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Default Bayes Factors for One-Sided Hypothesis
Testing *

J. O. Berger J. Mortera
Duke University, U.S.A. Universita di Roma Tre, Italy.

November 6, 1997

Abstract

Bayesian hypothesis testing for non-nested hypotheses is studied,
using various “default” Bayes factors, such as the fractional Bayes
factor, the median intrinsic Bayes factor and the encompassing and
expected intrinsic Bayes factors. The different default methods are
first compared with each other and with the p-value in normal one-
sided testing, to illustrate the basic issues. General results for one-sided
testing in location and scale models are then presented. The default
Bayes factors are also studied for specific models involving multiple
hypotheses. In most of the examples presented we also derive the
intrinsic prior; this is the prior distribution which, if used directly,
would yield answers (asymptotically) equivalent to those for the given
default Bayes factor. :

Some key words and phrases: Bayes factor, fractional Bayes factor
intrinsic Bayes factor, model comparison, one-sided hypothesis testmg,

multiple hypothesis testing.

1 Introduction

Bayesian testing and model selection has been undergoing extensive devel-
opment because of recent advances in the creation of “default” Bayes factors
that .can be used in the absence of subjective prior information. Two very
general such default Bayes factors are the fractional Bayes factor of O’Hagan
(1995) and the intrinsic Bayes factor of Berger and Pericchi (1996). These

*This research was supported by the National Science Foundation (USA), Grant DMS-
9303556, and by Murst and CNR (Ttaly).




methodologies have been applied, with great success, in a variety of settings,
and have undergone extensive study in situations involving testing of nested
hypotheses or models.

In non-nested hypothesis testing problems, such as in the one-sided test-
ing of Hy : @ < 0 versus Hy : § > 0, there has been less interest in use
of these new default Bayes factors. One reason is that, in such situations,
it is often felt to be legitimate to perform a default Bayesian analysis di-
rectly with standard noninformative prior distributions. Thus, in one-sided
testing of a normal mean 6, it would be common to use the noninformative
prior 7(6) = 1, and directly compute the Bayes factor of H; to Hs. A vari-
ety of arguments can be given which suggest that this is reasonable from a
Bayesian perspective, at least with large sample sizes and data that is not
too extreme. (In contrast, one cannot directly use noninformative priors to
compute Bayes factors for nested hypotheses; this was the main motivation
for development of the new default methodologies mentioned above.) A re-
lated reason why Bayesians have had less interest in the one-sided testing
situation is that it is perceived that classical methods, such as the p-value,
are reasonable for such problems. Indeed, for one-sided testing of a normal
mean, it is known that the p-value yields essentially the same answer as does
direct Bayesian analysis with a noninformative prior.

Study of the new default methodologies for one-sided (and related) hy-
pothesis testing problems is of interest, however, for several reasons. First,
the legitimacy of using noninformative priors directly has only been estab-
lished in rather simple situations, whereas the new default Bayesian method-
ologies appear to be very widely applicable. Hence verification of the success
of the new methodologies in this domain can greatly broaden the practical
use of Bayes factors therein. Note that, in one-sided testing, the Bayesian
Information Criterion (BIC) or Schwarz criterion (Schwarz, 1978) can not
be directly applied (although Haughton and Dudley, 1992, and Kass and
Vaidyanathan, 1992, give generalizations which can apply). Related to this
is the value of understanding the properties of the new methodologies in
non-nested situations. For instance, in nested situations, these methodolo-
gies typically yield Bayes factors which are approximate Bayes factors for
(proper) default prior distributions (named “intrinsic priors” in Berger and
Pericchi, 1996). Understanding the extent to which this is true for non-
nested testing is of interest in helping to judge the domains in which the
new methodologies can be successfully applied. Indeed, study of the new
default Bayes factor methodologies in one-sided testing will be seen to be
useful for comparing their relative success overall, leading to eventual recom-
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mendations as to which should be used, and when. Recent references which
provide examples of the use of default Bayes factors in one-sided testing
include Dmochowski (1994), Lingham and Sivaganesan (1996) and Moreno
(1997).

Perhaps the most important reason for consideration of the default Bayesian
methods in one-sided testing is that they can lead to substantially differ-
ent (and arguably better) answers than classical methods. As this seems
to contradict the “common wisdom” mentioned above, it is worthwhile to
somewhat expand on the point initially. The fact that direct use of nonin-
formative priors often yields answers equivalent to the p-value in one-sided
testing is thoroughly discussed in Casella and Berger (1987). In particular,
they show, for location parameter problems, that the p-value is the lower
bound of the posterior probability of H;, over reasonable classes of prior
densities. (For instance, in the above one-sided testing of a normal mean,
this would hold for the class of all symmetric unimodal prior densities.) Co-
incidentally, this lower bound also arises from direct use of noninformative
priors.

It is natural to ask, however, if the lower bound is the best evidential
summary to provide. In Bayesian terms, if it were the case that the posterior
probability of H; were some number between 0.05 and 0.5, depending on
assumptions, would it really be reasonable to report 0.05 as the evidential
summary (which the p-value or the non-informative prior effectively do),
especially as this is the answer which is least favorable to (the often ‘priv-
ileged’) H;? This point was dramatically illustrated in the discussion by
Morris of the Casella and Berger article (Morris, 1987), wherein a reason-
able practical situation was considered and it was demonstrated that the
lower bound is a misleading measure of the evidence against Hi. From a
Bayesian perspective, Morris’s argument was essentially that typical prior
beliefs will concentrate closer to the dividing line between the hypotheses
(zero in the one-sided testing problem mentioned above), and that using a
prior distribution which is extremely diffuse is thus unreasonable, at least
for small or moderate sample sizes. (It can be shown that, for large sam-
ple sizes, use of diffuse priors for one-sided testing is satisfactory when the
data is not too extreme.) Interestingly, we will see that the new default
Bayesian methodologies do produce answers which are not as extreme as
the “standard” (classical or Bayesian) answers.

In Section 2, we introduce the four default Bayes factors that will be
studied, and illustrate their computation for the one-sided normal testing
problem. The four default Bayes factors considered are the fractional Bayes




factor (FBF), the median intrinsic Bayes factor (MIBF), the encompass-
ing intrinsic Bayes factor (EIBF), and the expected encompassing intrinsic
Bayes factor (EEIBF). Note that there are a variety of other possible imple-
mentations of the intrinsic Bayes factor methodology of Berger and Pericchi
(1996). Indeed, we initially considered the full range of IBFs that could be
used for this problem, but we eventually studied, in depth, only the three
that seemed most suitable for one-sided testing; interestingly, the “stan-
dard” arithmetic and geometric IBFs are not particularly suitable here (see
Dmochowski, 1994).

Section 2.5 introduces the key notion of intrinsic priors. These are prior
distributions which would yield Bayes factors equivalent to the studied de-
fault Bayes factors, in a certain asymptotic sense. Intrinsic priors are very
useful for detecting “biases” or other inadequacies of default Bayes factors.
Furthermore, they can be used directly as default priors in computing Bayes
factors; this may be especially useful for very small sample sizes. In Sec-
tion 2.6, we compare the use of the various Bayes factors with each other
and with the standard Bayesian answer (which is also the p-value) for the
one-sided normal testing situation. This indicates the magnitude of the dif-
ferences that can result from use of the new default methods. In Section 3
we consider the general one-sided testing situation for location models, scale
models, and specific location-scale models. Interesting differences among the
various default Bayes factors are found.

Section 4 considers a multiple hypothesis testing situation, namely test-
ing H; : § = 0 versus Hy : 8 < 0 versus Hz : 8 > 0. It is shown how
the default testing methodology can be applied to such problems, and that
valuable (and nonstandard) insights arise from such application. Note that
p-values are not much use in such multiple hypothesis scenarios. A few
concluding remarks are given in Section 5.

2 Default Bayes Factors and Intrinsic Priors

2.1 Notation

The data X = (Xi,...,X,) has density f(x|f), with respect to Lebesgue
measure, with 0 being a k-dimensional unknown parameter vector in R*.
Hypotheses H; : 0 € ©;, 7 =1,...,q, are under consideration, where the ©;
are “ordered” such as in one-sided testing of H;y : 8 < 6y versus Hy : 6 > 6.

Letting m;(0) denote the prior density of 8 (with respect to Lesbegue




measure) under H;, the Bayes Factor (BF) for model H; versus model H; is

B = fejf<X[9)7rj(9)d9 ~ m;(x)
T [o, fxIO)m(0)dd  mi(x)’
where m;(x), mj(x) are the marginal distributions under H; and Hj, re-

spectively. When 7;(0) is a noninformative (default) prior distribution, say
7N (6), equation (1) becomes

B Jo,fx|O)m ] (0)d0  ml(x) )
N f@if(x|9)7TlN('9)d9 - mMN(x)

Definition: A subset, x(I), of the data is a minimal training sample if

(1)

Bji (x)

m (x(1)) < oo, i =1,...,4, and no subset of x(I) yields finite marginals.
Let {x(1),l =1,..., L} denote the collection of all minimal training samples.

2.2 The Fractional Bayes Factor

The fractional Bayes factor (FBF) (see O’Hagan, 1995) of model H; versus
model H; is defined as

| Jo,Lb(0)n} (6)do

i

fo, LO)TT (0)d0”

Bf; = Bji (x) (3)
where L(0) = f(z1,... ,z,]0) is the likelihood function and b specifies a
“fraction” of the likelihood which, in a certain sense, is to be used as a
prior density. The main difficulty in the implementation of the fractional
Bayes factor is that of the choice of the fraction b. One frequently suggested
choice (see the examples in O’Hagan, 1995, and the discussion by Berger and
Mortera of O’Hagan, 1995) is b = m/n, where m is the size of the minimal
training sample, assuming this is well defined. We will primarily use this
choice in examples, although we will see indications that even smaller values
of b may be required when n is small.

Example 1.
Let X = (X1,...,Xp), with X; i.i.d. N(0,1). Suppose we are interested

in testing Hy : 0 <0 vs. Hy:0 >0 Taking 71" (0) = 1(_c0,0)(0) and
T (0) = 1(0,00)(6), the standard noninformative priors, we have

fooo(27r)—”/2 exp{—[n(zZ — 0)? + 52]/2}d9
10 (2m) /2 exp{—[n(z — 6) + 5?]/2}db
= &(v/nz)/[l — ®(Vni)], (4)

B3 (x)
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where 2 = 2527  2;, 5% = 32 (7, — )% and @ is the standard normal

c.d.f. Simple calculations then yield
1 — &(v/bnz)]
BI =gl L : 5
21 21 @(\/BEQ?) ( )
The minimal training sample size is m = 1, so the common choice of b is
b = 1/n, in which case

BY = BY. E—ig;%ﬂ (6)

2.3 The Median Intrinsic Bayes Factor

The median intrinsic Bayes factor (MIBF) was developed in Berger and
Pericchi (1996, 1997b) and is defined as

B} = B (x)- Me[B(x(1))], (7)

where Me denotes the median, here to be taken over all the training sample
Bayes factors. When each z(!) is a real variable and Bg (+) is monotonic, as
is often the case in one-sided testing, then Me[Bg(x(l))] = Bz-];-f(Me[x(l)]),
an attractive simplification.

Example 1 (continued). Here, a minimal training sample is a single
observation, x;. From (4), BY(z;) = [®(z;)]"! — 1, which is monotonic in
x;, so that the MIBF is simply

B = B - (e~ ) )

2.4 The Encompassing and Expected Intrinsic Bayes Factors
2.4.1 The Encompassing Arithmetic Intrinsic Bayes Factor

Arithmetic IBF’s (see Berger and Pericchi, 1996) are often not suitable for
non-nested situations, especially when testing one-sided hypotheses as here
(see Dmochowski, 1994). An attractive alternative, given in Berger and
Pericchi (1995, 1996), is to embed the competing models in a larger en-
compassing model, say Hy, so that all the H; are nested within Hy. The
encompassing arithmetic intrinsic Bayes factor (EIBF) is then defined as

BEI = BN(x .
X S B e(0)

Jjt Ji




Example 1 (continued). The natural encompassing model is Hy : 0 € R!
with corresponding default prior distribution 7' (9) = 1. A minimal training

sample is still a single observation, z;, and easy computation yields

Bio(zi) = 1= ®(z;), Bj(z;) = (),

g (1 — (4
BEI = BY. 22_175 @(:U(;’)? ))'

1=1

2.4.2 The Encompassing Expected Intrinsic Bayes Factor

With a small sample size, the summations in (9) can be quite unstable.
A natural idea, therefore, is to replace them by their expectation under
the encompassing model Hy, evaluated at the MLE, 67, under Hy. This
results in the encompassing expected IBF (EEIBF) which, when the X; are

exchangeable, is given by

EBI _ pN(yy .0
B B R x) o

Example 1(continued). Noting that the MLE under Hy is 6 = z, the
EEIBF is

H, _
BEEI _ gN . Bl -o(X)] 1-8(z/v2) (1)
21 = P21 0, = D1 - :
B a(X,)] 2(z/V2)
Interestingly, this equals the fractional Bayes factor with b = 1/(2n).

2.5 Intrinsic Priors

It is of considerable interest to determine if default Bayes factors behave
similarly to real Bayes factors and, if so, which prior distributions, called
intrinsic priors, would yield (an approximate) equivalence. This can pro-
vide considerable insight into the behaviour of the default Bayes factors,
especially in detecting “biases” of the default Bayes factors towards one of
the hypotheses. In addition, intrinsic priors can be directly used to compute
Bayes factors, and can be especially useful in this regard when the sample
size is very small.

The issue was explored in Berger and Pericchi (1996, 1997a), but primar-
ily for nested models. With non-nested models and, in particular, one-sided




testing, it is appropriate to slightly change the question, and ask if default
Bayes factors are equivalent to some “real” posterior odds ratio. To be more
precise, suppose we are testing H; : § € ©; versus Hs : 0 € ©y and let 7(0)
denote the prior density on © = ©; U ©,. The 7;(#) defined earlier would
thus be 7;(0) = w(0)1e,(6)/pr(H;), where pr(H;) = Jo, 7(6)df is the prior
probability that H; is true. The posterior odds ratio of Hy to Hy is then

_ Jou F(xl6)7(6)ds
Jo, FC<lo) (B0

We now ask if there is a prior density 7/ (0), the intrinsic prior, for
which a default Bayes factor, B, asymptotically corresponds to POy, in
the sense that B/PQOy — 1 as the sample size goes to infinity. (Note
that this is a stronger requirement than, say, the asymptotic equivalence of
BIC, which is only concerned with equivalence up to an unspecified constant
multiple). This question can be answered as in Berger and Pericchi (1996,
1997a). Writing 7/ (0) = =! (0)1e,(0), and representing a default Bayes
factor as By = Bé\lf - BYF \where BCF is referred to as the correction factor,
an intrinsic prior is defined as a solution, 7/(6), such that the m1(8) are
continuous on ©;, to the equations

P021 (ZU)

SO (1 (0)16,(0)
S = 5O (12)

T (0) 78 (162(6)) 16, (6) _ 1 (13)
1 (42(0))7 ¥ (6) Bi(6)’

where, for ¢ =1, 2,
B(0) = lim BT under H;

n—o0

and (with 4 # 7, both being 1 or 2)
»i(0) = nlgrolo 6; under H;
with §; being the MLE under H;. If 1;(0) is not in ©;, define (1) by

continuity. The needed technical conditions are primarily the existence of

the above quantities and limits.
Example 1(continued). For BE in (5) and the choice b = m* /n,

Bi®) = lim ([l - o(vbna))/B(vena))
1 — ®(v/m*0)
®(v/'m*6)

8

, for 8 € ©,.




Under Hy and Hs, the MLE’s are, respectively, 6, = min{z,0} and 6y =
max{Zz,0}, so that

Pi(0) = n_}g,le min{z,0} = 0,
6) = i 7,0} = 0.
W9 (0) njégnHl maz{Z,0} =0

Hence the intrinsic prior equations become (recalling that 7V (0) =1 )

m5(0)1e,(0) _ 1—@(\/77@?0)1 0)
71 (0) o(v/m )
AOo0) _ e |
71(0) 1-o(/m) 7

The unique proper solution to these equations is

d(@(vm*9)~t —1]"t  fh<0
!l (0) = (14)
[(®(vm*0)~t —1] if 0 >0,

where c is chosen so that 7(8) is proper. Note that this is a scale family of
priors, with scale factor (m*)~/2. Hence different choices of b (or m*) can
give answers varying over a wide range. For comparisons, we will choose
m* =1 (the minimal training sample size).

Nearly identical analysis shows that the intrinsic prior for B} is as in
(14) with m* = 1 (agreeing with the FBF), while for B! or B&P! the
intrinsic prior is as in (14) with m* = 1/2.

An interesting feature of these intrinsic priors is that they yield pr(H;) =
pr(Hz) = 1/2. They are thus “balanced” between the two hypotheses,
suggesting that the default Bayes factors are similarly balanced. (This is,
of course, directly ascertainable by symmetry here, but comparison of the
“intrinsic” pr(H;) in later examples will prove enlightening.)

2.6 Discussion and Comparison

As in Section 2.5, it is convenient to represent a default Bayes factor as
By = BY - BT where we refer to B¢Y as the “correction factor.” Table 1
summarizes the four default Bayes factors we have considered (with b = 1/n
for the FBF) and gives their corresponding intrinsic priors (up to normalizing
constants). The two distinct intrinsic priors are graphed in Figure 1. Note




Table 1: Summary of default Bayes Factors and intrinsic priors for one-
sided normal testing.

BCF Intrinsic Prior ggggg
el (@)1 -1 for 6 >0
FBE | (®(z))7 —1 { (®(6)~L — 1)L for§ <0 L
MIBF | (®(Me[z;]))~! — 1 | as above 1
S (1-®(x;)) (®(0/v2))"1 -1 for 6 > 0
EIBE > ®(wi) { (®0/v2) L —-1)7! for 0 <0 !
EEIBF | (®(z/v2))"!—1 | as above 1

that the intrinic prior for the EIBF and EEIBF is somewhat more diffuse
than that for the FBF and MIBF.

Table 2 presents numerical comparisons of the FBF, EEIBF, and p-
values, for various values of n and various data values. The data values,
V/ni = 1.645,2.326 and 3.09 are those which would yield p-values (against
H;) of 0.05, 0.01 and 0.001, respectively. The MIBF and EIBF cannot be
listed in Table 2, as they do not depend only on Z (as do the p-value, the
FBF and the EEIBF). Table 3 gives the mean and standard deviation of
the MIBF in (8), computed for various values of n from 200 simulations of
data corresponding to /nZ = 1.645; note that, conditional on /nZ, the
distribution of x does not depend on 6. The MIBF is not defined for n = 1.
For convenience of comparison with the p-values, we report Bz in Tables 2
and 3 instead of Ba;.

Note first that, for large n, the default Bayes factors essentially agree
with each other and with the p-value. (Strictly speaking, the equivalence
alluded to in Section 1 is that between the p-value and the posterior prob-
ability of Hy; on a “Bayes factor scale”, one should thus look at p/(1 — p)
but, for the small values of p considered here, there is little difference.) For
smaller values of n, however, the differences with the p-value are quite pro-
nounced. For instance, when p = 0.05 and n = 5, the FBF= 0.175, the
EEIBF= 0.122 and the MIBF is approximately .182 £ .077, which imply
considerably less evidence than is commonly associated with a p-value of
0.05. (Recall that 0.05 is then also the posterior probability of H; under a
diffuse symmetric prior). Hence use of the new default Bayesian tests can
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Figure 1: Intrinsic priors for normal one-sided testing (FBF & MIBF —,
EIBF & EEIBF - -)

make a significant difference. Note that the FBF and (mean) MIBF are very
similar, as could be expected since they have the same intrinsic prior; the
EEIBF gives consistently smaller values, but the differences are not great.

The FBF, with b = 1/n, is clearly unreasonable when n = 1, since then
BJ] = 1 no matter what the data. (A smaller value of b should be used
when n = 1, and probably with n = 3, although it is not clear how b should
be chosen with smaller n.) The MIBF is not even defined for n = 1. Indeed,
default Bayes factors must be used with caution when the sample size is
extremely small. S

One option, for small n, is to use the actual Bayes factor with respect
to the intrinsic prior derived from a default Bayes factor, rather than the
default Bayes factor itself. To see the effects of this choice, and also to help
judge the extent to which default Bayes factors are reasonable in one-sided
testing for small n, Table 4 presents the Bayes factors corresponding to the
two intrinsic priors given in Table 1, for various n and for data such that the
p-value is 0.05. (The results for p-values of 0.01 and 0.001 were very similar,
and hence are not presented here.) The first row of Table 4 corresponds to
the intrinsic prior for the FBF (and also the MIBF), and should be compared
with the first column of Table 2, which gives the corresponding values for
the FBF itself. Likewise, the second row of Table 4 should be compared

with the second column of Table 2.
One interesting observation is that the actual Bayes factors derived from
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Table 2: Comparison of the FBF and EEIBF for p = 0.05,0.01 and 0.001,
and various n for testing Hy : 6 <0 vs. Hy: 0> 0.

p=0.05 p=0.01 p = 0.001
n | By | BEET | BE | BEFT | B, | BEF!
1 | 1.00].377 |1.00 |.192 |1.00 |.068
3 | .255 | .157 |.103 |.049 |.026 |.009
5 | .175(.122 | .058 |.034 |.011 |.005
7 | .144 | .107 |.043 |.028 |.007 |.004
9 |.128 | .098 |.036 |.025 |.006 | .003
25 | .089 | .076 |.021 |.017 |.0027 | .0020
100 | .068 | .063 |.015 |.013 | .0016 | .0014
200 | .063 | .060 | .0131 | .0122 | .0014 | .0013
400 | .060 | .058 | .0121 | .0115 | .0013 | .0012
co |.053 |.053 |.010 |.010 |.0010 | .0010

Table 3: Mean and standard deviation of the MIBF from 200 simulations of

data corresponding to p = 0.05 and various n.

n 3 3 7 9 25 100
mean 276 182 152 134 .091 .068
std. dev. | .137 077 .062 .047 .019 .007

the intrinsic priors are smaller than the corresponding default Bayes factors
themselves. For n < 5, the difference is significant, and reinforces the above
warning concerning use of the default Bayes factors for very small n. Note,
also, that the EEIBF values are considerably closer to their corresponding
intrinsic prior Bayes factors than are the FBF values, which suggests that
the EEIBF may be more representative of an actual Bayes factor. Finally,
use of the intrinsic prior Bayes factor directly may appeal to many, especially

for very small n.
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Table 4: Bayes factors corresponding to the intrinsic priors of Table 1 for
data corresponding to p = 0.05 and various n.

n 1 3 5 7 9 25 100 200 400 o0

F&M |.239 .145 .120 .107 .099 .078 .065 .061 .058 .053

E&EE | 173 .112 .096 .088 .084 .070 .061 .058 .057 .053

3 General One-Sided Testing

In this section, we consider a variety of testing problems of the form Hj :
0 < 6, versus Hy : 0 > 0y, or of the form Hy : 0 = 0y versus Ho : g > 0. In
particular, we study the general location parameter model (Section 3.1), the
exponential model (Section 3.2), and testing of a normal mean with unknown
variance (Section 3.3). Each scenario reveals interesting phenomena.

3.1 Location Parameter Models

3.1.1 One-Sided Testing

One-sided testing of location models is of interest because the various default
Bayes factors are quite simple (for any density) and intrinsic priors are
accessible for IBFs. Let X = (X1,...,X,,) with X; ii.d. f(z; —0). Suppose
we are interested in testing Hy : 6 < 8y vs. Hy : 6 > 6y. Taking W{V(Q) =
L(—00,00)(0) and T2 (0) = 1(gy,00)(0), the standard noninformative priors, and

noting that a single observation, z;, is a minimal training sample, yields

S S~ 0)d0 _
- ff)%o f(xz — 9)d0 - (F(xl - 00)) t— 1 (15>
where F(z) is the c.d.f. of f(z). Writing L(6) = [[j=, f(z; — 0) and

52 L(0)do
[P 1.(6)do’

By (z;)

By (%)

the different default Bayes factors are as follows:
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Fractional Bayes Factor: With the choice b =1/n,

[P LYmg)de

[ L (9)do (16)

By = By (%) -

Useful general expressions for the intrinsic priors of the FBF do not appear
to be available here.

Median Intrinsic Bayes Factor: Since (15) is monotonic in z;, the MIBF is
Byi' = By - {[F(Melz;] — 00)] " — 1. (17)

By essentially the same derivation as in Example 1 in Section 2.5, one can
show that the intrinsic prior for the MIBF is given by

[F(G—‘QQ)]_l — 1 if 6 > 6,
' (0) = (18)
([F(6 —0)] P — 1)~ if 6 < 6y,

assuming the MLE and the median converge to 8 as n — oo, and that /(0)
is integrable at €y. This is typically proper (up to a normalizing constant
which will not affect the Bayes factor) and will be symmetric about 6y if F

is symmetric.

Encompassing and Ezrpected IBF: It is easy to see that the encompassing
IBF is 0

BZI _BN Z 7 )
= 1F(~’0z“’90)

and the expected version of (19) is
BjP! = By - ([Bo(F(X +0—60)] 7' — 1),

~where Fj is the expectation w.r.t. X ~ f(z) and 6 is the MLE for 6. The
intrinsic prior here is as in (18), but with F(6 — 6y) replaced by Ey[F(X +
0 — o)].

3.1.2 One-Sided Testing of a Precise Hypothesis

Substantially different results are obtained in the location model if one tests

Hy:0 =0y versus Hy : 8 > 0.

14




This is more closely related to two-sided testing of a precise hypothesis, for
which the Bayesian answers are known to differ markedly from the answers

for standard one-sided testing.
The technical analysis for this problem is almost the same as that in

Section 3.1.1, but the general answers are not as simple. Hence we will
present the results only for the case of a normal location model, with the
purpose of showing the considerable difference in practical answers that
results. Without loss of generality, we assume the X; are normal with mean

# and variance 1.
The results of the analysis are summarized in Table 5. Note that, here,

Jiw Ty (27) 7% exp{—(w; — 6)/2}d0
[Tim1 (2m) = /2 exp{—(z; — 00)?/2}
®(v/n(z — 0))
Vne(v/n(z = 6o))’
where ® and ¢ refer to the standard normal c¢.d.f. and density, respectively.

Recall also that the default Bayes factors are the product of B and BT
(The only nontrivial derivation was that for the MIBF, the key detail of

which is given in Appendix 1.)

By (x)

Table 5: Summary of default Bayes Factors and intrinsic priors for one-
sided normal testing of a precise hypothesis.

BCF Intrinsic Prior | pr(Hs)/pr(H1)
- T
MIBF W i log2
BAIBF | &&= oAy | loe2
EEIBF | S0 0NE | apeabds | log?

The column pr(Hs)/pr(Hy) in Table 5 has the same interpretation as
before; the default Bayes factor corresponds (asymptotically, at least) to a

posterior odds ratio for a proper prior with pr(Hy)/pr(H1) as the prior odds.
This ratio is log2 = 0.693, which indicates that the default Bayes factors

are modestly biased in favor of H;.
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Table 6: Comparison of FBF and EEIBF for p = 0.05,0.01 and 0.001, and

Various n.

p=0.05 p=0.01 p = 0.001
1 .662 1 .353 1 128

613 | .625 262 | 215 069 | .041
613 | .690 221 | .215 .045 | .036
.641 | 752 213 | .225 039 | .035
671 | .813 214 | .236 037 | .036
25 |.901 | 1.17 256 | 317 037 | .044
100 | 1.56 | 2.11 412 | .546 055 | .072
200 | 2.13 | 2.91 546 | 741 0721 .096
400 | 2.94 | 4.03 .746 | 1.02 096 | .131
0o | 00 00 00 00 00 00

WO ~J UL W

To see that testing Hy : 8 = 6y versus Hy : 6 > 0y is considerably
different than testing Hy : 6 < 6y versus Hy : 0 > 6y, Table 6 presents the
analogue of Table 2. The p-value is computed against [1. (For convenience
of comparison with the p-value and with Table 2, Table 6 gives B13 instead
of By1.) For large n, the results in Table 2 and Table 6 are completely
different, B1o approaching the p-value in the former case and going to co in
the latter. Even for small n, the results differ by about a factor of 5. (Again,
the MIBF is not presented as it does not depend solely on z; in a simulation
not reported here, it was found that, for moderate values of n, the average
MIBF was between the FBF and the EEIBF whereas, for large values of n,
the average MIBF was close to the FBF.)

A final interesting observation concerning Table 6 is that ‘the default
Bayes factors initially decrease with n, and then increase. While this may
seem to be odd behavior, it can be verified that many real Bayes factors

behave in the same way for this problem.

3.2 Exponential Model

Since scale parameter models can be reduced to location models by log trans-
formations, there is no need to present general expressions for scale models.
We thus devote this section to a more careful study of the exponential model,
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so as to “test” the various default Bayes factors in a highly nonsymmetric

situation. Numerous interesting insights emerge.
Let X = (X1, ...,Xp) with X; i.i.d. with exponential density f(z;|0) =
Be=%0 x> 0,0 > 0. Suppose we are interested in testing

Hi:0<6y vs. Hy:0 > 0.

The usual noninformative prior distribution, 7% (0) = 1/, yields

IHOOO 9n~1e—n:i6d9 ) .
= = [7(”7”5500)] - 17 (20)

N
B21 (X) - f090 gn_le_njgde -

where y(a, z) = (T'()) 7! [ €27 te~4d¢ is the incomplete Gamma function.

Fractional Bayes Factor: It is easy to see that, with the choice b = 1/n,

BE = BY - (eP% —1). (21)
Median IBF: The minimal training sample is m = 1, and B (z;) = %% —1
is monotonic in z;. Thus the MIBF is

BMI = BNV (¢foMelz] _ 1), (22)
Encompassing and Fzpected IBF: Utilizing the natural encompassing model
Hy: 0 € Rt computation yields,

I N LTl —e %)
3211 = By - STe-bozi (23)

Under Hy, the MLE for 6 is 1/Z and computation yields, for the expected
version of (23),

BEEI — BN ¢,z. (24)

Intrinsic Priors: In Appendix 2, the intrinsic priors for the above default

Bayes factors are derived, up to irrelevant normalizing constants. They are

summarized in Table 7, where the “correction factors”, B¢F, are also given.
The most interesting aspect of Table 7 is the last column, which gives

pr(Hs) _ Joy ' (0)do
pr(Hi) [ rl(6)do

For the EIBF and EEIBF, this ratio is 1, indicating that these default Bayes
factors are “balanced” between Hj and Hj. For the FBF and (to a lesser
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Table 7: Summary of default Bayes Factors and intrinsic priors for the

ezponential model.

BCF Intrinsic Prior pﬂgﬁ
) 9—1(690/9 _ 1) for 6 > 60
FBF bo? —1 '
€ (e — 1)~ H(ef/0 —1)~1 for 6 < 6y o
~1(900/0 _ 1 for 6 > 6
doMelz:] _ 1 0~ (2 ) o °
MIBF | e 0—1(200/9 — 1)~ for 6 < 6 140
M 90/92 for 0 > 90
EIBF S T eP0mi 1/6p for 6 < by :
EEIBF | 6,7 25 above 1

extent) the MIBF, however, there appears to be considerable imbalance. The
FBF corresponds to posterior odds from a (proper) prior which gives 2.67
times as much mass to Hy as to Hy. This considerable apriori advantage to
the alternative hypothesis would not seem acceptable in a “default” analysis.
Yet this imbalance is “hidden” within the FBF (for this problem). The clear
indication here would thus be to use the EIBF or EEIBF; the MIBF is also
not too bad in terms of “balance”. Figure 2 shows the graph of the three
different intrinsic priors from Table 7, with 6y = 1 for convenience. Note
that the intrinsic prior for the FBF has a large discontinuity at 6 = 6y.
Numerical Comparisons: As in Example 1, we compare the FBF and EEIBF
for various n, and for data-values corresponding to p-values of p = 0.05,
p = 0.01 and p = 0.001. (Again, direct comparison of the p-value with the
MIBF and EIBF is not possible, as they do not depend solely on Z.)
The p-value against H; is given by

p = pry, (X < Z) = v(n,nz/0).

The p-value against Hj is given by p = 1 — y(n,nZ/0p). Because of the
“imbalance” in some of the default Bayes factors, Tables 8 and 9 separately
give the comparisons for these two cases. We report Bis = 1/Bsg; in Table 8

for easier comparison with the p-value.
Again note that the default Bayes factors are numemcally similar to the

p-value only for large n. For smaller n, they indicate that there is less
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5 6

Figure 2: Intrinsic priors for exponential one-sided testing (FBF —, MIBF
— —, EIBF & EEIBF - - - )

evidence against an hypothesis having a small p-value than is commonly
perceived.

Next, note that the “bias” of the FBF in favor of Hy, that was indicated
by the study of the intrinsic priors, also appears in the numerical study.
Since the FBF tends to be larger for small n, the effect of the “bias” for
small n is masked in Table 8 but is magnified in Table 9. For large n, the
bias is clearer; thus for n = 400 ( a large enough value that one would expect
equivalence of the p-value and B/(1 + B)), both tables show the FBF to be
biased in favor of Hy, while the EEIBF exhibits no such bias.

Finally, we again investigated the extent to which the default Bayes
~ factors correspond to the actual Bayes factor with respect to their intrinsic
priors, given in Table 7. Tables 10 and 11 present the Bayes factors induced
by the fractional, median, and expected intrinsic priors, for various n and
data such that the p-value is 0.05. (Again, the results for p-values of 0.01
and 0.001 were very similar and, hence, are not presented here.) The first
two rows of Table 10 correspond to the intrinsic priors for the FBF and the
EEIBF, respectively, and should be compared with the first two columns
of Table 9, which give the corresponding values for the FBF and EEIBF.
Likewise, the first two rows of Table 11 should be compared with the first
two columns of Table 9. In Tables 10 and 11, we also present the actual
Bayes factors arising from use of the intrinsic prior for the MIBF, although
corresponding values for the MIBF itself could not be given in Tables 8 and
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Table 8: Comparison of the FBF and EEIBF when testing Hy : 6 < @y vs.
Hy : 0> 0 for the exponential model and selected p-values (against Hy ).

p = 0.05 p=0.01 p=0.001
BfZ BgEI Blp2 B{:;EI Bf; BIE2E[
1.00 | 1.03 | 1.00 1.01 | 1.00 1.00
168 | .193 | .065 070 | .158 0158
109 | .133 | .035 039 | .0063 | .0068
088 | .122 | .026 030 | .0041 | .0046
077 | .101 | .021 026 | .0032 | .0037
25 | .052 | .076 | .013 017 | .0016 | .0020
100 | .040 | .063 | .009 013 |.0009 | .0014
200 | .037 | .059 | .008 012 | .0008 | .0013
400 | .035 | .057 | .007 | .011 |.0007 | .0012
oo |.031 |.053 |.00059 | .010 | .00058 | .001

O~ Ut w

For n < 5, the differences between the default Bayes factors and the
corresponding intrinsic prior Bayes factors are significant, and reinforce the
previous warning concerning use of the default Bayes factors for very small
n. Also, the EEIBF values are considerably closer to their corresponding
intrinsic prior Bayes factors than are the FBF values (especially when com-
paring Tables 9 and 11), which again suggests that the EEIBF may be more
representative of an actual Bayes factor.

3.3 Normal One-sided Testing with Unknown Variance

For the general location-scale model, closed form expressions for the default
Bayes factors are not typically obtainable. We thus consider only the normal
model, where closed form expressions can be found and allow interesting

comparison of the default Bayes factors.
Let X = (X1,...,X,) with X; i.i.d. N(#,0?), where both 0 and o2 are

unknown. Suppose we are interested in testing:
Hy:60<0 vs. Hy:60>0.
Taking 7" (0, 0) = L(—o0,0) ()0t and 7Y (0,0) = L(0,00)(8)o ™1, the standard

default priors, the minimal training sample size is m = 2. Computation

20




[cent

e 0: Comparison of the FBF and EEIBF when testing Hy : 6 < 6y vs.

abl
;[2) .9 > Oy for the exponential model and selected p-values (against H).
1 p = 0.05 p = 0.01 p = 0.001
n B2Fl BéElEI Bgl BQElEI Bé*_]i B2ElE]
1 1.00-| .158 1.00 | .047 1.00 | .0069
3 377 | 110 156 | .028 .041 | .0037
5 276 | .096 .093 | .023 .018 | .0029
7 .233 | .089 071 | .021 012 | .0026
9 209 | .084 .060 | .020 .0095 | .0024
25 | .150 | .071 .036 | .015 .0046 | .0017
100 | .117 | .062 .025 | .013 .0028 | .0013
200 | .108 | .059 .023 | .012 .0024 | .0012
400 | .103 | .087 .021 | .011 .0022 | .0011
oo | .090 | .053 .017 | .010 .0017 | .0010
yields
foo foo(27r>~n/2a—(n+1)e—n(ﬁ:—&)z/(202)6—32/(202)do_dg
Bé\{ (x) = 8 Ooo _ _ N2 /(902) . — 52 /(202
12t (2m) 20 (n+1) g—n(2—0)?/(20%) ¢=5?/(20%) dordl)
T(1)
=70 (25)

where Z = (301 @i) /7, §2 =51 (z;— %) t= vn(n—1)z/s and 7 is the
standard ¢ c.d.f with (n — 1) d.f. Also note that
ffoou + k(z — 0)?/s%)]"1do _m/2+ arctan(—vkz/s) (26)
(X[ +k(z—0)2/s)]71d0 /2 — arctan(—vkz/s)
Fractional Bayes Factor: A simple calculation with b = 2/n and applying
(26) with k = n yields

[1/2 + arctan(—+/n%/s)]
| [7/2 — arctan(—+/nZ/s)]’ (27)
Median IBF- A minimal training sample is x(I) = (21(1),z2(l)) so, using
(26) with k& = 2 and obvious notation,
N (o (1)) = 7/2 4 arctan(—+/22(1)/s(1))
Bra(x(1)) W/Q—arctan(—\/i:f(l)/s(l))'

F__ pN
BQl “’BQI )
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Table 10: Bayes factors induced by the intrinsic priors of Table 7 for data
corresponding to a p-value of 0.05 (against Hy).

n 1 3 5 7 9 25 100 200 400 00
F 1113 .070 .061 .056 .053 .044 .037 .035 .033 .031
E |.198 .109 .093 .085 .080 .068 .060 .058 .056 .053
M| .191 .116 .100 .092 .087 .073 .063 .060 .057 .053

Table 11: Bayes factors induced by the intrinsic priors of Table 7 for data
corresponding to a p-value of 0.05(against Hy).

1 3 3 7 9 25 100 200 400 00
488 .290 .233 .203 .186 .140 .112 .105 .098 .090
147 102 .089 .083 .079 .068 .060 .058 .056 .053
244 147 120 106 .098 .077 .063 .060 .057 .053

Z =) s

Note that Z(l)/s(l) = w;/v/?2, where w; = (z1(I) + z2(l N/ zi(l) — zo(1)].

Since

7/2 + arctan(y) 1
m/2 —arctan(y) (0.5 + 7~ Larctan(y))~T — 1

i1s monotonic in y, the MIBF can be written as

[7/2 + arctan(—Me[w;])]

[7/2 — arctan(—Me[w;])]” (28)

MI _  pN
Byt = Biyr-

Encompassing IBF: The encompassing model is Hy : §# € ®! and, with the
default prior 7 (0) = 1, it is easy to show that

BN (x(1)) = \“/‘i(z + arctan(—w;)), BY(x(1)) = %(g — arctan(—w;)).

Noting that there are L = n(n — 1)/2 training samples, it follows that

g _ iy Slalr/2 + arctan(-uwp)]
. Y [m/2 — arctan(—w)]
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As we have been unable to express the expected version in closed form, we

do not discuss it.
Intrinsic Priors: In Appendix 3, the intrinsic prior for the FBF is shown to

be
14
w(0,0) =4
1+

Interestingly, this is not a proper density (even conditionally on o). For

large ||, it behaves like the constant 1 /7.
It appears to be the case that the intrinsic priors for the other default

Bayes factors cannot be expressed in closed form. However, one can show
that, for the EIBF, the intrinsic prior behaves like O(l(?l 7z ) for large 6.

Interestingly, this is just barely improper.
An Ezample: Cicirelli and Smith (1985) considered data on cyclic adenosine

monophosphate (cAMP) content in oocytes extracted from 4 female frogs.
One batch of oocytes was treated with progesterone and one not. The data
(paired differences) were (0.78, 1.07, 0.11, 0.74).

Let A be the mean difference in cAMP content between the control
and treated batch. It is desired to test the hypothesis H; : A < 0 versus

Hy : A > 0. Computation yields:

w/2+arctan(—8/c

%M ;9 :rctang efgg% for 8 >0
2 rctan 6/c

e LR

(29)

[p=.022[Bf, =126 | B = 228 | B = .161 |

While the p-value would appear to indicate significant evidence against
H,, the default Bayes factors suggest that the evidence is, at best, quite
modest. This could thus lead to a quite different practical conclusion. Note,
however, that n=4, which is a small enough sample size that one might be
concerned with at least the FBF and the MIBF. (Also, the intrinsic prior
for the FBF is suspect, being nearly constant as the mean moves away from
zero; this is probably why the B{j is closer to the p-value than the other
default Bayes factors.) As intrinsic priors for the MIBF or EIBF are not
readily available here, one cannot resort to computing the Bayes factor for
an intrinsic prior. The best option would thus seem to be use of B;EQI
(Of course, in this type of situation, one should probably try to obtain a

subjective prior distribution.)
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4 Multiple hypotheses

A simple, but important, problem of multiple hypothesis testing consists in
choosing between three alternative hypotheses such as

Hi:0=0¢ vs. Hy:0<0y vs. Hg:6 > 0,. (30)

For instance, if 8 refers to the difference of mean effects between a new
drug and a placebo, Hy : 8 = 0 would correspond to no effect, while Hy :
0 < 0 and Hs : 8 > 0 would correspond to positive and negative effects,
respectively. (See Bertolino et al., 1995, for a robust Bayesian analysis of .
multiple hypothesis testing.)

Table 12: Summary of correction factors for the default Bayes factors in
multiple hypothesis testing.

B B | P
FBF =5 (z) 6) ()
MIBF | —2Mefz:)) ¢(Mefz:]) | 1-2(Mefa])
1-3(Me[z;]) a(Me[z;]) o(Me[z;])
A | S | e
z/V2 &(Z/V2 1-®(z/V2
ERIBF | o a/va) | vasE/vg) | a@vD

We confine attention to the simple problem of testing a normal mean with
known variance. Thus it suffices to consider X = (X}, ..., X,,) with X; i.i.d.
N(6,1), and we are interested in testing (30). Taking w2’ (0) = L(—o0,0)(0)
and 7V (0) = 1(0,00) (), the results in Example 1 of Section 2 and the results
in Section 3.1.2 immediately yield:

BY(x) = 1___?@7 BY (x) = Ml__, BY (x) = M

Vn ¢(v/ni) v ¢(v/n) 1 —&(y/nz)
Also, with b = 1/n for the FBF, those results yield “correction factors”
(recall B;; = BZ-]}[ - BSF ) for the various default Bayes factors as given in
Table 12.

Note that all four default Bayes factors have the self-consistency prop-
erty that Bsg = Bs1/B2;. Unfortunately, they do not have the property of
corresponding to Bayes factors with respect to an intrinsic prior. This is
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because each pairwise intrinsic prior analysis led to different (and incompat-

ible) intrinsic priors.
Numerical Comparison:

Table 13: Comparison, for the FBF and EEIBF, of the resulting posterior
probabilities of the hypotheses Hy : 0 =0 wvs. Hy:0 <0 vs. H3:6>0 for
the normal model with p = 0.05 and various values of n.
n |PF[PF [P R |P | Py
1 333 | .325 | .333 | .185 | .333 | .490
3 .328 | .351 | .137 | .088 | .635 | .561
5 .343 | .380 | .098 | .067 | .559 | .552
7

9

.358 | .404 | .081 | .057 | .561 | .538
373 | 425 | .071 | .051 | .b56 | .524
25 | .453 | .522 | .045 | .034 | .502 | .444
100 | .593 | .665 | .026 | .020 | .381 | .315
200 | .665 | .729 | .020 | .015 | .315 | .255
400 | .729 | .796 | .015 | .011 | .255 | .193
oo |1 1 0 0 0 0

When comparing three or more models, it is easier to express the results
in terms of the posterior probabilities, P, of the models, assuming they
have equal prior probabilities: here, pr(H;) = pr(Hz) = pr(Hs) = 1/3.
(The Bj; = P;/P; can easily be reconstructed from the P, if desired.) For

the FBF and EEIBF, the P; are given by P = (Z?Zl Bﬁ 1l and PP =
(3, Bﬁ )~1. Table 13 gives the P; for various values of n and when /nz =
1.645, corresponding to a omne-sided p-value of 0.05 against Hy : 6 = 0.
Table 14 gives the values of the posterior probabilities for different p-values
against Hy : & = 0, when n = 9 and T is positive. (Here, again, direct
comparison of the p-value with the MIBF and the EIBF is not possible,
since they do not depend solely on Z. However, the average value of the
MIBF in 200 simulations was very close to the FBF for all values of n.)

The most striking feature of these numerical results is the dramatic dif-
ference, for any of the default Bayes factors, in the conclusions concerning
H; and those concerning Ho and Hs. For instance, in Table 14, one sees
that the evidence against H; grows only slowly as the p-value decreases;
even with the quite small p-value of 0.005, the (default) posterior probabil-
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Table 14: Comparison, for the FBF and EEIBF, of the resulting posterior
probabilities of the hypotheses Hy : 0 =0 wvs. Hy:0 <0 wvs. Hg:0 >0 for
the normal model with n =9 and various p-values.

v (B [PEE [P [H [
.05 373 425 ) .071 | .051 | .556 | .524
025 279 | 313 | .050 | .035 | .672 | .652
01 A71 187 1 .029 | .019 | .800 | .794

005 111 .118 | .018 | .012 | .871 | .871
.001 035 | .034 | .005 | .003 | .960 | .962
0005 | .021 | .020 | .003 | .002 | .976 | .979
.0001 | .006 | .005 | .0008 | .0004 | .993 | .995
.00005 | .003 | .003 | .0005 | .0002 | .996 | .997

ities of H; still exceed 0.1. In contrast, one can quickly rule out H» or Hjs
(depending on the sign of Z) as the p-value drops. Thus, from Table 14, one
sees that the (default) posterior probability of Hy is quite small when the
p-value is 0.005 (though still roughly three times larger than the p-value).
The implications of this in, say, the drug testing scenario mentioned at the
beginning of the section is that it is much easier to determine the direction
of a treatment effect, given that there is an effect, than to actually establish
that the effect is different from zero. This important understanding needs
to become more widely recognized in practice.

5 Conclusions

The most important conclusion is that use of the default tests does provide
less extreme and arguably better answers in one-sided testing that do the p-
value or standard Bayes factors computed with noninformative priors. The
reason for this is best evidenced by the nature of the corresponding intrinsic
priors (in, e.g., Figure 1); they will typically concentrate more mass near
the boundary of the hypotheses, as is typically reasonable in practice. One
might object that such intrinsic priors appear to be rather arbitrary (even
though they are, in a sense, inferred from the expected scale of the data)
and that subjective elicitation of the prior makes more sense. We would not
disagree, but would observe that most users seem to prefer default methods,
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and that the current standard default method is likewise arbitrary, choosing
to use that prior distribution which is least favorable to the null hypothesis
(among, say, all symmetric unimodal priors). Using the prior which is least
favorable to the null would seem to violate the standard perception of how
testing should operate.

We feel that all the studied default Bayes factors performed reasonably
well, and can be useful in general one-sided testing problems, unless the
sample size is extremely small. Nevertheless, comparisons among the default
procedures revealed interesting differences.

(i) The EEIBF would appear to be the best procedure. It is satisfactory
for even very small sample sizes, as is indicated by its not differing greatly
from the corresponding intrinsic prior Bayes factor. Also, it was “balanced”
between the two hypotheses, even in the highly nonsymmetric exponential
model. It may be somewhat more computationally intensive than the other
procedures, although its computation through simulation is virtually always
straightforward.
(ii) The FBF was typically quite inadequate for very small sample sizes (al-
~ though this could perhaps be corrected by a better choice of the “fraction”
b) and evidenced considerable “bias” towards one of the hypotheses in non-
~ symmetric situations. Such apriori bias is a significant concern, and suggests
that the FBF not be used in clearly nonsymmetric testing situations.
(iii) The MIBF and EIBF are typically satisfactory, with performance be-
tween that of the EEIBF and the FBF. Their “bias” was typically moderate,
and their small sample size performance reasonable. One can object that
they do not depend on sufficient statistics for the problem, but see Berger
and Pericchi (1997¢) for indications that this may provide “wrong mod-
el” robustness. Note that computation of the MIBF and EIBF is typically
straightforward. The satisfactory nature of the MIBF here lends support to
the argument in Berger and Pericchi (1997b) that the MIBF provides the
best single general purpose default model selection and hypothesis testing
tool, apparently working well with both nested and non-nested models or
hypotheses, with virtually any distributions, and even with small sample

sizes. |
The default testing methodology was shown to be directly applicable to

testing of multiple models, and to reveal important differences from standard
testing. In particular, when testing Hy : § = 0 versus Hs : 6 < 0 versus
Hy : 6 > 0, it was seen that there is a crucial difference between the typical
‘strength of evidence against H; and against the other two hypotheses.
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Appendix 1. Technical details from Section 3.1.2.

Here we prove the monotonicity of ¢(y)/®(y), needed to derive the MIBF
in Section 3.1.2. Note that

;';-[—yw o) = —3(y) <o.

Also, limy, o[-y ®(y) — &(y)] = 0, while lirhy%oo[—y@(y) — ¢(y)] = —oo0,
so that [—y®(y) — ¢(y)] < 0. Hence

d log $(y)

dy (y)

= S — o] <o

so that g%l) is monotonically decreasing. (Note that, for y < 0, the mono-
tonicity condition is basically a “monotone failure rate ” condition; in estab-
lishing this condition for other models, one can sometimes take advantage
of known results about monotonic failure rate.)

Appendix 2 Technical details from Section 3.2

Derivation of the intrinsic prior for the FBF: Since lim,,_,oo B¢¥ = efo/f _1
and the MLE’s under H; and Hs are 8; = min{6y, 1/z}, 6, = mazx{6y,1/Z},
respectively, we obtain the intrinsic prior equations

W£(9)91{9>00} _ /0 _ 4 W{(9)01{9<«90} _ (690/9 B 1)_1
’]T{(Ho)eo ’ W%(Qo)@o

?

yielding the solution given in Table 7.
Deriwation of the intrinsic prior for the MIBF': First note that the median,

m*, of the exponential distribution is m* = 0~ !log 2. Hence, lim,, oo (exp{foMe|[z;]}—
1) = 2%/% _ 1, and the result follows as for the FBF.

Derivation of the intrinsic prior for the EIBF and EEIBF: Note that

BCF  _ Eg(1—e"™%) 6y

RLS T Ey(emfX) T g7

and solving the resulting intrinsic prior equations yields the result in Table 7.
The derivation of the intrinsic prior for the EEIBF is essentially identical.
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Appendix 3 Technical details from Section 5.5
Derivation of the intrinsic prior for the FBF: Clearly

B(0.0) = lim BOF — 7/2 + arctan(—0/0)
230 n—00 7/2 — arctan(—6/0)

and B} (,0) is the inverse of this explessmn Also, the MLE’s under H;

and Ho are respectively, 0, = min{z,0}, 67 = + Z"(xz ~ 61)? and 0y =
maz{Z,0}, 65 = %Z?(mz — 6,)%. Note that, for i 7é Iy

3 et

n
lim d; —EH —Z ~92+02.
1

n—+00,H;

Recalling that ¥ (0,0) = (1/0)1iy<oy and i (0,0) = (1/0)1gg>0y, we ob-
tain the intrinsic prior equations

74(0,0)01{p>0y(6) _ 7/2 + arctan(—6/0)
W{(()’ \/92 + 02)\/92 + g2 7(/2 - arctan(—@/a)

71 (0,0)01{9<0}(0) _ 7/2 — arctan(—6/0)
7100,V + 2)VE? + o7 7/2 + arctan(—6/0) "

It is easy to check that (29) is a solution to these equations.
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