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Abstract

We model a vertically di¤erentiated duopoly with quantity-setting

�rms as an extended game in which �rms noncooperatively choose

the timing of moves at the quality stage, to show that at the subgame

perfect equilibrium sequential play obtains, with the low-quality �rm

taking the leader�s role.
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1 Introduction

A well established result produced by the theory of vertical di¤erentiation

is that the �rst entrant �lls the highest quality niche, letting newcomers

locate further down along the quality spectrum. This result is commonly de-

rived under Bertrand competition (see Gabszewicz and Thisse, 1979; Shaked

and Sutton, 1982; Aoki and Prusa, 1997; and Lehmann-Grube, 1997, inter

alia). The opposite may apply if the role of time is accounted for, in such a

way that low-quality leadership emerges when the exploitation of ad interim

monopoly power matters more than skinning the cream (see van Dijk, 1996;

and Lambertini and Tedeschi, 2007a,b).

Here we take a di¤erent angle to address the same issue, exploiting an

idea dating back to d�Aspremont and Gérard-Varet (1980) and then further

developed by Hamilton and Slutsky (1990), according to whom a game is

Stackelberg-solvable if there exists a Stackelberg equilibrium that Pareto-

dominates the Nash solution. We use this approach in a vertically di¤er-

entiated duopoly in which �rms bear a convex cost of quality improvement

and then behave à la Cournot-Nash. From the analysis of the quality stage,

there emerges that, while the high-quality �rm�s best reply is increasing, that

of the low-quality �rm is decreasing, and therefore the choice of roles con-

cerning the timing of moves in the quality space univocally selects sequential

play with low-quality leadership as part of the subgame perfect equilibrium.

This framework may indeed �t real-world episodes in which innovation from

below has been observed; one such instance is the introduction of solid state

(transistor) circuitry to replace vacuum tube designs in consumer electron-

ics at the turn of the Seventies, with a large production characterised by a

comparatively lower quality, higher quality versions being introduced later.
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2 The model

We consider a duopoly market for vertically di¤erentiated products supplied

by single-product �rms. The demand side is modelled à la Mussa and Rosen

(1978). There is a continuum of consumers whose types are identi�ed by

�, uniformly distributed with density equal to one in the interval [0;�] (so

that total demand is equal to �). Parameter � represents the consumers�

marginal willingness to pay for quality. Each consumer is assumed to buy at

most one unit of the vertically di¤erentiated good in order to maximise the

following surplus function:

U = �qi � pi; (1)

where qi 2 [0; Q] indicates the quality of the product and pi is the market
price at which that variety is supplied by �rm i = H;L; with qH � qL:

Therefore, the consumer who is indi¤erent between qH and qL is identi�ed

by the level of marginal willingness to pay b� that solves b�qH�pH = b�qL�pL;
and therefore b� = (pH � pL) = (qH � qL). Thus, market demand for the high-
quality good is xH = � � b�. We assume partial market coverage, so that
there exists a consumer indi¤erent between buying qL or not buying at all,

identi�ed by e� solving e�qL� pL = 0; whereby e� = pL=qL and the demand for
the inferior variety is xL = b� � e�. This is what one needs to use in order to
model Bertrand behaviour, while inverse demands

pH = (�� xH) qH � qLxL
pL = (�� xH � xL) qL

(2)

are to be used under Cournot competition.

On the supply side, as in Motta (1993), inter alia, �rms incur in convex

�xed costs of quality improvement Ci = cq2i ; i = H;L. Variable costs are

assumed away. Hence pro�t functions are �H = pHxH � cq2H and �L =

pLxL�cq2L. Competition takes place in three stages. In the �rst, �rms choose
the timing to be followed in the second stage, where qualities are set, and
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then in the third stage simultaneous Cournot competition takes place. The

solution concept is the subgame perfect equilibrium by backward induction.

The �rst stage is a pre-play stage à la Hamilton and Slutsky (1990), in

which, under complete, symmetric and imperfect information, �rms play a

discrete strategy game represented in Matrix 1.

L

F S

H F �NH ; �
N
L �SLH ; �

SF
L

S �SFH ; �
SL
L �NH ; �

N
L

Matrix 1

Actions F and S stand for ��rst�or �second�, and refers to the choice of

roles pertaining to the quality stage, while superscripts N , SL, and SF stand

for Nash, Stackelberg leader and Stackelberg follower, respectively. If �rms

select the same strategy - along the main diagonal - then the second-stage

quality game is simultaneous. Conversely, along the secondary diagonal, the

quality stage is going to be solved à la Stackelberg. For future reference, it is

worth recalling that the �rms�incentives as to the timing of moves is entirely

driven by the slope of their best replies (in this case, in the quality space), in

such a way that if a �rm has a decreasing (resp., increasing) reaction function,

it will prefer to move �rst (resp., second) (see Hamilton and Slutsky, 1990,

Theorem V, p. 38).

3 Results

To begin with, we characterise optimal outputs for any given quality pair:

xNH =
�(2qH � qL)
4qH � qL

; xNL =
�qH

4qH � qL
(3)
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where superscript N stands for Nash equilibrium. The explicit derivation of

the Cournot equilibrium is omitted as it is known from Motta (1993).

We now turn to the second stage where the quality game takes place. The

relevant pro�t functions are:

�H =
qH
�
�2 (2qH � qL)2 � cqH (4qH � qL)2

�
(4qH � qL)2

�L =
qL
�
�2q2H � cqL (4qH � qL)

2�
(4qH � qL)2

(4)

The �rst order conditions for non cooperative pro�t maximisation are:

@�H
@qH

=
�2 (16q3H � 12q2HqL + 4qHq2L � q3L)� 2cqH (4qH � qL)

3

(4qH � qL)3
= 0; (5)

@�L
@qL

=
�2q2H (4qH + qL)� 2c (4qH � qL)

3

(4qH � qL)3
= 0: (6)

Given that the above FOCs do not allow for a fully analytical charac-

terisation of Nash and Stackelberg equilibria, we investigate the solution of

the quality stage by studying the map of the reaction functions, implicitly

revealed by (5-6). In particular, following Bulow et al. (1985), we know that

the nature of strategic interaction is entirely determined by the sign of the

partial derivatives of FOCs with respect to the competitor�s quality, which

ultimately indicate the slopes of reaction functions q�i (qj), i; j = H;L; i 6= j:
These derivatives are:

@q�H (qL)

@qL
_ @2�H
@qH@qL

=
8�2qHqL (qH � qL)
(4qH � qL)4

> 0; (7)

@q�L (qH)

@qH
_ @2�L
@qL@qH

= �2�
2qHqL (8qH + qL)

(4qH � qL)4
< 0: (8)

The concavity/convexity of best replies is determined by the following deriv-

atives:
@3�H
@qH@q2L

= �8�
2 (4q2H � 5qHqL � 2q2L)

(4qH � qL)5
; (9)
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which is positive for all qH 2
 
0;
5 +

p
57

8
qL

!
and negative for all qH >

5 +
p
57

8
qL; and

@3�L
@qL@q2H

=
2�2qL (64q

2
H + 28qHqL + q

2
L)

(4qH � qL)5
> 0: (10)

Hence q�H (qL) is always increasing and convex for all qH 2
 
0;
5 +

p
57

8
qL

!
and concave for all qH >

5 +
p
57

8
qL. On the other hand, q�L (qH) is every-

where decreasing and convex.

A Nash equilibium exists if the vertical intercept of q�H (qL) is lower than

the vertical intercept of q�L (qH) in the space fqL; qHg. We can see that:

@�H
@qH

����
qL=0

= ��
2 � 8cqH
4

= 0; (11)

so that q�H (qL)jqL=0 = �2= (8c), while there are no solutions w.r.t. qH to

@�L=@qLjqL=0 = 0. Therefore, de�ning bqH � (q�L (qH))�1 ; we have limqL!0 bqH =
+1:
Figure 1 shows the map of the best replies and the respective isopro�t

curves. The Nash equilibrium (point N) yields a lower pro�t both to �rm L

and to �rm H as compared to the Stackelberg equilibrium where L acts as

the leader (point SL). As to the Stackelberg solution with �rm H leading,

the map of isopro�t curves reveals that the high-quality �rm is better o¤

w.r.t. the Nash equilibrium, while the opposite applies to the low-quality

�rm. Overall, the following chains of inequalities hold:

�SFH > �SLH > �NH

�SLL > �NL > �
SF
L

(12)
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Figure 1. The map of best replies with the equilibrium points.
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Using these properties, one can go back to Matrix 1 and observe that the

�rst (pre-play) stage can be solved by applying iterated dominance, since (i)

�rm L drops strategy S as it is strictly dominated by F ; then, (ii) �rm H

drops what remains of strategy F; and therefore (iii) the matrix reduces to

the cell (S; F ) : This discussion allows us to formulate

Proposition 1 The three-stage game has a unique subgame perfect equilib-

rium in pure strategies, where �rm L takes the lead in the quality stage.
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To this regard, it is worth remarking that the slopes of reaction functions

and the ranking of payo¤s in (12) are the two sides of the same coin, the �rst

dating back to Hamilton and Slutsky (1990), the second to d�Aspremont and

Gérard-Varet (1980). Taken together, these two features of the second stage

of the game allow players to select the timing of moves so as to attain at

equilibrium the Pareto-e¢ cient outcome.

As a last remark, observe that, as switching from simultaneous to sequan-

tial play with �rm L leading involves a decrease in both quality levels. This

surely has negative consequences on consumer surplus

CS =

Z b�
e� (kqL � pL)dk+

Z �

b� (zqH � pH)dz; (13)

as can be ascertained from the following partial derivatives:

@CS

@qH
=
�2 [4q2H (4qH � 3qL) + q2L (2qH + qL)]

2 (4qH � qL)3
;
@CS

@qL
=
�2q2H (12qH � 7qL)
2 (4qH � qL)3

(14)

which are both positive. Hence, the balance between the increase in industry

pro�ts and the decrease in consumer surplus is ambigous.
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