

are really mixtures of many different distributions), Conigliani and Tancredi (2005a)

suggested to model the bulk of the data and the tails separately. More specifically,

for the problem of estimating the population mean cost differential, they introduce

a distribution composed of a piecewise constant density up to an unknown endpoint,

and a generalised Pareto distribution for the remaining tail data. The first compo-

nent of the model, the step function, is very flexible, in the sense that it has the

appealing property of catching all the relevant features of the data; if for instance

the data exhibit multimodality, the corresponding model will be multimodal. How-

ever, the step function will hardly give any weight to values beyond the range of

the data; for this reason, they introduced a different model for the upper tail of

the distribution, the GPD, that is often used in extreme value theory to model tail

data (Coles, 2001). Note this model has been applied to environmental data by

Tancredi et al. (2002), and to cost-effectiveness analyses in the simple case where

effects are measured as binary outcomes by Conigliani and Tancredi (2005b). Thus,

for purposes of comparison with the approach of Section 2.1, here we assume this

mixture model under both treatment groups, and write the density function for cij

as

fi(cij |θi )=





(1− ω)
∑s

i=1 ωiI[ai,ai+1) (cij) 0 < cij < α

ω
1

σ

[
1 +

ξ (cij − α)

σ

]− 1
ξ
−1

α ≤ cij < ∞
(1)

where ω is the probability that an observation cij is greater than α, s is the (un-

known) number of steps of the piecewise constant density, a(s) = (a2, ..., as) and

ω(s) = (ω1, ..., ωs) denote the vector of (unknown) step positions and the vector of

(unknown) heights of the step function, α is both the (unknown) upper end point

of the piecewise constant density and the threshold of the GPD, and σ and ξ are

respectively the scale parameter and shape parameter of the GPD.

Note that, following Conigliani and Tancredi (2005a), we assume that the pa-

rameter vector θi =
(
s, ω(s), a(s), α, σ, ξ, ω

)
varies with the treatment group i, and
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that ξ < 1, so that the expected mean cost for treatment i is finite and can be

written as

µi = (1− ω)
s∑

i=1

pi
ai+1 + ai

2
+ ω

[
α +

σ

1− ξ

]
.

Moreover, in order to explore the use of truncated distributions for costs, as ad-

vocated by Thompson and Nixon (2005), here we consider the constraint ξ > −1;

recall that the GPD density has an upper bound of α − σ/ξ on cij if ξ ∈ (−1, 0),

while it has no upper limit if ξ ≥ 0.

Finally note that Bayesian inference for this model is possible using MCMC

methods. Details of the algorithm can be found in Tancredi et al. (2002), while

details about the prior distribution for the parameters can be found in Conigliani

and Tancredi (2005a).

3 A simulation experiment

Before moving to cost-effectiveness analyses, we apply the two approaches presented

in Section 2 to the simple problem of computing a 95% posterior credible interval

for a mean cost, in order to compare their relative performance.

Thus, we generated 1000 samples of cost data and computed the credible intervals

assuming either the model averaging procedure of Section 2.1 or the semi-parametric

approach of Section 2.2. Under BMA we assumed prior model probabilities equal

to zero for the Weibull and the log-logistic, and to 1/3 for the remaining models.

Moreover, we completed the prior distributions for the parameters by letting µ0
i =

1000, τ 0
i = 500, λ0

i = 3 and ν0
i = 3, so that the prior mean of µi and τi were 1000

and 1 respectively, and the 90% of the prior distribution for τi was between 0.25 and

2. Finally, under the mixture model we assumed non-informative priors for most

parameters, including ξ (Conigliani and Tancredi, 2005a). The results, presented

in Table 2 and Table 3 in terms of coverage and average size of the intervals, are

compared also with those obtained with the single parametric models considered

by BMA, i.e. the log-normal, the gamma and the GPD. We also computed the

proportion of the times that each of these distributions was the preferred model (for

having the highest posterior probability); these are the numbers in parentheses in

Table 2 and 3.

As data generating processes we considered a log-normal distribution with µ =

1000 and τ = 2, a Weibull distribution with µ = 1000 and τ = 1.5, a mixture
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of a gamma distribution and a GPD, both with µ = 1000 and τ = 2, and with

weights 1/8 and 7/8 respectively, and a mixture of three log-normal distributions

with µ = 1000, τ = 0.5, 2, 4 and weights 0.61, 0.20, 0.19 respectively. The resulting

distributions are plausible representations of cost data. In particular, the log-normal

experiment is an example of the different performance of the two approaches when

the set of models M specified for BMA includes the distribution that generated the

data. Instead, in the remaining experiments none of the parametric models in M is

right, and the BMA results are determined by all the models that have a non-zero

posterior probability.

Samples of three different sizes (n = 50, 200, 500) were drawn from each distribu-

tion; this represented a total of 12 different simulation experiments. However we did

not apply the mixture model (1) when n = 50, since we felt there were not enough

observations to estimate its parameters. In fact, in the applications of extreme value

theory it is common practice to use between the 5% and the 10% of the sample to

estimate the upper tail of the model.

One point raises clearly from the results of Table 2 and Table 3, i.e. the pos-

terior credible intervals obtained with the mixture model (1) are wider than the

Table 2: A simulation experiment: coverage of the posterior credible intervals (in
parentheses the proportion of the times that each single parametric model was the
preferred one)

Generating n Log-normal Gamma GPD BMA Mixture
process
Log-normal 50 0.95 (0.660) 0.81 (0.008) 0.92 (0.332) 0.94 -

200 0.95 (0.945) 0.75 (0.000) 0.92 (0.055) 0.95 0.94
500 0.95 (0.998) 0.77 (0.000) 0.94 (0.002) 0.94 0.95

Weibull 50 0.93 (0.023) 0.92 (0.725) 0.92 (0.262) 0.93 -
200 0.21 (0.001) 0.93 (0.914) 0.94 (0.085) 0.94 0.96
500 0.01 (0.001) 0.91 (0.965) 0.95 (0.034) 0.92 0.95

Γ -GPD 50 0.84 (0.019) 0.88 (0.703) 0.91 (0.278) 0.92 -
mixture 200 0.09 (0.000) 0.86 (0.676) 0.93 (0.324) 0.90 0.95

500 0.00 (0.000) 0.85 (0.710) 0.95 (0.290) 0.90 0.95
Log-normal 50 0.94 (0.117) 0.86 (0.387) 0.93 (0.496) 0.89 -
mixture 200 0.76 (0.034) 0.77 (0.529) 0.89 (0.437) 0.85 0.93

500 0.39 (0.006) 0.75 (0.453) 0.89 (0.541) 0.85 0.94
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Table 3: A simulation experiment: average size of the posterior credible intervals
(in parentheses the proportion of the times that each single parametric model was
the preferred one)

Generating n Log-normal Gamma GPD BMA Mixture
process
Log-normal 50 889 (0.660) 643 (0.008) 696 (0.332) 801 -

200 465 (0.945) 322 (0.000) 379 (0.055) 459 1841
500 297 (0.998) 203 (0.000) 259 (0.002) 297 561

Weibull 50 1401 (0.023) 757 (0.725) 722 (0.262) 782 -
200 1049 (0.001) 373 (0.914) 392 (0.085) 380 786
500 823 (0.001) 234 (0.965) 265 (0.034) 238 371

Γ -GPD 50 1657 (0.019) 778 (0.703) 697 (0.278) 791 -
mixture 200 1388 (0.000) 375 (0.676) 382 (0.324) 379 1134

500 1210 (0.000) 234 (0.710) 261 (0.290) 242 449
Log-normal 50 877 (0.117) 508 (0.387) 595 (0.496) 569 -
mixture 200 459 (0.034) 260 (0.529) 308 (0.437) 290 2174

500 288 (0.006) 164 (0.453) 192 (0.541) 181 1227

corresponding ones obtained with Bayesian model averaging, but they are generally

better in terms of coverage. This is not surprising, and is related to the way the two

methods deal with model uncertainty. In fact, while the semi-parametric approach

of Section 2.2 does not require any assumption about the distribution of costs, and

allows inference on the mean cost to take account of the uncertainty about the tail,

BMA implies the specification of a set of plausible models, which reduce the model

uncertainty. It follows that BMA will generally lead to smaller intervals, but the

characteristics of these intervals significantly depends on which models were included

in M. In fact, the results of BMA are strongly related to those obtained with the

single models which have a non-zero posterior probability, which are not necessar-

ily models that fit the data well. It follows that if we can specify a set of models

that include the one that generated the data or at least a good approximation of

it, as it is the case for instance for the log-normal data, BMA will provide more

precise inference on mean cost than the mixture model. Otherwise we expect the

mixture model to perform better. And in fact when the data are generated from

the gamma-GPD mixture or the mixture of log-normal distributions, the coverage

of the intervals produced with the semi-parametric approach is significantly better
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Table 4: Low back pain trial: sample descriptive statistics of X-ray costs and rMRI
costs

X ray rMRI
sample size 166 162
mean 1515 2187
standard deviation 1747 3378
median 926 871
minimum 44 49
maximum 9111 20664
skewness

(
µ3/σ3

)
1.8 2.7

kurtosis
(
µ4/σ4

)
6.4 10.9

than the one obtained with BMA. And if n is large enough (for instance n = 500),

at least for the gamma-GPD mixture, also the difference in terms of average size of

the intervals produced by the two approaches is less notable.

Finally note that the results of Table 2 and Table 3 confirm the finding of Briggs

et al. (2005) that inferences based on the incorrect assumption of lognormality

perform very poorly: in particular for the larger datasets, the coverage of the in-

tervals obtained with the log-normal distribution when the true distribution is not

log-normal are disastrous. In this sense, it is interesting to see the paper by Royall

and Tsou (2003), where it is shown that while if we assume for instance a Gamma

distribution the object of inference continues to be the mean of the true generating

process also when the model fails, if we assume the log-normal working model then

what the likelihood represents evidence about when the model fails is not Ef (c) but

the quantity exp(Ef (log(c)) + 1
2
varf (log(c))).

4 Analysis of the Low Back Pain Trial data

We present an example using a study on low back pain (Jarvik et al., 2003). A total

of 380 patients (out of which 328 were included in the health economic evaluation)

were randomised in a 1:1 ratio to investigation by standard X-ray investigation

and rapid magnetic resonance imaging (rMRI), and were followed for 12 months.

Aim of the trial was to investigate whether rMRI would allow better diagnosis and

treatment, or lead to unnecessary treatment without improvement in symptoms.

The primary clinical endpoint was the change from baseline of the modified Roland
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back pain score (Patrick et al., 1995), while the primary economic endpoint was the

total health care cost (in US$). This dataset has been analyzed by Thompson and

Nixon (2005) in order to illustrate how sensitive inference about cost-effectiveness

is to the choice of the model for costs.

The data are shown in Figure 1. Under both treatments the effects are appar-

ently well represented by a normal distribution, while the distribution of costs is

clearly highly skew and heavy-tailed; this fact is confirmed also by the sample sum-

maries shown in Table 4. In particular, for both treatment groups the standard

deviations are large, indicating that the data are spread quite far around the mean,

and the median cost is smaller than the mean, indicating positively skew data; this

fact is confirmed also by the standard skewness statistic µ3/σ
3. Finally, the kur-

tosis statistic µ4/σ
4 indicates that the two distribution of costs are significantly

leptokurtic.

We now apply the approaches of Section 2.1 and Section 2.2 to this data set,

and compare the results also with those that we obtain if we assume the single

parametric models included in M. Under BMA we assume that the prior model

probabilities are zero for the Weibull and the log-logistic, and equal to 1/3 for the

X−ray
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Figure 1: Data from the low back pain trial
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Table 5: Low back pain trial: posterior summaries of mean costs

Model E (µ1) PCI0.95 π1 (m |D) E (µ2) PCI0.95 π2 (m |D)
Mixture 1555 1301; 1837 - 2377 1840; 3051 -
BMA 1542 1283; 1885 - 2047 1628; 2594 -
Log-normal 1852 1402; 2476 0.01 2051 1630; 2592 0.99
Gamma 1511 1275; 1785 0.49 2102 1784; 2479 0
GPD 1565 1285; 1930 0.50 2076 1677; 2580 0.01

remaining models. Moreover, the prior distributions for the unknown parameters

are completed by letting µ0
i = 1000, τ 0

i = 500, λ0
i = 3 and ν0

i = 3. Under the mixture

model we assume non-informative priors for most parameters, while we model the

shape parameters under the two treatments as exchangeable by introducing the

hierarchical prior:

log

(
1 + ξ

1− ξ

)
∼ N (ε, 0.52)

ε ∼ N (0, 1)

where ε is estimated using data from both treatment groups; note that this prior

reflects the prior belief that the tails of the distributions of costs are not very different

between the two treatments (Conigliani and Tancredi, 2005a; O’Hagan and Stevens,

2003). For the effects we suppose that

eij |cij ∼ N
(
γij, σ

2
i

)
,

where the conditional mean γij depends linearly on the cost cij of patient j under

treatment i :

γij = βi + δicij.

The overall mean effect in the i-th arm of the trial can then be written as

γi = βi + δiµi.

Table 5 shows a 95% posterior credible interval (PCI0.95) and a point estimate

for the mean costs µ1 and µ2 obtained with the different models assumed for costs,

and it is interesting to note how these results are slightly different from those of

Section 3. In fact, while for the rMRI group the posterior credible interval obtained

with the mixture model (1) is wider than the one obtained with BMA (although
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the difference in width is not as significant as in Section 3), and the estimated mean

cost obtained with the mixture model is higher than the one obtained with BMA,

for the X-ray group the approaches of Section 2.1 and of Section 2.2 produce very

similar results.

Within the BMA approach it is also interesting to look at the posterior model

probabilities πi (m |D) for the log-normal, the gamma and the GPD distributions,

that are also presented in Table 5 for each arm of the trial. In particular, while

for the rMRI group the data definitely support the log-normal distribution, for the

X-ray group both the gamma and the GPD are plausible models, with posterior

probabilities 0.49 and 0.50 respectively. Note that this is exactly a situation where

it is appropriate to apply model averaging: instead of choosing between the gamma

and the GPD, and then studying the sensitivity of the conclusions in terms of cost-

effectiveness, model averaging takes into account both models.

Finally, in order to interpret the results of the mixture model, it is interesting

to look at the posterior distributions of its parameters. In particular, Figure 2 show

the posterior distribution of the shape parameter ξ, the threshold α and the number

of steps s for the two treatment groups. Note that even with such small data set

and with mostly non-informative priors, these posterior distributions are quite con-

centrated, so that they give clear indications for the estimation of these parameters.

Moreover, it is interesting to notice that the two posterior distributions of s are

concentrated on the value 3 (the posterior means are 3.44 and 3.05 respectively), so

that the evidence is that only 3 steps are sufficient to model adequately the bulk of

the data. Finally, it is worth noting that the posterior mean of ξ and the posterior

probability that ξ < 0 are -0.05 and 0.70 respectively for the X-ray group, and -0.70

and 0.99 respectively for the rMRI group. It follows that for both treatment groups

there is evidence that the distribution of costs has an upper end point, that can be

estimated with

E

(
α− σ

ξ
|ci1, ..., cini

, ξ < 0

)
=

{
48851 i = 1
23257 i = 2.

In order to assess if rMRI is more cost-effective than standard X-ray, we now look

at the joint posterior distribution of the cost differential ∆c and the effect differential

∆e. These are summarised as 95% contour plots in Figure 3 (obtained assuming the

normality of the bivariate posterior distribution), while the corresponding posterior

summaries and the corresponding cost-effectiveness acceptability curves are shown

13



in Table 6 and in Figure 4 respectively.

Several points emerge from these results. First, the estimated effect difference is

quite close to zero, so that rMRI does not seem to allow better diagnosis and treat-

ment. Only if we assume a log-normal distribution in the X-ray group the probability

that ∆e is greater than zero reaches 0.23, but this model is not supported by the

data, and therefore the corresponding results should not be considered. Second,

there is evidence of a higher mean cost in the rMRI group under all the models

assumed for costs, and in particular under the mixture model, with an estimated

mean cost difference of $822, compared to the $505 obtained with BMA (again, only

if we assume a log-normal distribution in the X-ray group the estimated mean cost

difference does not go above $250, but this model is not supported by the data and

therefore these results are of no interest). The discrepancy between the results of

the approaches of Section 2.1 and Section 2.2 can be seen also when comparing the
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Figure 2: Low back pain trial: posterior distributions of the threshold, the shape
parameter and the number of steps under the mixture model for X-ray costs and
rMRI costs
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Table 6: Low back pain trial: posterior summaries of cost differential and effect
differential

X-ray rMRI E (∆c) PCI0.95 P (∆c> 0) E (∆e) PCI0.95 P (∆e> 0)
Mixture Mixture 822 212; 1538 1 0.03 -1.4;1.5 0.51
BMA BMA 505 −36; 1116 0.97 0.07 -1.4;1.5 0.54
logN logN 199 −554; 902 0.72 0.24 -1.2;1.7 0.62
logN Gamma 250 −449; 842 0.79 0.23 -1.2;1.7 0.62
logN GPD 224 −512; 911 0.75 0.24 -1.2;1.7 0.62

Gamma logN 540 30; 1133 0.98 0.05 -1.4;1.5 0.53
Gamma Gamma 591 176; 1030 1 0.04 -1.4;1.5 0.52
Gamma GPD 565 79; 1123 0.99 0.05 -1.4;1.5 0.53
GPD logN 486 −72; 1092 0.95 0.08 -1.3;1.5 0.54
GPD Gamma 537 41; 1011 0.98 0.07 -1.4;1.5 0.54
GPD GPD 511 −35; 1094 0.97 0.08 -1.3;1.5 0.54

contour plots in Figure 3, where the difference in the shape of the two joint dis-

tributions with respect to the vertical scale is quite obvious, and by looking at the

CEACs in Figure 4. In fact, although the two curves have very similar behaviours,

if we look at the values of K where the probability that rMRI is cost-effective is

at least 0.5, we find K ≥ $7400 under BMA, and K ≥ $30000 under the mixture

model. It follows that in terms of cost-effectiveness, here the semi-parametric ap-
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Figure 3: Low back pain trial: contour plots of cost-effectiveness density
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Figure 4: Low back pain trial: cost-effectiveness acceptability curves

proach and the Bayesian model averaging applied to the lognormal, gamma and

GPD, produce rather different results. Note that from Table 5 we know that this

is due to the fact that in the rMRI group the mixture model gives more weight to

the upper tail of the cost distributions than any of the models included in M, and

in this sense it is particularly interesting to explore the behaviour of BMA when

widening M. If for instance we include also the Weibull and the log-logistic distri-

butions in M, plausible models for the X-ray group become the gamma, the GPD

and the Weibull, with posterior probabilities 0.22, 0.23 and 0.55 respectively, but

for the rMRI group the data still only support the log-normal distribution, so that

in terms of cost-effectiveness the two analyses with BMA are quite similar, as it is

shown by the contour plots and the CEACs in Figure 5.

5 Discussion

Most of the recent literature on cost-effectiveness analyses of clinical trial data agrees

that inferences are significally sensitive to the choice of the model for costs, and in

particular to how the upper tail of the cost distribution beyond the observed data

is modelled. In particular it often happens that parametric models that fit the data

equally well produce very different answers; conversely, models that fit badly can

give similar inferences to those that fit well.
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Figure 5: Low back pain trial: cost effectiveness analysis including the Weibull and
the log-logistic distributions in the BMA procedure (in parentheses the number of
models included in M)

In this paper we have considered two different approaches to overcome this prob-

lem. The first one combines the semi-parametric approach to density estimation

based on mixture models and the semi-parametric approach to tail estimation based

on extreme value theory. The result is a very flexible model able to fit data set with

very different shapes both in the bulk of data and in the tail. One drawback of

this approach is that there is a price to pay for so much flexibility in terms of pre-

cision and efficiency of the corresponding inferences. Another problem is that for

estimating the parameters of the the mixture model, and in particular the param-

eters of the tail, we need a large number of observations in each arm of the trial.

The second approach is based on Bayesian model averaging performed on a sensible

set of models for cost data, and is somehow in the spirit of the sensitivity analyses

advocated by Thompson and Nixon (2005). It requires the specification of a set M
of plausible models, but instead of studying how the conclusions change with the

different models, it takes into account the inferences obtained with all the models

in M that have a non-zero posterior probability. One drawback of this approach

is that the models with a non-zero posterior probability are not necessarily models

that fit the data well. It follows that particular care should be devoted to specify M,

in the sense that it should include all parametric models that might have generated
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cost data. On the other hand, it is worth pointing out that the wider is M, the

more is difficult to assign and interpret the prior model probabilities. In fact, there

is no requirement for the models in M to be distinct, so that for instance in our

examples the exponential distribution belongs to the Weibull, the gamma and the

GPD families. And in such cases, as pointed out for instance in O’Hagan and Foster

(2004), a prior model probability may not reflect the total probability assigned to

that model as a set of data-generating processes.
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