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Perfect aggregation in linear models: a geometrical insight
S. Terzi

1. Introduction

The aggregation problem has been thoroughly studied in
econometrics mainly within the context of parameter estimation. In
this context the question is: what is the relationship between the
parameters (b) of the aggregate relation and the parameters (B;, i=1,...,
m) of the micro-relations? It is well known that least squares (LS)
estimation of the aggregate model leads, in general, to biased
estimators. As Theil (1954) shows, in order for the LS estimator to be
free of aggregation bias it has to be either:

Bi=bVi=12,..m
or:

exact linear relations between independent variables of different

micro relations’.

A second issue is concerned with prediction. In this context starting
from Grunfeld and Griliches’s pioneer work (1960) the focus is on
whether to predict the aggregate dependent variable by means of
macro or micro equations. These authors — followed successively by
others (see for example Sasaki,1977) introduce a within sample
goodness of fit criterion based on the sum of the squared residuals
(R?) and argue that whenever the goodness of fit of the aggregate
model is greater than the goodness of fit of the model derived from the
micro-equations, there is an aggregation gain.

In this paper we argue that the selection criterion suggested by
Grunfeld and Griliches (GG) is biased: the expected goodness of fit
of the aggregate model cannot be greater than that of the model
derived from the correctly specified micro-relations

In fact when predicting an aggregate variable (y. = 2.y; ) by means
of a macro relation we are projecting y, on the subspace (S,) spanned
by the k aggregate independent variables (in other words, on a

"1t i s also assumed — although not explicitly - that the aggregate independent
variables are linearly independent.
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subspace whose dimension is at most k). Vice versa when we resort to
micro-relations each micro dependent variable y; is projected on a k-
dimensional subspace (S;); thus — unless the subspaces S; , Sy are
isomorphic Vi, 1* =1,...,m - the sum of these projections can belong to
a subspace (T) of greater dimension. Thus the goodness of fit of the
model derived from well specified micro-relations will, in general, be
greater than that of the aggregate model. Moreover, since S, T ,
prediction by means of the aggregate model will be as good as
prediction via the disaggregate model only if the two subspaces, S,
and T, have the same dimension. If we define perfect aggregation
the equivalence between the two models, a necessary condition would
thus be: dim(T) = dim(S,).

As we will see, this condition can be easily reconduced to Theil’s
rule of perfection, derived within the estimation context. Although it
may seem an obvious requirement that conditions for perfect
aggregation within estimation and prediction contexts be the same,
this consistency requirement has rarely been pursued in literature. In
fact perfect aggregation within the prediction context is often
implicitly defined as non-contradiction between the two models with
respect to some goodness of fit criterion. This gives rise to a less
restrictive  definition of perfection, but also to inconsistent
consequences. For example Pesaran, Pierse and Kumar (1989) while
seeking a test for perfect aggregation within a prediction approach,
explicitly leave aside the case of exact linear relations among
variables.

The aim of the present paper is to define a goodness of fit criterion
that does not contradict Theil’s findings. First of all we will shed a
light on the definition of perfect aggregation in order to unify the
estimation and prediction approaches. Then we will define an
appropriate goodness of fit criterion which — in contrast with GG’s
findings — leads to an unbiased selection criterion, and prove the non
implementability of a test for perfect aggregation suggested by
Pesaran, Pierse and Kumar (1989) (PPK).

2. Perfect aggregation

Let us consider the following micro-behavioural equations
referring to n observations (h = 1,2,...,n) of m micro-units ( 1 = 1,
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2,...,m) in which a dependent variable Y is expressed as a linear
combination of k explanatory variables X; (= 1,...,k):

Yin = 2iBij Xijn + Uin
In matrix notation the same model can be written as:

Y1=Xi[31+ui i=1.2,....m (D)
We assume model (1) to be correctly specified, so that E(Y; )= X ;
E(uww’)= o I; E(u u’)= O'jj2 I and rank(X;)=k Vi=1,...m.
From (1), if we define Y, = 2,;Y; we can write the derived aggregate
model Hy (sometimes improperly referred to as the “disaggregate
model”) :

Hq: Ya=2XiBi+ 2w (2)
Alternatively, defining X, = %X , we can write the aggregate model
H, as:

H,:Y.=X,b+v, 3)
where v, = 2, Vi B; + 2 and 25ViBi = ZiXiBi - Xob 2
We denote by k, the rank of X.

Following Theil, we define perfect aggregation as non-
contradiction between the derived aggregate model Hy and the
aggregate model H,.

Model Hy states that Y, belongs to the sum of the subspaces
spanned by the columns of the X; matrices (plus a random disturbance
of null expected value). Vice versa, the aggregate model states that Y,
belongs to the subspace spanned by the columns of the X, matrix (plus
a random disturbance). Let us call S; the subspace spanned by X;, and
define T = S; + ...+ Sy Moreover let us call S, the subspace spanned
by the columns of X, . Of course S, is also — by definition - a
subspace of T.

Non-contradiction between the two models requires:

dim(T) = dim(S,).

First of all note that dim(T) = rank (Xi:......:Xm). Thus a
necessary condition for perfect aggregation to hold is:
rank (X;:......: Xm) =k (c.1)

Obviously, given that rank(X;) = k, this condition is met if and
only if any one of the X; matrices spans all the subspaces Sy, V 1’ =
1,...,m; in other words if and only if the subspaces S; and S; are

isomorphic V' 1, 1’.

2 The definition of v, stems from Theil’s’ auxiliary equation: : X; =X, I +V;,
with: 2V, =0 and 2 I=1
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In order to derive an equivalent condition, we can resort to a
decomposition of the X; matrices (the so-called auxiliary equations).
In fact, since the X; matrices all belong to R", and since they all span
k-dimensional subspaces of R", for a given i and for V i’=1,...,m, Xy
can be decomposed in the sum of two matrices, one belonging to S;,
the other belonging to the orthogonal subspace S; © . Thus we can
write:

X =XiCpp +Fpy 4)
where X;’F ;4,=0 .

Since rank (Xp )= rank (C;y; ) + rank(F;;; ), in order for (X; : Xy) to
have rank k a necessary condition is rank(F;;) = 0 (condition that
implies F;; = 0 and rank (C;»4) = k) . Thus, a necessary condition for

dim(T) =k is:

rank(F p4) =0 V1i’=1,...m (c.2)

When this last condition is met (together with the rank condition
for the X; matrices) C;; is non singular V i’ so that all subspaces S;:
are isomorphic. Thus (c.1) and (c.2) are equivalent.

From auxiliary equation (4) we can also derive:

Xa=Xi ZvCrsi+ 2iFri =X G+ F; (%)
thus implying that, whenever conditions (c.1) or (c.2) hold:
Xa=X; G (c.3)

Condition (c.3) can also be stated as exact linear relations among
independent variables. It is easy to see that (c.3) «>(c.1) or (c.2). Thus
conditions (c.1), (¢.2) and (c.3) are all equivalent.

However, since rank (X, )= rank (C; ) + rank(F; ), condition (c.3)
does not itself guarantee that rank(X,)= k; in fact C; is the sum of
square full-rank matrices C;;, but this does not guarantee its non-
singularity; moreover there are no “obvious” conditions to be posed
in order for this requirement to be fulfilled. Thus in the context of
linear prediction, perfect aggregation requires:

rank (Xi:......: Xp) =k AND rank(X,) =k (c.4)
This condition is both necessary and sufficient for perfect aggregation.

Of course, whenever the (correctly specified) micro-relations state:

Y =Xib+u 1i=12,....m
the derived aggregate model is equivalent to the aggregate model
without further assumptions. Note that in this case condition (c.4)
holds without further assumptions. In fact the derived aggregate model
is given by:

Hg: Y. =2ZXib + Ziu; = X,b + 2y
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thus stating that that E(Y,) belongs to the S, subspace, spanned by the
columns of the X, matrix .This subspace is spanned by any one of the
X; matrices. Thus their isomorphism is implicitly assumed, as well as
a rank condition: rank(X,) = rank(X).

Let us now turn our attention to the estimation context. The
conditions stated by Theil are: X; =X, I}, Vi=12,...morBi=b V1
= 1,2,...,m (equality of the micro coefficients). It is easy to see that
the first of these conditions is equivalent to condition (c.4), where as
the assumption of equality of the micro coefficients although
sufficient, seems unduly restrictive.

Obviously, in order for perfect aggregation to hold for Vh
condition (c.4) must be satisfied in and out of sample. This extended
condition (also known as compositional stability) is usually stated as:
X,=X;C; Vi, Vh=1,...,n,..., and rank(X,) = k.

3. Prediction and within sample goodness of fit

The question is whether to predict the aggregate variable Y, using
model Hy or model H,. In the first case we predict the aggregate
variable Y, aggregating the predicted values of the micro-dependent
variables Y;, i= 1,...,m; in the second case we predict Y, by means of

the aggregate independent variables.
Assume we use LS. We can thus define the two predictors:

§7d = Zixiﬁi :Zixiﬁi +ZiAiui and ya :Xaﬁ = Aaziyi ; and the
two residuals e, =y, —§,= Z,-Miui’ e, =y,-¥V,=2iViBi + Mo

where A, =X,(XX,)'X , A, =X, (XX, ]'X,, Mi=1-A; M, =
I-A,°
It is well known that the predictor ¥, is the orthogonal projection

of the aggregate dependent variable on the subspace spanned by the
columns of the X, matrix. Thus it belongs to the k, dimensional

subspace S,.

3In order for X, to be invertible we will assume either: rank X, =k, or that X, is
an nxKk, full rank matrix.
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Vice versa, ¥, is the sum of the orthogonal projections of the

micro dependent variables on the S; subspaces, and it belongs to a
subspace T. It should be noted that, in general, y, is not an

orthogonal projection of y, on the subspace T.
Since dim(T) >dim(S,) we should expect ¥, to have a better fit

than §,; however a goodness of fit measure is needed. Since ¥, is
not an orthogonal projection of y, for the disaggregate model we
cannot resort to the usual definition of R* as:
R? = dev(y,) —1— e e,
devy,) y,y,

since the equality does no longer hold. But, instead, we have to choose
an appropriate definition among the most frequently used in literature.

We could define, as GG do, R’ =1—i,e— . However, since we are
Yy

interested in a projection problem, the most appropriate goodness of
fit criterion seems to be the closeness between predicted and observed
values, as measured by the square of the cosine of their angle. We thus

define:
R =cos’(§,y)= vy)
G5 Iy'y)
It can be easily seen that for the aggregate model y.§.=3.¥., thus:

R = cosz(ya’ya):%"_ayi% s
V.Y,

where as for the derived model Hy:

A 2 .
R ) _ 2 , = (yayd') _ '<edyd)2 R2
d - CcOS (ya’ ya) (ydydxyaya) (yayaxydyd)+ d

Thus, in general R > R>. Moreover R, = R} if and only if e, and

Y.; are orthogonal.
We now want to show that defining goodness of fit as R™ leads,

on average, to select the model Hq unless perfect aggregation holds (in
which case the two models are equivalent).
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In other words the selection criterion we introduce — unlike the
criterion based on (R% - R%) - is unbiased.
It can be easily seen that:

(R? K2y, —c.e.+ (_y-y;)f-

All terms that appear in this expression are =>0; however

e,y : o s . .
—<-;,Xffz <e,e,. Thus (R dz — Raz) attains its  minimum when
Yi¥Ya

~(E"’—y—"—)i= 0, in other words when ¥, is an orthogonal projection of

Ya¥Ya
4
Ya
However, when e,y, =0,

e‘ded = e’dYa :Zi Zj y;M,yj = ZiZjﬁ;X;Mjuj +Zi2ju;Mjuj'
Moreover, since it is always VX, =0 °:
ee,=> duMu +> YBVMVE => >uMu +> >BVVE
i J i 7 i 7 i J
Thus:
e;ea —e'ded:

ZiZju;(Ma —Mj)uj +ZiZjB;Vi’Vjﬁj —ZiZjB;X;Mjuj
and:
E(e'aea —e'ded) = (k—ka)zizj% +Zizjﬁl.Vi'Vij >0

so that our selection criterion is unbiased.
It can casily be seen that, whenever condition (c.4) holds e,y, =0,

k.=k and V;= 0 Vi. Thus, in this case R = R’.

* Of course perfect aggregation is a sufficient condition for ¥ 4 to be the

orthogonal projection of y,.
> Like the other auxiliary equations we introduced, the auxiliary equation: X; =

X[+ V;, assumes V; €S, and thus: VX, =0.
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4. Concluding remarks

GG base their selection criterion on E(e'aea—e'ded) and

consequently define perfect aggregation as Zi Z,- B.V.V B,=0.1Itis
easy to see that ) ZjB;V;VjB ;=0if

a)Bi=b Vi=1,..m

or:

b))V, =0 Vi=1,...m & Fpp=0Vi=1,...,m AND
rank (C; =k, Vi=1,...m

These properties suggest that a perfect aggregation test could be based
on the statistic .f = Zi Xiﬁi - Xaf) . In fact PPK (1989) show that,

under the assumption that u is normally distributed with mean zero

and known covariance matrix, when Zi Zj BV,VB,=0:
m_l( gyl//mﬂg )~ Ly
where:

Ym = m_IZGin[Hj ;
i,j=1
H; = (Ai-A,)
v =rank(yn, ) .
They also derive a sufficient (but not necessary) condition for v, to
have full rank.

However, it is easy to see that when condition (c.2) holds:
M.-M = A~ A, = XXX, ['X,-X,C,(X, X,]'C X
is a symmetric and idempotent matrix; thus it is positive semi definite

with rank k-rank(C;). However when V; =0, rank (C; )= k Vi, so
that, in fact, under perfect aggregation the test is not implementable.
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