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Abstract

This paper presents a new approximation formula for pricing swap-
tions and caps/floors under the LIBOR market model of interest rates
(LMM) with the local and affine-type stochastic volatility.

In particular, two approximation methods are applied in pricing,
one of which is so called “drift-freezing” that fixes parts of the underly-
ing stochastic processes at their initial values. Another approximation
is based on an asymptotic expansion approach. An advantage of our
method is that those approximations can be applied in a unified man-
ner to a general class of local-stochastic volatility models of interest
rates.

To demonstrate effectiveness of our method, the paper takes CEV-
Heston LMM and Quadratic-Heston LMM as examples; it confirms
sufficient flexibility of the models for calibration in a caplet market and
enough accuracies of the approximation method for numerical evalua-
tion of swaption values under the models.
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1 Introduction

This paper proposes a new analytical approximation method for pricing
swaptions under the LIBOR market model of interest rates (LMM) with the
local and affine-type stochastic volatility. Especially, our scheme is general
enough to be applied in a unified way to a general class of local-stochastic
volatility models of interest rates, which is distinct from other existing meth-
ods.

After the epoch making papers such as Brace, Gatarek and Musiela
(1997) and Jamshidian (1997), LMM with deterministic volatilities has be-
come a standard model in interest rate derivative markets. Thanks to LMM,
practitioners can not only obtain consistent prices of ATM caps/floors and
exotic interest rate derivatives, but also hedge the exotic derivatives by using
ATM caps/floors as Vega hedging tools. Moreover, by joint calibration to
cap/floor and swaption markets, traders are able to execute relative value
trading between ATM caps/floors and ATM swaptions.

Thereafter, many researchers and practitioners have been trying to de-
velop extended LMMs in order to calibrate them to volatility smiles/skews
that are observed in cap/floor and swaption markets. If an extended LMM
model can be calibrated to volatility smiles/skews perfectly, exotic deriva-
tives are evaluated consistently with market prices of caps/floors and hedged
by caps/floors at different strikes as hedging tools. Many papers focusing
on extended LMMs have been published; for instance, LMM with jumps
(Glasserman and Kou (2003)), LMM with local volatilities (Andersen and
Andreasen (2000)), and LMM with stochastic volatilities (Andersen and
Brotherton-Ratcliffe (2001), Piterbarg (2003), Wu and Zhang (2006)).

More recently, SABR-LMM developed by Labordere (2007), Rebonato
and White (2007), Rebonato (2007), Hagan and Lesniewski (2008), Mercurio
and Morini (2009), and Rebonato, et al. (2009) comes under the spotlight
among practitioners. While the original SABR proposed by Hagan, et al.
(2002) is a local-stochastic volatility model without the term structure of
interest rates, SABR-LMM is a unified model of LMM and SABR. SABR-
LMM is gradually getting popularity in practice since the original SABR has
been an industry standard for interpolating and extrapolating the prices of
plain-vanilla caps/floors and swaptions, and with so called freezing tech-
niques, the well-known Hagan’s formula can be applied to pricing swaptions
as well as caps/floors.

Next, let us recall some features of existing researches for SABR-LMM:
The first one is on its volatility modeling. In SABR-LMM, the volatility
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process V is given by

dV (t) = vV (t)dWQ
t ,

where WQ is a Brownian motion under the spot measure Q and v is con-
stant. However, the process might not be suitable for modeling volatility
dynamics because many empirical studies reported that the observed volatil-
ity dynamics has mean-reverting property. For example, Rebonato, et al.
(2009) pointed out that for pricing exotic derivatives through Monte Carlo
simulations, there are some problems for numerical convergence and stability
due to the diffusion process of the SABR volatility.

The second one is on the freezing techniques used for derivation of ap-
proximation formulas under SABR-LMM. In order to keep the SABR frame-
work even after the change of a numéraire, not only well-known freezing
techniques such as ”drift-freezing”, but also some peculiar freezing tech-
niques are needed. For example, Mercurio and Morini (2009) starts with
the volatility process under the forward measure Qk:

dV (t) = −vµ0(γ(t), k;V )V 2(t)dt+ vV (t)dWQk

t ,

where WQk
is a Brownian motion under the forward measure Qk. Then,

for the application of the Hagan’s analytical pricing formula, it applies a
new freezing method such that V 2(t) in the drift coefficient is changed to
V (0)V (t). That is, the volatility process is approximated as

dV (t) = −vµ0(γ(t), k;V )V (0)V (t)dt+ vV (t)dWQk

t .

The third one is related to the flexibility of the existing methods. It
seems not easy for the same or similar methods to be applied to extensions
or modifications of SABR-LMM; some other special ideas seems necessary
for the applications to extended or modified models. For example, many
existing works highly rely on the Hagan’s SABR formula. On the other
hand, the Hagan’s formula cannot be directly applied to other types of
local-stochastic models such as CEV-Heston LMM and Quadratic-Heston
LMM. Also, Labordere (2007) proposed the heat kernel expansion approach
to develop the approximation formula for pricing swaptions under SABR-
LMM. However, it seems not easy for this approach to be applied except to
the one-dimensional stochastic volatility model.

Comparing with the existing models and approximation techniques, our
extended LMMs and approximation scheme have the following features:

1. Volatility Modeling: appropriate volatility processes with a mean-
reverting property are introduced in the model.

2. Model Flexibility: all parameters are time-dependent, and multi-dimensional
stochastic volatility processes can be applied.
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3. Generality of Approximation Techniques: a general approximation
scheme by an asymptotic expansion with standard freezing techniques
is proposed for pricing swaptions and caps/floors; it can be applied to
a broad class of the underlying models in a unified manner.

4. Analytical Tractability: the same approximation formulas except con-
crete specifications of the coefficients can be applied to different mod-
els, which is very useful for testing various models, for example in
calibration.

The organization of the paper is as follows; the next section describes
the basic setup and LMM with the local and affine-type stochastic volatility.
It also presents an approximation of swap rate processes. After Section 3
briefly explains the framework of an asymptotic expansion method, Section
4 applies the method to deriving an approximation formula for swaption
prices. Section 5 gives numerical examples. Section 6 concludes. Appendix
lists up the conditional expectation formulas used in the approximation.

2 LIBOR Market Model with Local and Affine-
type Stochastic Volatility

This section introduces a LIBOR market model (LMM) of interest rates with
with the local and affine-type stochastic volatility after briefly describing
basics on the framework of LMM. Then, it discusses on the changes of
numéraires among the equivalent martingale measure (EMM) to the spot,
forward and swap measures as well as on the swap rate processes. Moreover,
it shows that an appropriate approximation makes LMM with the local and
affine-type stochastic volatility included in the same class as before after the
changes of measure.

2.1 Basic Setup

This subsection defines basic concepts such as tenor structures, discount
bond prices, the money market account (MMA) and forward LIBOR rates.
First a tenor structure is given by a finite set of dates:

0 = T0 < T1 < · · · < TN ,

where Ti(i = 0, 1, · · · , N) are pre-specified dates. Pj(t) denotes the price
of the discount bond with maturity Tj at time t, where Pj(Tj) = 1 and
Pj(t) = 0 for t ∈ (Tj , TN ].

The forward LIBOR rate at time t(≤ Tj) with the term [Tj−1, Tj ] is
defined as

Fj(t) =
1

δj

(
Pj−1(t)

Pj(t)
− 1

)
, for any j = 1, 2, . . . , N, (1)
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where δj := Tj − Tj−1.
On the other hand, Pj(Tk) is expressed by the forward LIBOR as

Pj(Tk) =

j∏
i=k

1

1 + δiFi(Tk)
. (2)

The money market account (MMA)’s price Bd(t) is defined as

Bd(t) =
Pγ(t)(t)∏γ(t)

j=1 Pj(Tj−1)
= Pγ(t)(t)

γ(t)∏
j=1

{1 + δjFj(Tj−1)} , (3)

where γ(t) = min{i ∈ {1, 2, · · · , N} : Ti ≥ t}.

2.2 LMM with Affine-type Local-Stochastic Volatility Model

Let (Ω,F , (Ft)t∈[0,TN ], Q) denote a complete probability space satisfying the
usual conditions where Q is the spot measure; it stands for uncertainty of
the market.

Under the spot measure Q, it is assumed that forward LIBOR Fj , j =
1, 2, . . . , N follows a SDE having a unique strong solution;

dFj(t) = µQj dt+ ϕ(t, Fj(t))σj(t)
′
Σ(t, V (t))dWQ,1

t (4)

Fj(0) = fj ∈ (0,∞),

where WQ,1
t is a D-dimensional Brownian motion under Q, each element of

D-dimensional stochastic volatility process V = (V1, V2, . . . , VD)
′
is given by

dVd(t) = {α1d(t) + α2d(t)
′
V (t)}dt

+

2∑
l=1

θdl(t)
′
Σ(t, V (t))dWQ,l

t , (5)

Vd(0) = 1, d = 1, 2, . . . , D,

WQ = (WQ,1,WQ,2)
′
is a 2D-dimensional Brownian motion under Q (WQ,2

is a D-dimensional Brownian motion), and µQj is an appropriate drift term1

of Fj under Q. Here, x
′
denotes transpose of vector x.

The matrix Σ(t, x) : [0,∞)×RD 7→ RD×D is assumed to be a diagonal
matrix such that its diagonal elements are given by

Σdd(t, x) :=
√
β1d(t) + β2d(t)

′x, d = 1, 2, . . . , D,

where

β1d(t) : [0,∞) 7→ R

β2d(t) : [0,∞) 7→ RD

β1d(t) + β2d(t)
′
x > 0

1Hereafter, the drift terms µQ
j , j = 1, 2, . . . , N will not appear explicitly due to the

changes of numéraires.
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ϕ(t, x) : [0,∞)×R 7→ R represents a local volatility function.
In addition to βjd(t), j = 1, 2, all the other coefficients in the processes

are assumed to be deterministic functions of the time parameter:

σj(t) : [0,∞) 7→ RD

α1d(t) : [0,∞) 7→ R

α2d(t) : [0,∞) 7→ RD

θdl(t) : [0,∞) 7→ RD, l = 1, 2.

Therefore, our extended LMM has a D-dimensional and mean-reverting
stochastic volatility combined with a local volatility, and this model is
equipped with time-dependent parameters.

Next, we apply the method of the change of a numéraire to our setting.
First, we recall the measure-change from the spot measure Q to a forward
measure: Under the forward measure Qk where the numéraire is the discount
bond Pk(t),W

k = (W k,1,W k,2)
′
is a 2D-dimensional Brownian motion given

as

W k,1
t =WQ,1

t +

∫ t

0
Σ(s, Vs)µ(s, γ(s), k)ds, (6)

and

W k,2
t =WQ,2

t , (7)

where µ(t, γ(t), k) is a RD-valued process defined by

µ(t, γ(t), k) :=

k∑
i=γ(t)+1

δiϕ(t, Fi(t))

1 + δiFi(t)
σi(t). (8)

Next, we apply the measure-change from the spot measure Q to an
annuity measure: Under the annuity measure Q(a,b) where the numéraire
is the annuity N (a,b)(t) =

∑b
i=a+1 δiPi(t), W

k = (W (a,b),1,W (a,b),2)
′
is a

2D-dimensional Brownian motion given as

W
(a,b),1
t =WQ,1

t +

∫ t

0
Σ(s, Vs)µ

(a,b)(s, γ(s))ds, (9)

and

W
(a,b),2
t =WQ,2

t . (10)

Here, a RD-valued process µ(a,b)(t, γ(t)) is defined by

µ(a,b)(t, γ(t)) :=
b∑

k=a+1

w
(a,b)
k (t)µ(t, γ(t), k), (11)

w
(a,b)
k (t) :=

δkPk(t)∑b
i=a+1 δiPi(t)

. (12)
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We will derive a swap rate dynamics under the annuity measure. Note
first that a time-t forward swap rate Sa,b(t) with effective date Ta and ter-
minate date Tb is given by

Sa,b(t) =
b∑

j=a+1

δjPj(t)∑b
i=a+1 δiPi(t)

Fj(t) =
b∑

j=a+1

w
(a,b)
j (t)Fj(t), (13)

Thus, under the annuity measure Q(a,b) its dynamics follows a stochastic
differential equation (SDE):

dSa,b(t) = ϕ(t, Sa,b(t))

b∑
j=a+1

λ
(a,b)
j (t)σj(t)

′
Σ(t, V (t))dW

(a,b),1
t , (14)

where

λ
(a,b)
j (t) :=

∂Sa,b(t)

∂Fj(t)

ϕ(t, Fj(t))

ϕ(t, Sa,b(t))
, (15)

and

∂Sa,b(t)

∂Fj(t)
= w

(a,b)
j (t) +

δj
1 + δjFj(t)

[
j−1∑
l=a

w
(a,b)
l (t){Fl(t)− Sa,b(t)}

]
,

a+ 1 ≤ j ≤ b. (16)

Also, under the annuity measureQ(a,b), each element of stochastic volatil-
ity V = (V1, V2, . . . , VD) is given by

dVd(t) = {η(a,b)1d (t) + η
(a,b)
2d (t)

′
V (t)}dt

+

2∑
l=1

θdl(t)
′
Σ(t, V (t))dW

(a,b),l
t , (17)

Vd(0) = 1, d = 1, 2, . . . , D,

where

η
(a,b)
1d (t) := α1d(t)− [θd1(t)

′
µ(a,b)(t, γ(t))]β1d(t) (18)

η
(a,b)
2d (t) := α2d(t)− [θd1(t)

′
µ(a,b)(t, γ(t))]β2d(t). (19)

Although an asymptotic expansion technique introduced in the next sec-
tion can be directly applied to the above equations for an approximation of
swaption prices, this paper will derive a simpler analytical approximation
formula. Hence, before the application of the asymptotic expansion method,
the so called freezing technique is used for the swap rate dynamics. That is,

the variation of λ
(a,b)
j (t) is so small that the standard freezing technique is

applied to λj(t) such that

λ
(a,b)
j (t) ≈ λ

(a,b),0
j (t) :=

∂Sa,b(0)

∂Fj(0)

ϕ(t, Fj(0))

ϕ(t, Sa,b(0))
. (20)
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More precisely, λ
(a,b)
j (t) is approximated as

λ
(a,b),0
j (t) =

{
w

(a,b)
j (0) +

δj
1 + δjFj(0)

[
j−1∑
l=a

w
(a,b)
l (0){Fl(0)− Sa,b(0)}

]}

× ϕ(t, Fj(0))

ϕ(t, Sa,b(0))
. (21)

Therefore, the approximated swap rate process is obtained as

dSa,b(t) ≈ ϕ(t, Sa,b(t))σ̄
(a,b)(t)

′
Σ(t, V (t))dW

(a,b),1
t , (22)

where σ̄(a,b)(t) is a RD-valued deterministic process given by

σ̄(a,b)(t) :=

b∑
j=a+1

λ
(a,b),0
j (t)σj(t). (23)

Moreover, the standard freezing technique is also applied to the stochas-
tic volatility process. That is, set

µ(a,b)(t, γ(t)) ≈ µ
(a,b)
0 (t, γ(t))

=
b∑

k=a+1

w
(a,b)
k (0)

k∑
i=γ(t)+1

δiϕ(t, Fi(0))

1 + δiFi(0)
σi(t), (24)

and hence, µ
(a,b)
0 (t, γ(t)) becomes a RD-valued deterministic process. Then,

the approximated stochastic volatility process is obtained as

dVd(t) ≈ {η1d(t) + η2d(t)
′
V (t)}dt+

2∑
l=1

θdl(t)
′
Σ(t, V (t))dW

(a,b),l
t , (25)

where ηjd(t), j = 1, 2 also become deterministic processes:

η1d(t) := α1d(t)− [θd1(t)
′
µ
(a,b)
0 (t, γ(t))]β1d(t) (26)

η2d(t) := α2d(t)− [θd1(t)
′
µ
(a,b)
0 (t, γ(t))]β2d(t). (27)

In sum, the approximated swap rate process is re-written as follows:

dSa,b(t) = ϕ(t, Sa,b(t))σ̄
(a,b)(t)

′
Σ(t, V (t))dW

(a,b),1
t , (28)

Sa,b(0) given,

dVd(t) = {η1d(t) + η2d(t)
′
V (t)}dt

+
2∑

l=1

θdl(t)
′
Σ(t, V (t))dW

(a,b),l
t , (29)

Vd(0) = 1, d = 1, 2, · · · , D.
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In particular, when V (t) is one dimensional, we are able to re-express the
forward swap rate process by using a one-dimensional Brownian motion W 1

independent of W (a,b),2 and a one-dimensional deterministic process σa,b(t)
as

dSa,b(t) = ϕ(t, Sa,b(t))
√
β1(t) + β2(t)V (t)σ(a,b)(t)dW 1

t (30)

dV (t) = {η1(t) + η2(t)V (t)}dt
+
√
β1(t) + β2(t)V (t)[θ1(t)dW

1
t + θ2(t)dW

2
t ], (31)

where

W 1
t =

1

∥σ̄(a,b)(t)∥2

∫ t

0
σ̄(a,b)(t)′dW

(a,b),1
t , (32)

W 2
t =W

(a,b),2
t , (33)

σ(a,b)(t) = ∥σ̄(a,b)(t)∥. (34)

3 Asymptotic Expansion Method in a General Marko-
vian Setting

This section briefly describes an asymptotic expansion method in a general
Markovian setting, which will be applied to the derivation of swaption prices
under the approximated swap rate process above in the next section. See
Takahashi (1999), Kunitomo and Takahashi (2003) and references therein
for the detail of the theory and applications of the method from finance
perspective. Also, see Takahashi, et al. (2009) for the detail of its compu-
tational aspect.

Let (Z,P ) be the r-dimensional Wiener space. We consider a d-dimensional

diffusion process X
(ϵ)
t = (X

(ϵ),1
t , · · · , X(ϵ),d

t ) which is the solution to the fol-
lowing stochastic differential equation:

dX
(ϵ)
t = V0(X

(ϵ)
t )dt+ ϵV (X

(ϵ)
t )dZt; X

(ϵ)
0 = x0, t ∈ [0, T ], (35)

where Z = (Z1, · · · , Zm) is a m-dimensional Brownian motion and ϵ ∈ [0, 1]
is a known parameter. Also, V0 : R

d 7→ Rd, V : Rd 7→ Rd⊗Rm satisfy some
regularity conditions.(e.g. V0 and V are smooth functions with bounded
derivatives of all orders.)

Next, suppose that a function g : Rd 7→ R to be smooth and all deriva-
tives have polynomial growth orders. Then, a smooth Wiener functional

g(X
(ϵ)
T ) has its asymptotic expansion;

g(X
(ϵ)
T ) = g0T + ϵg1T + ϵ2g2T + ϵ3g3T + o(ϵ3). (36)

in Lp for every p > 1(or in D∞) as ϵ ↓ 0. The coefficients in the expansion
gnT ∈ D∞(n = 0, 1, · · · ) can be obtained by Taylor’s formula and repre-
sented based on multiple Wiener-Itô integrals. Here, D∞ denotes the set of
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smooth Wiener functionals. See chapter V of Ikeda and Watanabe (1989)
for the detail.

In particular, let Dt =
∂X

(ϵ)
t

∂ϵ |ϵ=0，Et =
∂2X

(ϵ)
t

∂ϵ2
|ϵ=0 and Ft =

∂3X
(ϵ)
t

∂ϵ3
|ϵ=0.

Then, g0T , g1T , g2T and g3T are expressed as follows:

g0T = g(X
(0)
T ), g1T =

d∑
i=1

∂ig(X
(0)
T )Di

T , (37)

g2T =
1

2

d∑
i,j=1

∂i∂jg(X
(0)
T )Di

TD
j
T +

1

2

d∑
i=1

∂ig(X
(0)
T )Ei

T , (38)

g3T =
1

6

d∑
i,j,k=1

∂i∂j∂kg(X
(0)
T )Di

TD
j
TD

k
T +

1

2

d∑
i,j=1

∂i∂jg(X
(0)
T )Ei

TD
j
T

+
1

6

d∑
i=1

∂ig(X
(0)
T )F i

T , (39)

where Di
t, E

i
t and F i

t , (i = 1, · · · , d) denote the i-th element of Dt, Et and
Ft, respectively. Dt, Et and Ft are given by

Dt =

∫ t

0
YtY

−1
u V (X(0)

u )dZu, (40)

Et =

∫ t

0
YtY

−1
u

(
d∑

j,k=1

∂j∂kV0(X
(0)
u )Dj

uD
k
udu

+2
d∑

j=1

∂jV (X(0)
u )Dj

udZu

)
, (41)

Ft =

∫ t

0
YtY

−1
u

 d∑
j,k,l=1

∂j∂k∂lV0(X
(0)
u , 0)Dj

uD
k
uD

l
udu

+3

d∑
j,k=1

∂j∂kV0(X
(0)
u , 0)Ej

uD
k
udu+ 3

d∑
j,k=1

∂j∂kV (X(0)
u )Dj

uD
k
udZu

+3

d∑
j=1

∂jV (X(0)
u )Ej

udZu

 . (42)

Here, Y is the solution to the following ordinary differential equation:

dYt = ∂V0(X
(0)
t )Ytdt; Y0 = Id,

where ∂V0 is a d×d matrix whose (j, k) element is given by ∂kV
j
0 . (∂k = ∂

∂xk
,

V j
0 denotes the j-th component of V0.）Also, Id represents the d×d identity

matrix.
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Next, normalize g(X
(ϵ)
T ) to

G(ϵ) =
g(X

(ϵ)
T )− g0T
ϵ

. (43)

Moreover, let

at = a
(0)
t = (∂g(X

(0)
T ))

′
[YTY

−1
t V (X

(0)
t )],

and make an assumption:

(Assumption 1) ΣT =

∫ T

0
ata

′
tdt > 0. (44)

Note that ΣT is the variance of a random variable g1T following a normal
distribution. Thus, (Assumption 1) means that the distribution of g1T does
not degenerate.

Then, ψG(ϵ)(ξ), the characteristic function of G(ϵ) is approximated as

ψG(ϵ)(ξ) = E[exp(iξG(ϵ))]

= E[exp(iξg1T )] + ϵ(iξ)E[exp(iξg1T )g2T ]

+ϵ2(iξ)E[exp(iξg1T )g3T ] +
ϵ2

2
(iξ)2E[exp(iξg1T )g

2
2T ] + o(ϵ2)

= exp

(
(iξ)2ΣT

2

)
+ ϵ(iξ)E [exp(iξg1T )E[g2T |g1T ]]

+ϵ2(iξ)E [exp(iξg1T )E[g3T |g1T ]]

+
ϵ2

2
(iξ)2E

[
exp(iξg1T )E[g22T |g1T ]

]
+ o(ϵ2), (45)

where E[g2T |g1T ], E[g22T |g1T ] and E[g3T |g1T ] become some polynomials of
g1T .

Hence, the inversion of the approximated characteristic function provides
an approximation of the density function of Gϵ, fGϵ :

fGϵ = n[x; 0,ΣT ] + ϵ

[
− ∂

∂x
{h2(x)n[x; 0,ΣT ]}

]
+ϵ2

[
− ∂

∂x
{h3(x)n[x; 0,ΣT ]}

]
+
1

2
ϵ2
[
∂2

∂x2
{h22(x)n[x; 0,ΣT ]}

]
+ o(ϵ2), (46)

where h2(x) = E[g2T |g1T = x], h22(x) = E[g22T |g1T = x], h3(x) = E[g3T |g1T =
x]. Also, n[x; 0,ΣT ] represents the density function of a normal distribution
with mean 0 and variance ΣT :

n[x; 0,ΣT ] =
1√

2πΣT
exp

{
−x2

2ΣT

}
. (47)
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Let ϕ : R 7→ R a smooth function of which all derivatives have poly-
nomial growth orders. Then, the expectation E[ϕ(G(ϵ))IB(G

(ϵ))] has an
asymptotic expansion with respect to ϵ:

E[ϕ(G(ϵ))IB(G
(ϵ))] = Φ0 + ϵΦ1 + ϵ2Φ2 + o(ϵ2), (48)

where B stands for a Borel set on R. IB(G
(ϵ)) = 1 when G(ϵ) ∈ B and

IB(G
(ϵ)) = 0 otherwise.

Especially, Φ0, Φ1, Φ2 are obtained by

Φ0 =

∫
B
ϕ(x)n[x; 0,ΣT ]dx, (49)

Φ1 = −
∫
B
ϕ(x)∂x{E[g2T |g1T = x]n[x; 0,ΣT ]}dx, (50)

Φ2 =

∫
B

(1
2
ϕ(x)∂2x{E[g22T |g1T = x]n[x; 0,ΣT ]}

−ϕ(x)∂x{E[g3T |g1T = x]n[x; 0,ΣT ]}
)
dx. (51)

Finally, when the underlying asset value at maturity T and the strike
price are given by g(Xϵ

T ) and K = g(X0
T ) − ϵy for an arbitrary y ∈ R,

respectively the payoff of the call option is expressed as

max{g(Xϵ
T )−K, 0} = ϵϕ(Gϵ)IB(G

ϵ), (52)

where ϕ(x) = (x+ y) and B = {Gϵ ≥ −y}．
Remark 1. E[g2T |g1T = x], E[g22T |g1T = x], E[g3T |g1T = x] are some
polynomial functions of x and those conditional expectations are evaluated
by the formulas in Appendix.

4 Approximation Formula of Swaption Price

Given the approximated swap rate process in Section 2, this section de-
rives an analytical approximation formula for swaption prices by using the
asymptotic expansion technique.

For simplicity, let us consider a swap rate process with parameter ϵ(∈
[0, 1]) under one-dimensional stochastic volatility environment described as
the models (30) and (31) in Section 2. However, even for the case of multi-
dimensional stochastic volatility models, the swaption pricing formula can
be derived in the similar manner as in the one-dimensional model.

The forward swap rate model under our asymptotic expansion setting is
given as follows:

dS
(ϵ)
a,b(t) = ϵϕ(t, S

(ϵ)
a,b(t))σ

(a,b)(t)
√
β1(t) + β2(t)V (ϵ)(t)dW 1

t , (53)

dV (ϵ)(t) = {η1(t) + η2(t)V
(ϵ)(t)}dt

+ ϵ
2∑

l=1

θl(t)
√
β1(t) + β2(t)V (ϵ)(t)dW l

t , (54)
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where (W 1,W 2) is a two-dimensional Brownian motion, θ1(t) = ρ(a,b)(t)θ(t),
θ2(t) =

√
1− ρ(a,b)(t)2θ(t) and ρ(a,b)(t) ∈ [−1, 1] denotes the correlation

between S
(ϵ)
a,b(t) and V (t).

Then, based on the discussion in Section 3, the swap rate process S
(ϵ)
a,b(T )

and variance process V (ϵ)(T ) described by (53) have asymptotic expansions;

S
(ϵ)
a,b(T ) ∼ S

(0)
a,b (T ) + ϵS

(1)
a,b (T ) + ϵ2S

(2)
a,b (T ) + ϵ3S

(3)
a,b (T ) + · · · , (55)

V (ϵ)(T ) ∼ V (0)(T ) + ϵV (1)(T ) + ϵ2V (2)(T ) + ϵ3V (3)(T ) + · · · ,

as ϵ ↓ 0, where the coefficients in the expansions are given by the next

proposition. S
(0)
a,b (T ), S

(1)
a,b (T ), S

(2)
a,b (T ) and S

(3)
a,b (T ) correspond to X

(0)
T , DT ,

ET and FT in Section 3, respectively.

Proposition 1. The coefficients S
(0)
a,b (T ), S

(1)
a,b (T ), S

(2)
a,b (T ) and S

(3)
a,b (T ) in

(55) are given by:

S
(0)
a,b (T ) = Sa,b(0), S

(1)
a,b (T ) =

∫ T

0
f11(s)

′
dWs, (56)

S
(2)
a,b (T ) =

2∑
k=1

∫ T

0

∫ s

0
f2k(u)

′
dWu g2k(s)

′
dWs, (57)

S
(3)
a,b (T ) =

3∑
k=1

∫ T

0

∫ s

0

∫ u

0
f3k(v)

′
dWv g3k(u)

′
dWu h3k(s)

′
dWs

+

3∑
k=1

∫ T

0

(∫ s

0
g4k(u)

′
dWu

)(∫ s

0
f4k(u)

′
dWu

)
h4k(s)

′
dWs.

(58)

Here, integrands f , g, h above are obtained as follows:

f11(t) = f21(t) = f31(t) = f41(t) = g41(t) = g42(t)

=

(
σ(t)

√
β1(t) + β2(t)V (0)(t)ϕ(t, S(0))

0

)
, (59)

f22(t) = f32(t) = f33(t) = f42(t) = f43(t) = g43(t)

=

(
θ1(t)e

−
∫ t
0 η2(s)ds

√
β1(t) + β2(t)V (0)(t)

θ2(t)e
−

∫ t
0 η2(s)ds

√
β1(t) + β2(t)V (0)(t)

)
, (60)

g21(t) = g31(t) = h31(t) = 2h32(t)

=

(
σ(t)

√
β1(t) + β2(t)V (0)(t)∂ϕ(t, S(0))

0

)
, (61)

2g22(t) = g32(t) = 4h33(t) =

 σ(t)β2(t)e
∫ t
0 η2(s)ds√

β1(t)+β2(t)V (0)(t)
ϕ(t, S(0))

0

 , (62)

13



g33(t) =

 θ1(t)β2(t)√
β1(t)+β2(t)V (0)(t)

θ2(t)β2(t)√
β1(t)+β2(t)V (0)(t)

 , (63)

h41(t) =

(
σ(t)

√
β1(t)+β2(t)V (0)(t)

2 ∂2ϕ(t, S(0))
0

)
, (64)

h42(t) =

 σ(t)β2(t)e
∫ t
0 η2(s)ds

2
√

β1(t)+β2(t)V (0)(t)
∂ϕ(t, S(0))

0

 , (65)

and

h43(t) =

− σ(t)β2(t)2e
2
∫ t
0 η2(s)ds

8[β1(t)+β2(t)V (0)(t)]
3/2

0

 , (66)

where

V (0)(t) := e
∫ t
0 η2(s)ds

(∫ t

0
η1(s)e

−
∫ s
0 η2(u)duds+ V (0)

)
, (67)

∂xϕ(t, S(0)) :=
∂ϕ(t, x)

∂x

∣∣∣
x=S(0)

,

∂2xϕ(t, S(0)) :=
∂2ϕ(t, x)

∂x2

∣∣∣
x=S(0)

,

and we use the abbreviated notation S(0) for Sa,b(0) and σ for σ(a,b).

Proof. We derive coefficients, S
(0)
a,b (T ), S

(1)
a,b (T ) and S

(2)
a,b (T ) explicitly. S

(3)
a,b (T )

can be derived in the similar manner and hence the detail is omitted. Also,

we use the abbreviated notation S(i)(·) for S(i)
a,b(·) below.

First, we calculate S(0)(T ).

S(0)(T ) =

(
S(0) + ϵ

∫ T

0
ϕ
(
t, (S(0)(t) + ϵS(1)(t) + · · · )

)
×σ(t)

√
β1(t) + β2(t)

(
V (0)(t) + ϵV (1)(t) + · · ·

)
dW 1

t

)∣∣∣∣∣
ϵ=0

= S(0).

Next, we calculate V (0)(T ) and S(1)(T ).

V (0)(T ) =

(
V (0) +

∫ T

0
η1(t) + η2(t)(V

(0)(t) + ϵV (1)(t) + · · · )dt

+ϵ

2∑
l=1

∫ T

0
θl(t)

√
β1(t) + β2(t)(V (0)(t) + ϵV (1)(t) + · · · )dW l

t

)∣∣∣∣∣
ϵ=0

= V (0) +

∫ T

0

(
η1d(t) + η2(t)V

(0)(t)
)
dt,
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S(1)(T ) =

(∫ T

0
ϕ
(
t, (S(0)(t) + ϵS(1)(t) + · · · )

)
×σ(t)

√
β1(t) + β2(t)

(
V (0)(t) + ϵV (1)(t) + · · ·

)
dW 1

t

+ϵ

∫ T

0
∂ϕ
(
t, (S(0)(t) + ϵS(1)(t) + · · · )

)
(S(1)(t) + 2ϵS(2)(t) + · · · )

×σ(t)
√
β1(t) + β2(t)

(
V (0)(t) + ϵV (1)(t) + · · ·

)
dW 1

t

+ϵ

∫ T

0
ϕ
(
t, (S(0)(t) + ϵS(1)(t) + · · · )

)
×σ(t) β2(t)(V

(1)(t) + 2ϵV (2)(t) + · · · )√
β1(t) + β2(t)

(
V (0)(t) + ϵV (1)(t) + · · ·

)dW 1
t

)∣∣∣∣∣
ϵ=0

=

∫ T

0
ϕ
(
t, S(0)(t)

)
σ(t)

√
β1(t) + β2(t)V (0)(t)dW 1

t .

V (0)(T ) can be solved as follows:

V (0)(t) = e
∫ t
0 η2(s)ds

(∫ t

0
η1(s)e

−
∫ s
0 η2(u)duds+ V (0)

)
.

Then, substituting V (0)(t) into S(1)(T ), we obtain the coefficient f11(t).
In the similar manner, we get the following equations for calculation of

V (1)(t) and S(2)(T ).

V (1)(T ) =
∂V (ϵ)(T )

∂ϵ

∣∣∣
ϵ=0

=

∫ T

0
η2(t)V

(1)(t)dt+

2∑
l=1

∫ T

0
θl(t)

√
β1(t) + β2(t)V (0)(t)dW l

t ,

S(2)(T ) =
∂2S(ϵ)(T )

∂ϵ2

∣∣∣
ϵ=0

= 2

∫ T

0
∂xϕ

(
t, S(0)(t)

)
S(1)(t)σ(t)

√
β1(t) + β2(t)V (0)(t)dW 1

t

+

∫ T

0
ϕ
(
t, S(0)(t)

)
σ(t)

β2(t)V
(1)(t)√

β1(t) + β2(t)V (0)(t)
dW 1

t .

Those equations are solved as follows:

V (1)(t) =

2∑
l=1

e
∫ t
0 η2(s)ds

(∫ t

0
e−

∫ s
0 η2(u)duθl(s)

√
β1(s) + β2(s)V (0)(s)dW l

s

)
,
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S(2)(T ) = 2

∫ T

0
∂xϕ

(
t, S(0)(t)

)
σ(t)

√
β1(t) + β2(t)V (0)(t)

×
∫ t

0
ϕ
(
t, S(0)(s)

)
σ(s)

√
β1(s) + β2(s)V (0)(s)dW 1

s dW
1
t

+

∫ T

0
ϕ
(
t, S(0)(t)

)
σ(t)

β2(t)
∑2

l=1 e
∫ t
0 η2(s)ds√

β1(t) + β2(t)V (0)(t)

×
∫ t

0
e−

∫ s
0 η2(u)duθl(s)

√
β1(s) + β2(s)V (0)(s)dW l

sdW
1
t .

Thus, we obtain f2i(t) and g2i(t), i = 1, 2.

Therefore, applying the general result in the previous section to the
current setting, the European payers-swaption price;

Swptn(a, b) := Na,b(0)E
(a,b)[(Sa,b(T )−K)+]

is obtained by

Swptn(a, b)

Na,b(0)
= ϵ

(
y

∫ ∞

−y
n(x,Σ)dx+

∫ ∞

−y
xn(x,Σ)dx

)
+ ϵ2

∫ ∞

−y
E(a,b)

[
S
(2)
a,b (T )|S

(1)
a,b (T ) = x

]
n(x,Σ)dx

+ ϵ3
(∫ ∞

−y
E(a,b)

[
S
(3)
a,b (T )|S

(1)
a,b (T ) = x

]
n(x,Σ)dx

+
1

2
E(a,b)

[
(S

(2)
a,b (T ))

2|S(1)
a,b (T ) = y

]
n(y,Σ)

)
+ o(ϵ3),

(68)

where Na,b(0) =
∑b

i=a+1 δiPi(0), y := {Sa,b(0)−K}/ϵ and

Σ :=
∫ T
0 f ′11(t)f11(t)dt.

We remark that

(
S
(ϵ)
a,b(T )−S

(0)
a,b(T )

ϵ

)
corresponds to G(ϵ) in Section 3. Note

also that the equation (48) with (52) in Section 3 is applied. Then, the
equation (68) is obtained after some calculation of (49), (50) and (51).

Finally, the following theorem is obtained through evaluations of the
conditional expectations in the above equation by the formulas in Appendix,
as well as applications of formulas below:∫ ∞

−y
n[x; 0,Σ]dx = N

(
y√
Σ

)
, (69)∫ ∞

−y
xn[x; 0,Σ]dx = Σn[y; 0,Σ], (70)∫ ∞

−y
x2n[x; 0,Σ]dx = ΣN

(
y√
Σ

)
− yΣn[y; 0,Σ], (71)
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∫ ∞

−y
x3n[x; 0,Σ]dx =

(
2Σ2 +Σy2

)
n[y; 0,Σ], (72)

where N(x) denotes the distribution function of the standard normal distri-
bution, and

n[x; 0,Σ] =
1√
2πΣ

exp

{
−x2

2Σ

}
. (73)

Theorem 1. The European payers-swaption price Swptn(a, b) at time 0
with strike rate K and maturity T is evaluated by the following formula,
where the underlying forward swap’s effective date and terminate date are
given by Ta and Tb, respectively(T ≤ Ta < Tb, a, b ∈ {1, 2, · · · , N}):

Swptn(a, b) = Na,b(0)

{
ϵ

(
yN

(
y√
Σ

)
+Σn[y; 0,Σ]

)
+ϵ2C1

(
−yn[y; 0Σ]

Σ

)
+ϵ3

(
C2

(
−1

Σ
+
y2

Σ2

)
n[y; 0,Σ] + C3n[y; 0,Σ]

+

(
C4

(
y4

Σ4
− 6y2

Σ3
+

3

Σ2

)
+ C5

(
y2

Σ2
− 1

Σ

)
+ C6

)
n[y; 0,Σ]

)}
+o(ϵ3). (74)

where ϵ(∈ [0, 1]) is a constant, Na,b(0) =
∑b

i=a+1 δiPi(0), and y, Σ and
Ci(i = 1, 2, 3, 4, 5, 6) are given as follows:

y =
Sa,b(0)−K

ϵ
, (75)

Σ =

∫ T

0
f11(s)

′f11(s)ds, (76)

C1 =
2∑

i=1

∫ T

0
f11(s)

′g2i(s)

∫ s

0
f11(u)

′f2i(u)duds, (77)

C2 =

3∑
i=1

∫ T

0
f11(s)

′h3i(s)

∫ s

0
f11(u)

′g3i(u)

∫ u

0
f11(v)

′f3i(v)dvduds

+

3∑
i=1

∫ T

0
f11(s)

′h4i(s)

∫ s

0
f11(u)

′g4i(u)du

∫ s

0
f11(u)

′f4i(u)duds,

(78)

C3 =

3∑
i=1

∫ T

0
f11(s)

′h4i(s)

∫ s

0
g4i(u)

′f4i(u)duds, (79)
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C4 =
1

2

3∑
i=1

(∫ T

0
f11(s)

′g5i(s)

∫ s

0
f11(s)

′f5i(u)duds

)
×
(∫ T

0
f11(s)

′k5i(s)

∫ s

0
f11(s)

′h5i(u)duds

)
, (80)

C5 =
1

2

3∑
i=1

(∫ T

0
f11(s)

′k5i(s)

∫ s

0
f11(u)

′g5i(u)

∫ u

0
f5i(v)

′h5i(v)dvduds

+

∫ T

0
f11(s)

′g5i(s)

∫ s

0
f11(u)

′k5i(u)

∫ u

0
f5i(v)

′h5i(v)dvduds

+

∫ T

0
f11(s)

′g5i(s)

∫ s

0
f5i(u)

′k5i(u)

∫ u

0
f11(v)

′h5i(v)dvduds

+

∫ T

0
g5i(s)

′k5i(s)

∫ s

0
f11(u)

′h5i(u)du

∫ s

0
f11(u)

′f5i(u)duds

+

∫ T

0
f11(s)

′k5i(s)

∫ s

0
g5i(u)

′h5i(u)

∫ u

0
f11(v)

′f5i(v)dvduds

)
,

(81)

C6 =
1

2

3∑
i=1

∫ T

0
g5i(s)

′k5i(s)

∫ s

0
f5i(u)

′h5i(u)duds. (82)

Here, f11(t), f2i(t) (i = 1, 2), f3i(t) (i = 1, 2, 3), f4i (i = 1, 2, 3), g2i(t)
(i = 1, 2), g3i(t) (i = 1, 2, 3), g4i(t) (i = 1, 2, 3), h3i(t) (i = 1, 2, 3), and
h4i(t) (i = 1, 2, 3) are given as equations (59)-(66) in Proposition 1. f5i(t),
g5i(t), h5i(t), and k5i(t) (i = 1, 2, 3) are defined as follows:

f51(t) = f53(t) = h51(t) = f21(t),

f52(t) = h52(t) = h53(t) = f22(t),

g51(t) = g53(t) = k51(t) = g21(t),

g52(t) = k52(t) =
1

2
k53(t) = g22(t).

Remark 2. On the computational complexity and speed for the
swaption formula (74) in Theorem 12

First of all, note that ϵ, Na,b(0) and y are constants and that there are
no problems for evaluations of the standard normal distribution N(y) and
the normal density function n[y; 0,Σ], given Σ.

When Σ and Ci(i = 1, · · · , 6) are obtained as closed-forms, we have ob-
viously no problems in terms of computational complexity and speed. Thus,
let us discuss about the cases that their closed-forms are not available and
numerical integrations are necessary.

2This remark discusses about the multi-dimensional case that is the model described
by the equations (28) and (29), because the same formula (74) is applied to the case.
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As f11(t) whose concrete expression is found in Proposition 1 is a D-
dimensional vector given t, which is equal to the dimension of Brownian
motion in the swap process (28), f ′11(t)f11(t) is obtained by D-times addi-

tion. Hence, the order of the computational effort for Σ =
∫ T
0 f ′11(t)f11(t)dt

is at most DM , where M is the number of time-steps for the discretization
in the numerical integral.

Note also that all the multiple integrals appearing in Ci, (i = 1, · · · , 6) are
computed by the program code with only one loop against the time parameter.
For instance, look at the following term in C5 in Theorem 1:∫ T

0
f11(s)

′k5i(s)

∫ s

0
f11(u)

′g5i(u)

∫ u

0
f5i(v)

′h5i(v)dvduds.

Let f(s) = f ′11(s)k5i(s), g(u) = f ′11(u)g5i(u) and h(v) = f ′5i(v)h5i(v). Then,
the above integral is approximated for the numerical integration as follows:∫ T

0
f(s)

∫ t

0
g(u)

∫ s

0
h(v)dvduds

≈
M∑
i=1

∆tif(ti)
i∑

j=1

∆tjg(tj)

j∑
k=1

∆tkh(tk)

=

M∑
i=1

∆tif(ti) (G(ti−1) + ∆tig(ti) (H(ti−1) + ∆tih(ti))) ,

where ∆ti = (ti − ti−1), H(ti) = H(ti−1) + ∆tih(tj) and G(ti) = G(ti−1) +
∆tig(ti)H(ti).

Here, each of h(ti), g(ti) and f(ti) is obtained by at most 2D-times addi-
tion since the dimension of each vector is equal to 2D, the Brownian motion’s
dimension under our setting. Hence, the order of the computational effort
is at most (2D)M , where M is the number of time-steps for the discretiza-
tion in the numerical integral. Note that we have no problems in terms of
computational complexity and speed since various fast numerical integration
methods are available such as the extrapolation method: In fact, we enjoy
pretty much fast calibrations and pricings such as within 1/1000 seconds per
pricing a swaption for numerical examples reported in Section 6.

5 Applications

This section provides concrete applications of the general approximation for-
mula developed in the previous section to CEV-Heston LMM and Quadratic-
Heston LMM.

Let us start with the stochastic volatility process specified by the Heston
model (Heston (1993)):

dV (t) = ξ(η − V (t))dt+ θ
√
V (t)dWQ

t , (83)
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where ξ ≥ 0, η > 0 and θ > 0 are some constants satisfying ξη ≥ θ2/2.
Applying this model, we describe the forward LIBOR process as in Sec-

tion 2:

dFk(t) = ϕ(t, Fk(t))σk(t)
√
V (t)dW k,1

t , (84)

dV (t) = ξ

(
η − ξ + θµ(t, γ(t), k)

ξ

)
dt+ θρk

√
V (t)dW k,1

t

+ θ
√
1− ρ2k

√
V (t)dW k,2

t , (85)

where,

µ(t, γ(t), k) =

k∑
j=γ(t)+1

δjρjσj(t)ϕ(t, Fj(t))

1 + δjFj(t)
, (86)

and ρj denotes the correlation between j-th forward LIBOR and the stochas-
tic volatility. After applying the change of a numéraire and the freezing tech-
nique discussed in Section 2.2, the forward swap rate process is expressed
as follows:

dSa,b(t) = σ(a,b)(t)
√
V (t)ϕ(t, Sa,b(t))dW

1
t , (87)

dV (t) = ξ(η − ν(t)V (t))dt+ θ1(t)
√
V (t)dW 1

t

+ θ2(t)
√
V (t)dW 2

t . (88)

where θ1(t) = θρ(a,b)(t), θ2(t) = θ
√

1− (ρ(a,b)(t))2, and W l
t , l = 1, 2 are

independent Brownian motions. By (23), (27), (32), (33), (34) and (85), the
parameters σ(a,b)(t), ρ(a,b)(t) and ν(t) are expressed as follows:

σ(a,b)(t) =

√√√√ b∑
k=a+1

b∑
h=a+1

λ
(a,b),0
k (0)σk(t)λ

(a,b),0
h (t)σh(t)ρk,h,(89)

ρ(a,b)(t) =

∑b
j=a+1 λ

(a,b),0
j (t)σj(t)ρj

σ(a,b)(t)
, (90)

ν(t) = 1 +
θ

ξ
µ
(a,b)
0 (t, γ(t)), (91)

µ
(a,b)
0 (t, γ(t)) =

b∑
k=a+1

w
(a,b)
k (0)

k∑
j=γ(t)+1

δjρjσj(t)ϕ(t, Fj(0))

1 + δjFj(0)
, (92)

w
(a,b)
k (0) =

δkPk(0)∑b
i=a+1 δiPi(0)

, (93)

γ(t) = min{i ∈ {1, 2, · · · , N} : Ti ≥ t}, (94)

where ρk,h represents the correlation between k-th forward LIBOR and h-th
forward LIBOR.
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5.1 CEV-Heston LMM

The first example is the CEV-Heston LMM, where the local volatility func-
tion is given by the constant elasticity of variance (CEV) form and the
stochastic volatility process is specified by the Heston model (83). That is,
ϕ(t, F ) = F β. Based on the discussion in Section 2, in the CEV-Heston
LMM the dynamics of a forward swap rate Sa,b(t) under the swap measure
is given as

dSa,b(t) = σ(a,b)(t)
√
V (t)Sa,b(t)

βdW 1
t , (95)

dV (t) = ξ(η − ν(t)V (t))dt+ θ1(t)
√
V (t)dW 1

t

+ θ2(t)
√
V (t)dW 2

t . (96)

An approximation formula for the swaption price in the CEV-Heston
LMM is obtained by the formula (74) where f11(t), f2i(t) (i = 1, 2), f3i(t)
(i = 1, 2, 3), f4i (i = 1, 2, 3), g2i(t) (i = 1, 2), g3i(t) (i = 1, 2, 3), g4i(t)
(i = 1, 2, 3), h3i(t) (i = 1, 2, 3), and h4i(t) (i = 1, 2, 3) appearing in the
equations (76)-(82) are specified as follows:

f11(t) = f21(t) = f31(t) = f41(t) = g41(t) = g42(t)

=

(
σ(t)(S(0))β

√
V (0)(t)

0

)
, (97)

f22(t) = f32(t) = f33(t) = f42(t) = f43(t) = g43(t)

=

(
θ1(t)e

ξ
∫ t
0 ν(s)ds

√
V (0)(t)

θ2(t)e
ξ
∫ t
0 ν(s)ds

√
V (0)(t)

)
, (98)

g21(t) = g31(t) = h31(t) = 2h32(t)

=

(
σ(t)β(S(0))β−1

√
V (0)(t)

0

)
, (99)

2g22(t) = g32(t) = 4h33(t) =

 σ(t)(S(0))β
(
e−ξ

∫ t
0 ν(s)ds

)
√

V (0)(t)

0

 , (100)

g33(t) =

 θ1(t)√
V (0)(t)
θ2(t)√
V (0)(t)

 , (101)

h41(t) =

(
σ(t)β(β−1)(S(0))β−2

√
V (0)(t)

2
0

)
, (102)

h42(t) =

 σ(t)β(S(0))β−1
(
e−ξ

∫ t
0 ν(s)ds

)
2
√

V (0)(t)

0

 , (103)

h43(t) =

 −
σ(t)(S(0))β

(
e−2ξ

∫ t
0 ν(s)ds

)
8(V (0)(t))

3
2

0

 , (104)
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where S(0) stands for Sa,b(0), σ(t) stands for σ
(a,b)(t) and

V (0)(t) = e−ξ
∫ t
0 ν(s)ds

(∫ t

0
ξηeξ

∫ s
0 ν(u)duds+ V (0)

)
. (105)

Moreover, f5i(t), g5i(t), h5i(t), and k5i(t) (i = 1, 2, 3) in the equations (76)-
(82) are given as follows:

f51(t) = f53(t) = h51(t) = f21(t),

f52(t) = h52(t) = h53(t) = f22(t),

g51(t) = g53(t) = k51(t) = g21(t),

g52(t) = k52(t) =
1

2
k53(t) = g22(t). (106)

We remark that in this approximation, the parameter ν(t) standing for
the mean-reversion seed of the volatility is made time-dependent for the
reduction of the approximation error as much as possible; the effect of this
parameter seems large for a long-tenor swap while it seems small for a short-
tenor swap.

5.2 Quadratic-Heston LMM

The second example is the Quadratic-Heston LMM, where the stochastic
volatility process is given by the Heston model and the local volatility func-
tion is specified as a quadratic function:

ϕ(t, F ) = (1− b(t))F (0) + b(t)F +
c(t)

2F (0)
(F − F (0))2, (107)

where b(t) and c(t) are some (deterministic) functions of the time-parameter
t.

Based on the discussion in Section 2, in the Quadratic-Heston LMM the
dynamics of a forward swap rate Sa,b(t) under the swap measure is given as

dSa,b(t) = σ(a,b)(t)
√
V (t)

(
(1− b(t))Sa,b(0) + b(t)Sa,b(t)

+
c(t)

2S(0)
(Sa,b(t)− Sa,b(0))

2

)
dW 1

t , (108)

dV (t) = ξ(η − ν(t)V (t))dt+ θ1(t)
√
V (t)dW 1

t

+ θ2(t)
√
V (t)dW 2

t . (109)

Next, set Xa,b(t) := Sa,b(t)/Sa,b(0), and then the swaption price is expressed
as

Swptn(a, b) = Na,b(0)E [max {Sa,b(T )−K, 0}]

= Na,b(0)Sa,b(0)E

[
max

{
Xa,b(T )−

K

Sa,b(0)
, 0

}]
,(110)
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and the dynamics of Xa,b(t) is given by

dXa,b(t) = σ(a,b)(t)
√
V (t)

(
1− b(t) + b(t)Xa,b(t)

+
1

2
c(t)(Xa,b(t)− 1)2

)
dW 1(t). (111)

We note that as the local volatility function in (111) can be regarded as
an approximation by the second-order Taylor expansion around the initial
value Xa,b(0) = 1 of an arbitrary twice differentiable function, this quadratic
form is considered as a rather general local volatility function.3

An approximation formula for the swaption price in the Quadratic-
Heston LMM is obtained by the formula (74) where f11(t), f2i(t) (i = 1, 2),
f3i(t) (i = 1, 2, 3), f4i (i = 1, 2, 3), g2i(t) (i = 1, 2), g3i(t) (i = 1, 2, 3), g4i(t)
(i = 1, 2, 3), h3i(t) (i = 1, 2, 3), and h4i(t) (i = 1, 2, 3) appearing in the
equations (76)-(82) are specified as follows:

f21(t) = f31(t) = f41(t) = g41(t) = g42(t)

=

(
σ(t)

√
V (0)(t)
0

)
, (112)

f22(t) = f32(t) = f33(t) = f42(t) = f43(t) = g43(t)

=

(
θ1(t)e

ξ
∫ t
0 ν(s)ds

√
V (0)(t)

θ2(t)e
ξ
∫ t
0 ν(s)ds

√
V (0)(t)

)
, (113)

f11(t) = S(0)f21(t), (114)

g31(t) =

(
σ(t)b(t)

√
V (0)(t)

0

)
, (115)

g21(t) = h31(t) = 2h32(t) = S(0)g31(t), (116)

g32(t) =

 σ(t)e−ξ
∫ t
0 ν(s)ds

√
V (0)(t)

0

 , (117)

2g22(t) = 4h33(t) = S(0)g32(t), (118)

g33(t) =

 θ1(t)√
V (0)(t)
θ2(t)√
V (0)(t)

 , (119)

h41(t) =

(
S(0)σ(t)c(t)

√
V (0)(t)

2
0

)
, (120)

h42(t) =

 S(0)σ(t)b(t)e−ξ
∫ t
0 ν(s)ds

2
√

V (0)(t)

0

 , (121)

3The asymptotic expansion of Xa,b(t) gives the simpler expression than that of Sa,b(t).
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h43(t) =

 −S(0)σ(t)e−2ξ
∫ t
0 ν(s)ds

8(V (0)(t))
3
2

0

 , (122)

where S(0) stands for Sa,b(0) and σ stands for σ(a,b). Moreover, f5i(t), g5i(t),
h5i(t), and k5i(t) (i = 1, 2, 3) in the equations (76)-(82) are given as follows:

f51(t) = f53(t) = h51(t) = f21(t),

f52(t) = h52(t) = h53(t) = f22(t),

g51(t) = g53(t) = k51(t) = g21(t),

g52(t) = k52(t) =
1

2
k53(t) = g22(t). (123)

6 Numerical Examples

This section provides two numerical examples: the calibration test and the
accuracy test. First, let us set LSV-LMM as the CEV-Heston LMM and the
Quadratic-Heston LMM for the numerical examples. Under the spot mea-
sure Q, the local volatility functions of CEV-Heston LMM and Quadratic-
Heston LMM are given by

ϕ(t, F ) = F β and ϕ(t, F ) = (1− b)F (0) + bF + c
(F − F (0))2

2F (0)
,

(124)

respectively, where b, c and σj are some constants. Then the one-dimensional
Heston-type stochastic volatility in (83) is equipped with the two models.
All model parameters are assumed to be constant for simplicity. We set the
parameter ϵ = 1.

6.1 Calibration Test

This subsection examines the calibration ability of the CEV-Heston LMM
and the Quadratic-Heston LMM with our approximation formula. In partic-
ular, because a caplet is regarded as a special case of a swaption4,Theorem
1 with specifications in Section 5.1 or 5.2 is applied to the evaluation of cap
prices in calibration of each model: Formula (74) with equations (97)-(106)
is applied to CEV-Heston LMM, while the one with equations (112)-(123)
is applied to Quadratic-Heston LMM.

The US cap market data5 as of April 1, 2008 downloaded from Bloomberg
are employed for the calibration test. The two models are calibrated to the

4For a caplet, the underlying forward rate’s effective and terminal dates are given by
Ta and Ta+1(T ≤ Ta, a ∈ {1, 2, · · · , N − 1}), respectively. Hence, setting b = a+ 1 in the
formula (74) provides the formula for the caplet.

5In our calibration test, we calibrated the models to the cap market data solely, because
suitable swaption data are not available in our circumstance.
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market caplet implied volatilities with 1, 2, 3, 5, 7, 10, 15, and 20-year
maturities, simultaneously.

The parameters V (0) and η are fixed as 1. The other parameters of the
local stochastic volatilities and the correlations between LIBORs and the
volatilities are obtained by calibration. The calibrated parameters of the
local stochastic volatilities are listed in Table 1. The number of parameters,
σk, ρk and forward LIBORs is so many that those values are not reported
here.6

Table 1: Local Stochastic Volatility Parameters
ξ θ β b c

CEV-Heston 0.0987 0.4442 0.0100 - -
Quadratic-Heston 0.0488 0.3124 - 0.2438 1.2919

Figure 1 and 2 plot the market and model-based caplet implied volatili-
ties.

Figure 1: Caplet Implied Volatilities with 1, 2, 3, and 5-Year Maturities
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These figures show that the model-based caplet implied volatilities gen-
erated by both the CEV-Heston LMM and the Quadratic-Heston LMM are
fitted into the market ones very well. This calibration test implies that the
CEV-Heston LMM and the Quadratic-Heston LMM have sufficient calibra-
tion ability to cap markets, and that our approximation formula is a very

6They will be given upon request.
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Figure 2: Caplet Implied Volatilities with 7, 10, 15, and 20-Year Maturities
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powerful tool because such a fast caplet pricing scheme is necessary for im-
plementing the calibration. In fact, it only takes less than 1/1000 seconds
with core i7-870 processor to evaluate each caplet by applying our formula.

6.2 Accuracy Test

This subsection provides the accuracy test of our approximate swaption
pricing formula in Theorem 1. Setting the calibrated parameters in section
5.1 and historically estimated correlations among forward LIBOR rates in
the CEV-Heston LMM and the Quadratic-Heston LMM, we compute 5-
year×5-year and 10-year×10-year payers swaption prices by our formula.
In order to calculate σ(a,b), the total correlation structure in LMM with the
stochastic volatility should remain positive semi-definite. For that reason, we
use the parameterization method proposed by Mercurio and Morini (2007)
for the correlation matrix. Then, we compare our approximate swaption
prices with exact ones.

The parameters used for calculating swaption price are reported in Table
1 to 3, where C-H and Q-H stand for CEV-Heston and Quadratic-Heston,
respectively.

Table 4 to 7 display the prices of 5-year×5-year and 10-year×10-year
payers swaption under the CEV-Heston LMM and the Quadratic-Heston
LMM, respectively. In the tables, the values of (a) Full MC denote swap-
tion prices computed by the Monte Carlo simulation with 1,000,000 sample
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Table 2: The Value of ν(t)
t C-H 5x5 Q-H 5x5 C-H 10x10 Q-H 10x10 t C-H 10x10 Q-H 10x10

0.25 1.035 0.853 1.000 0.716 5.25 0.998 0.811
0.5 1.029 0.851 1.000 0.714 5.5 0.998 0.817

0.75 1.023 0.850 1.000 0.713 5.75 0.998 0.822
1 1.018 0.850 1.000 0.713 6 0.998 0.827

1.25 1.012 0.850 0.999 0.714 6.25 0.998 0.831
1.5 1.009 0.855 0.999 0.718 6.5 0.998 0.836

1.75 1.007 0.862 0.999 0.725 6.75 0.998 0.841
2 1.006 0.870 0.999 0.733 7 0.998 0.846

2.25 1.006 0.879 0.999 0.743 7.25 0.998 0.850
2.5 1.004 0.885 1.000 0.749 7.5 0.998 0.858

2.75 1.003 0.892 0.999 0.755 7.75 0.999 0.866
3 1.002 0.899 0.999 0.762 8 0.999 0.874

3.25 1.002 0.906 0.999 0.770 8.25 0.999 0.883
3.5 1.000 0.912 0.999 0.775 8.5 0.999 0.889

3.75 0.999 0.918 0.999 0.781 8.75 0.999 0.895
4 0.999 0.924 0.999 0.787 9 0.999 0.902

4.25 0.998 0.929 0.999 0.793 9.25 0.999 0.908
4.5 0.997 0.934 0.999 0.798 9.5 0.999 0.915

4.75 0.996 0.939 0.998 0.803 9.75 0.999 0.921
5 0.995 0.944 0.998 0.807 10 0.999 0.928

Table 3: Other parameters
Forward Swap Annuity ρ(a,b) (C-H) ρ(a,b) (Q-H) σ(a,b) (C-H) σ(a,b) (Q-H)

10x10 5.413% 5.037 -0.1535 -0.5239 0.0048 0.0877
5x5 5.049% 3.720 -0.1378 -0.5443 0.0068 0.1370

paths without any approximation techniques. We consider these prices as
the exact values of swaption prices. The values of (b) FT + MC are the
Monte Carlo prices with the freezing techniques. The values of (c) FT + AE
are the swaption prices by the asymptotic expansion scheme with the freez-
ing techniques, that is, our pricing formula: Formula (74) with equations
(97)-(106) is applied to CEV-Heston LMM, while the one with equations
(112)-(123) is applied to Quadratic-Heston LMM. The value in the round
bracket denotes the implied volatility corresponding to each swaption price.
As explained in Remark 2, we have no problems in computation, which is
very fast: It only takes less than 1/1000 seconds with core i7-870 processor
to evaluate a 10x10 swaption, (although we partially rely on numerical inte-
grations since we make the parameter ν(t) time-dependent for the reduction
of the approximation errors as much as possible.)

Next, we note that the values in the lower layers of Table 4, 5, 6 and 7
denote the approximation errors caused by the freezing techniques and/or
the asymptotic expansion.

It can be seen that significantly accurate prices are obtained by our
swaption pricing formula under the CEV-Heston LMM in Table 4 and 5,

27



Table 4: 10y×10y Payers Swaption Prices under CEV-Heston LMM
Strike Rate (%) 3.00 4.00 5.00 6.00 7.00

(a) Full MC 0.1236 0.0779 0.0400 0.0157 0.0048
(12.07) (10.04) (8.62) (7.75) (7.34)

(b) FT + MC 0.1239 0.0783 0.0403 0.0158 0.0048
(12.51) (10.26) (8.72) (7.77) (7.31)

(c) FT + AE 0.1241 0.0784 0.0403 0.0156 0.0047
(12.74) (10.29) (8.69) (7.74) (7.25)

(b) − (a) 0.0003 0.0004 0.0003 0.0001 -0.0001
(0.44) (0.22) (0.10) (0.02) (-0.03)

(c) − (b) 0.0002 0.0001 -0.0001 -0.0001 -0.0001
(0.24) (0.03) (-0.03) (-0.03) (-0.06)

(c) − (a) 0.0005 0.0005 0.0002 0.0000 -0.0002
(0.68) (0.25) (0.07) (-0.01) (-0.09)

Table 5: 5y×5y Payers Swaption Prices under CEV-Heston LMM
Strike Rate (%) 3.00 4.00 5.00 6.00 7.00

(a) Full MC 0.0786 0.0467 0.0222 0.0080 0.0023
(17.48) (14.67) (12.77) (11.62) (10.98)

(b) FT + MC 0.0787 0.0468 0.0222 0.0080 0.0022
(17.72) (14.75) (12.78) (11.57) (10.90)

(c) FT + AE 0.0788 0.0467 0.0221 0.0079 0.0022
(17.84) (14.74) (12.76) (11.54) (10.86)

(b) − (a) 0.0001 0.0001 0.0000 0.0000 -0.0001
(0.24) (0.09) (0.00) (-0.05) (-0.07)

(c) − (b) 0.0001 -0.0001 -0.0001 -0.0001 0.0000
(0.13) (-0.01) (-0.01) (-0.03) (-0.04)

(c) − (a) 0.0002 0.0001 0.0000 -0.0001 -0.0001
(0.36) (0.07) (-0.01) (-0.08) (-0.12)

while the prices under the Quadratic-Heston LMM in Table 6 and 7 are less
accurate than the ones under the CEV-Heston LMM. However, even when
pricing deep in-the-money swaptions in Table 6 and 7, the approximation
errors in terms of the implied volatilities are less than 1%. Therefore, the
level of these errors seems acceptable in practice.

7 Conclusion

This paper proposed the LSV-LMM with affine-type stochastic volatility
models combined with local volatility models, where all parameters in the
LSV-LMM can be time-dependent. In particular, applying standard freezing
techniques and an asymptotic expansion method, it provided a new analytic
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Table 6: 10y×10y Payers Swaption Prices under Quadratic-Heston LMM
Strike Rate (%) 3.00 4.00 5.00 6.00 7.00

(a) Full MC 0.1258 0.0812 0.0437 0.0182 0.0058
(14.47) (11.70) (9.80) (8.51) (7.78)

(b) FT + MC 0.1252 0.0803 0.0425 0.0169 0.0049
(13.91) (11.26) (9.42) (8.13) (7.36)

(c) FT + AE 0.1249 0.0799 0.0422 0.0168 0.0046
(13.55) (11.06) (9.32) (8.09) (7.20)

(b) − (a) -0.0006 -0.0009 -0.0012 -0.0012 -0.0009
(-0.56) (-0.44) (-0.38) (-0.37) (-0.42)

(c) − (b) -0.0003 -0.0004 -0.0003 -0.0002 -0.0003
(-0.35) (-0.20) (-0.10) (-0.05) (-0.16)

(c) − (a) -0.0009 -0.0013 -0.0015 -0.0014 -0.0012
(-0.91) (-0.64) (-0.48) (-0.42) (-0.58)

Table 7: 5y×5y Payers Swaption Prices under Quadratic-Heston LMM
Strike Rate (%) 3.00 4.00 5.00 6.00 7.00

(a) Full MC 0.0802 0.0489 0.0245 0.0096 0.0030
(20.14) (16.58) (14.21) (12.65) (11.74)

(b) FT + MC 0.0798 0.0482 0.0236 0.0087 0.0024
(19.50) (15.99) (13.63) (12.05) (11.08)

(c) FT + AE 0.0796 0.0482 0.0237 0.0089 0.0024
(19.17) (15.95) (13.74) (12.18) (11.07)

(b) − (a) -0.0004 -0.0007 -0.0010 -0.0009 -0.0006
(-0.64) (-0.59) (-0.58) (-0.60) (-0.67)

(c) − (b) -0.0002 -0.0001 0.0002 0.0002 -0.0000
(-0.33) (-0.04) (0.11) (0.12) (-0.01)

(c) − (a) -0.0006 -0.0008 -0.0008 -0.0007 -0.0006
(-0.97) (-0.63) (-0.47) (-0.48) (-0.68)

approximation formula for pricing swaptions under the model. To demon-
strate effectiveness of our approach, the paper took CEV-Heston LMM and
Quadratic-Heston LMM as examples and confirmed sufficient accuracies of
our approach for calibration to a caplet market and numerical evaluation of
swaptions under the models.

Our future research topics are as follows: Fist, in order to improve the
accuracy of our current approximation formula, the higher order computa-
tional scheme of the asymptotic expansion developed by Takahashi, et al.
(2009) has to be applied. Alternatively or at the same time, the full applica-
tion of the asymptotic expansion might be necessary without freezing tech-
niques. Second, for more accurate calibration, we may need to implement a
pricing formula for swaptions under the LSV-LMM with a multi-dimensional
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stochastic volatility. Finally, in order to compute exotic interest rate deriva-
tives and their Greeks, we have to develop efficient Monte Carlo simulation
techniques.

A Formulas for the conditional expectations of the
Wiener-Itô integrals

This appendix summarizes conditional expectation formulas useful for ex-
plicit computation of the asymptotic expansions. In the following, qi ∈
L2[0, T ], i = 1, 2, ..., 5. Also, Hn(x; Σ) denotes the Hermite polynomial of

degree n and Σ =
∫ T
0 |q1t|2dt. For the derivation and more general results,

see Section 3 in Takahashi, Takehara and Toda(2009).
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