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Learning a Bayesian network from ordinal data

Flaminia Musella

Department of Economics, Roma Tre University

Abstract

Bayesian networks are graphical models that represent the joint dis-
tribution of a set of variables using directed acyclic graphs. When the
dependence structure is unknown (or partially known) the network can
be learnt from data. In this paper, we propose a constraint-based method
to perform Bayesian networks structural learning in presence of ordinal
variables. The new procedure, called OPC, represents a variation of the
PC algorithm. A nonparametric test, appropriate for ordinal variables,
has been used. It will be shown that, in some situation, the OPC algo-
rithm is a solution more efficient than the PC algorithm.

Keyword: Structural Learning, Monotone Association, Nonparametric Meth-
ods.

EconLit codes: C140; C510

1 Introduction

Ordinal variables are becoming very common in observational studies of several
research areas such as social science, biostatistics, education and marketing.
Their increasing use in surveys has influenced the development of appropri-
ate methods for ordinal variables (Agresti 2010). In the literature, Clogg and
Shihadeh (1994) and Agresti (2002) argue that, due to the ordinal variables in-
formative strength, results gained with ordinal methods may be quite different
from those achieved using nominal ones. However, some nominal techniques
are commonly used with ordinal data. This entails that the ordering among
categories is not considered and a loss of (sometimes relevant) information is
produced. For this reason an increasing interest in preserving the ordering of
ordinal data in Bayesian networks structural learning has been developed. In
the literature, there are a few ordinal-sensitive procedures for learning Bayesian
networks structure from ordinal data. In this paper we consider the PC algo-
rithm (Spirtes et al. 2000) and we propose a variation that takes into account
information provided by ordinal variables. The paper is organized as follows.
Section 2 provides a background on Bayesian networks; Section 3 deals with the
PC algorithm; Section 4 introduces the OPC algorithm whose performance will
be discussed according to empirical evaluations presented in Section 5. Finally,
Section 6 addresses some conclusions and further developments.
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2 Basics on Bayesian networks

Bayesian networks (BNs, Cowell et al. (1999)) are multivariate statistical models
that represent the multivariate probability distribution P of a set of variables
X by means of directed acyclic graphs (DAGs). A directed graph is a pair of
sets usually denoted by GD = (V; ED): V is a finite set of vertices, also called
nodes, representing random variables in X, and ED is a set of directed edges.
A directed graph is said to be acyclic if it does not contain directed cycles. In a
BN, each node of the DAG is associated with a (conditional) probability table
so that a BN is defined by the DAG that encodes the independence relations
between variables and by the parameters i.e. the set of probabilities tables.
Independence relations in the joint distribution can be read off the DAG by
using the d-separation criteria (Pearl 1986). Different graphical configurations
can encode the same set of independence relations. For instance, consider con-
figurations in Figure 1.

i→ γ → j i← γ ← j i← γ → j i→ γ ← j

(a) (b) (c) (d)

Figure 1: Different structures for the triplet of nodes i, j and γ

Different structures involving a pair of nodes, i and j, directly connected with
the node γ are displayed. Node γ plays the role of transition node in the serial
configurations - (a) and (b) -, of common source node in the diverging structure
- (c) - and of common sink in the converging structure - (d). A common sink
is also called collider or, following the notation of Cox and Wermuth (1996),
v-structure. Serial and diverging configurations encode both the relations:

1. i and j are not independent;

2. i and j are independent given γ.

As a consequence of this, (a), (b) and (c) encode the same d-separations that,
following th notation due to Dawid (1979) can be written as:

1. i 6⊥⊥ j;

2. i ⊥⊥ j|γ.

On the contrary, (d) shows a converging connection that entails a different rela-
tion, that is i and j are not independent given γ, i 6⊥⊥ j|γ. DAGs with the same
d-separation properties are said Markov equivalent (Verma and Pearl 1990).
The Markov equivalence permits the partition of DAGs space into classes of
models, namely equivalence classes: Bayesian networks belonging to the same
equivalence class are statistically indistinguishable since they represent equiva-
lent parameterizations of the same distribution(Chickering 1995). The canonical
pictorial representation of an equivalence class is given by an hybrid graph called
partial DAG (PDAG). Given a DAG, a PDAG can be obtained

• by considering the skeleton of the DAG, that is the basic structure of the
graph without directions;
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• by keeping directed edges for those arrows involved in v-structure;

• by ignoring other directions.

For instance, the PDAGs of the DAGs in Figure 1 are displayed in Figure 2.

i− γ − j i− γ − j i− γ − j i→ γ ← j

(a) (b) (c) (d)

Figure 2: PDAGs of DAGs in Fugure 1

Using PDAG instead of DAG can be more profitable in structural learning
(e.g.Chickering (2002)). The structural learning phase consits in estimating the
DAG structure of a BN directly from data. Building a BN, in fact, requires to
specify both the DAG and the parameters, but in many situations, the subject
matter knowledge is absent or not sufficient to manually build the BN. In these
cases, the DAG structure has to be inferred from data using appropriate learning
methods. Structural learning has been extensively discussed in the literature
(Buntine 1994; Buntine 1996; Neapolitan 2003) and it mainly can be supported
through two approaches: scoring and searching (Cooper and Herskovits 1992;
Heckerman 1995) and constraint-based (Pearl 1988; Spirtes et al. 2000). The
first is based on two steps: given a chosen (Bayesian or not Bayesian) metric a
score is assigned to all possible models in a given space; then algorithms search
and select the model that maximises the score. Even though score-and-search
methods are computationally expensive, their main advantage is that they com-
pare several different models (Heckerman et al. 1997).
The second approach is based on dependence analysis. The general procedure
consists in carrying out a sequence of independence statistical tests and in draw-
ing the network according to the test results. Independence tests are iteratively
performed to make, step by step, unchangeable decisions about edges presence
in the graph. Constraint-based algorithms are intuitive and relatively fast but
they can be unstable. Possible mistakes in test, in fact, determine erroneous
decisions that can affect the future algorithm behaviour causing the selection of
a suboptimal result (Dash and Druzdzel 1999).
This paper follows the last approach. We start by introducing the most used and
well-known constraint-based algorithms, the PC algorithm, that is the starting
point to develop the new procedure.

3 The PC algorithm

The PC algorithm (Spirtes et al. 2000) is a stepwise backward algorithm that
takes as input a database D over a set of K variables and it provides, in output,
a PDAG. The consistency of the PC algorithm has been proved under the as-
sumptions that (1) the DAG and the joint probability distribution are faithful
to each other and GD is a perfect map (P-map) of P; (2) data are infinite; (3)
statistical tests have no errors.
The structure of the PC algorithm consists in three main steps:
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1. find the skeleton of the graph;

2. find the head-to-head configurations;

3. orient the rest of the links without producing any cycle and any other
head-to-head configuration.

1. Let X be a set of K random variables. Let V be a set of K nodes in a
graph so that each node in V represents a random variable of X. The PC
algorithm starts from a complete undirected graph G′, i.e. a graph where
all nodes are connected to each other. Given a chosen significance level
0 < α < 1 and a specific ordering Order(V) over V, the PC algorithm
performs statistical tests to decide if to remove or maintain edges between
nodes in the graph. The procedure is shown in the following pseudo-code
where ne(i) denotes the set of nodes adjacent to i-th node, i.e. the set of
vertices linked to i by an edge.

1: Start with a complete undirected graph G′

2: ℓ = 0
3: repeat

4: for each i ∈ V do

5: for each j ∈ ne(i) do

6: Test whether ∃S ∈ ne(i) \ {j} with |S| = ℓ and Xi ⊥⊥ Xj |S
7: if this set exists then

8: Make Sij = S

9: Remove link between nodes i and j in G′

10: end if

11: end for

12: end for

13: ℓ = ℓ + 1
14: until |ne(i)| ≤ ℓ ∀i

In detail, the PC algorithm checks marginal and conditional relations be-
tween adjacent nodes, i and j, given a conditioning set S of increasing
cardinality, 0 ≤ ℓ < |ne(i)|. Computationally, the conditional cross en-
tropy between corresponding variables, CE(Xi, Xj |S), is calculated. The
algorithm uses the test statistic G2 which is equal to 2nCE(Xi, Xj |S)
where n is the sample size. Under the null hypothesis of independence,
G2 follows a χ2 distribution (Lindgren 1976) with degrees of freedom (df)
equal to (kxi

− 1)(kxj
− 1)

∏

xγ∈S kxγ
where kxi

, kxj
, kxγ

respectively
denote the number of values of variables Xi, Xj and Xγ ∈ S. Given
a significance level α: if G2(Xi, Xj , ∅) < χ2

(1−α,df) then Xi and Xj are

marginally independent (Xi ⊥⊥ Xj); if G2(Xi, Xj , S) < χ2
(1−α,df) then Xi

and Xj are conditionally independent given S (Xi ⊥⊥ Yj |S).
The output of this first step is the underlying undirected graph, also called
skeleton of the graph.

2. The second step of the algorithm consists in finding head-to-head config-
urations. When two generic variables Xi and Xj are not conditionally
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independent given a subset Sij = Xγ then γ is a collider node and a v-
structure i→ γ ← j is drawn; if Xi and Xj are conditionally independent
given a subset Sij = Xγ then γ is not a collider node and, at the second
stage, edges remain undirected i− γ − j.

3. In the last step of the algorithm some constraints must be fulfilled: no
new head-to-head configurations can be created; cycles in the graph are
forbidden. At the end of this step some edges can remain undirected.

Many limitations of the PC algorithm have been discussed in the literature and
many variations have been proposed to overcome them (Steck 2001; Fernandes
et al. 2004; Abellán et al. 2006). We focus our attention on the PC algorithm
behaviour in presence of ordinal variables and we introduce our proposal in the
following Section.

4 The OPC algorithm

In order to check independences, the PC algorithm uses the G2 test that treats
categorical variables as nominal even if they are ordinal. This may produce an
information loss. Our proposal consists in a new procedure that uses, in place
of G2, a more appropriate test for ordinal variables. The main advantage of
the variation consists in considering additional information provided by ordinal
variables by using a well known methodological scheme; the new procedure has
been called Ordinal PC algorithm, OPC algorithm.
The OPC algorithm structure is the same of the PC algorithm, however it
uses a different test for checking conditional independences. When variables
are ordinal, independence is generally tested by rank-based nonparametric tests
(Siegel and Castellan 1988). The OPC algorithm uses the Jonckheere-Terpstra
test for checking conditional independences. The Jonckheere Terpstra test was
proposed by Terpstra (1952) and Jonckheere (1954) as a nonparametric test
for trend among ordered alternatives. The test, already implemented in MIM

(Edwards 1995), is appropriate for contingency tables where both variables are
ordinal. Here, the Jonckheere-Terpstra test is used for comparing a row ordered
variable with a column ordered variable.
Let D be a set of data made of n observations on three variables X1, X2 and X3.
Suppose we are interested in checking X1 ⊥⊥ X3|X2 where X1 and X3 are both
ordinal with T and C levels respectively and X2 is a discrete variables with L

levels. For the k-th level of X2, data are organized as in Table 1.

Let Fi,k(x3) be the distribution of X3 given X1 = i and X2 = k. The null
hypothesis of Jonckheere-Terpstra test is that of homogeneity, that is:

H0 : F1,k(x3) = F2,k(x3) = .... = FT,k(x3),∀x3,∀k

This is tested against the alternative hypothesis of a stochastic ordering among
distributions.

Fi,k(x3) > Fj,k(x3), with i < j,∀x3,∀k

5



X3

X1 1 2 .... C Total
1 n11k n12k .... n1Ck n1+k

2 n21k n22k .... n2Ck n2+k

.... .... .... .... .... ....
T nT1k nT2k .... nTCk nT+k

Total n+1k n+2k .... n+Ck n++k

Table 1: The k-th slice of the T × C × L table

or

Fi,k(x3) < Fj,k(x3), with i > j,∀x3,∀k

The test statistic is:

JT =
L

∑

k=1

T
∑

i=2

i−1
∑

j=1

{

C
∑

s=1

wijsknisk −
ni+k(ni+k + 1)

2

}

.

The test statistic is based on wijsk that are the Wilcoxon scores. They are
denoted by:

wijsk =

s−1
∑

t=1

(nitk + njtk) +
(nisk + njsk + 1)

2

Under the null hypothesis the mean of JT is the following:

E(JT |H0) =

∑L
k=1(n

2
++k −

∑T
i=1 n2

i+k)

4

The asymptotic variance, discussed by Lehmann (1975) and Pirie (1983), is:

ˆV ar(JT |H0) =
V1

72
+

V2

36(n++k(n++k − 1)(n++k − 2))
+

V3

8(n++k(n++k − 1))

where:

V1 = n++k(n++k − 1)(2n++k + 5)−

T
∑

i=1

ni+k(ni+k − 1)(2ni+k + 5)−

−

C
∑

j=1

n+jk(n+jk − 1)(2n+jk + 5)

V2 =

T
∑

i=1

ni+k(ni+k − 1)(ni+k − 2)−

C
∑

j=1

n+jk(n+jk − 1)(n+jk − 2)

V3 =

T
∑

i=1

ni+k(ni+k − 1)−

C
∑

j=1

n+jk(n+jk − 1)

Asymptotically, the test statistic is a standard normal and the two-sided p-value
is given by:

p = Pr(|JT − E(JT |H0)| ≥ |JTobs − E(JT |H0)||H0)
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5 Empirical evaluations

Here the performance of PC and OPC algorithms are compared. The empiri-
cal evaluations have been conducted using two different sets of data: Customer
Satisfaction data coming from a real survey of customer satisfaction and Polit-
ical Action data borrowed from the literature (Barnes and Kaase 1979). Both
datasets are made of six ordinal variables measured on three levels (Customer
satisfaction data) and four levels (Political Action data) respectively. For each
dataset, a Bayesian network has been learnt using the PC algorithm; the learnt
network has been assumed as true and has been used as gold standard. Accord-
ing to every network, multiple datasets have been generated for different sample
sizes: 50, 100 and 500. In detail, we generated 1000 training sets for each sample
size. For every simulated dataset two Bayesian networks have been estimated:
one using the PC algorithm and one using the OPC algorithm, given a level of
significance equal to 0.05. We compared results of structural learning with the
gold standard in term of (1) skeleton identification ability and (2) structural
accuracy.
The skeleton identification ability has been measured by three indexes that com-
pare the skeleton of the true DAG, here denoted by G∗, with the skeleton of
the estimated DAG, H∗. The measures are: true positive rate (TPR) that is
given by the number of edges correctly found in H∗ over the number of true
edges in G∗; false positive rate (FPR) that is the number of edges incorrectly
found in H∗ over the number of true gaps (absent edges) in G∗; true discovery
rate (TDR) that is the proportion of edges correctly found on the total number
of found edges (both in the estimated graph). These measures return a set of
information interpretable in term of sensitivity (that is greater for TPR values
closer to 1), specificity (that is greater for FPR values closer to 0) and precision
(that is greater for TDR values closer to 1).
The structural accuracy has been evaluated using the structural Hamming dis-
tance (SHD, Tsamardinos et al. (2006)) that is a performance measure com-
puting the structural distance between PDAGs. SHD is an overall metric that
directly compares the learnt PDAG and the original PDAG by counting the
number of operations required to convert the fitted graph into the true graph.
Admitted operations are addition or deletion of edges and addition, deletion or
reversal of directions.
In order to evaluate algorithms performance, a mean value of each performance
indicator has been computed with respect to different sample sizes. The results
are shown for each experimental evaluation separately.
The gold standard network for Customer Satisfaction data is the DAG in Figure
3.

TPR FPR TDR

Algorithm Sample size Sample size Sample size
50 100 500 50 100 500 50 100 500

PC 0.42 0.64 0.97 0.11 0.04 0.02 0.73 0.91 0.98
OPC 0.69 0.87 0.97 0.04 0.03 0.02 0.93 0.96 0.99

Table 2: Mean values of performance for PC and OPC algorithm performed on
1000 datasets generated according to the DAG in Figure 3
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Figure 3: The true DAG for customer satisfaction data

Results shown in Table 2 suggest that the skeleton learning ability of both
algorithms increases with larger sample sizes. In detail, since more observations
makes statistical test more sensitive, when the sample size is equal to 500, the
TPR is really close to one for both algorithms. Furthermore, for the largest
sample size, algorithms have the same performance results considering every
indexes. Despite that, when the sample size is 50 or 100 the TPR and the
TDR of OPC algorithm are larger than those of PC algorithm and the FPR of
OPC algorithm is smaller than that of PC algorithm. The gap of performance
is relevant for the smallest sample size. On the basis of this results, the OPC
algorithm seems to be more sensitive, more accurate and more reliable than PC
algorithm above all for small samples.
Results of the SHD are shown in Table 3.

Sample size

Algorithm 50 100 500

PC 6.07 4.92 3.3
OPC 4.89 4.17 3.2

Table 3: The SHD average for PC and OPC algorithm performed on 1000
datasets generated according to the DAG in Figure 3

The SHD of both algorithms decreases when the sample size increases. How-
ever, given the same sample size, the SHD of PC algorithm is larger than the
SHD of OPC algorithm. Since small values of SHD mean that less operations
are required to make the estimated PDAG and the true PDAG match, the OPC
algorithm outperforms the PC algorithm.
These results are confirmed also by the second experiment. The gold standard
network for Political Action data is displayed in Figure 4.

Results in Table 4 highlight that algorithms performance increase with the
increasing of sample size. In detail, OPC algorithm performance are more satis-
fying than PC algorithm performance when the sample size is 50 or 100. When
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Figure 4: The true DAG for Political Action data

TPR FPR TDR

Algorithm Sample size Sample size Sample size
50 100 500 50 100 500 50 100 500

PC 0.38 0.50 0.88 0.11 0.07 0.00 0.76 0.86 0.99
OPC 0.61 0.79 0.95 0.02 0.01 0.00 0.96 0.98 0.99

Table 4: Mean values of performance for PC and OPC algorithm performed on
1000 datasets generated according to the DAG in Figure 4

the sample size is 500 the algorithms behaviour is almost identical.
The SHD values computed in this experiment are presented in Table 5.

Sample size

Algorithm 50 100 500

PC 7.22 6.73 5.41
OPC 6.56 6.38 4.50

Table 5: The SHD average for PC and OPC algorithm performed on 1000
datasets generated according to the DAG in Figure 4

The SHD values decrease when the sample size increases and they are smaller
if referred to OPC algorithm rather than PC algorithm.

6 Conclusion

This paper dealt with the problem of learning a Bayesian network when subject-
matter knowledge is not available. In this situation it is necessary to infer the
network from data using automatic learning procedures. The main purpose of
this paper was to introduce a new procedure for structural learning in pres-
ence of ordinal variables. The new procedure is a variation of the PC algorithm
namely OPC algorithm and represents an opportunity to learn the network with-
out demoting ordinal variables in nominal. The OPC algorithm is based on a
nonparametric rank-based test appropriate for ordinal variables, the Jonckheere-
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Terpstra test. The test is used for checking monotonic trend so the alternative
hypothesis is arranged in a specific order. This requires an ordering should be
specified before the data are collected. According to the empirical evaluations,
in presence of ordinal variables and restricted sample size, the OPC algorithm
represents a more suitable solution for the structural learning matter. However,
the Jonckheere-Terpstra test only checks for monotone association between ordi-
nal variables. When ordinal variables are associated but not monotonically, the
test fails and, in order to catch the association, it is necessary to restore to the
G2 test. A work in progress is the study of an alternative procedure that auto-
matically selects the more suitable test according to the considerations coming
from a contingency table analysis.
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