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Deterministic models of conjunctive surface and groundwater management aren’t much 
more complicated than typical groundwater-only management models under simple 
assumptions. However, when water quality problems exist, the fact that there are two 
alternative sources of water gains a new significance, as there is no guarantee that they 
will be of comparable quality. Thus the benefit from using one unit of surface water 
may not be the same as that of one unit of groundwater. This paper analyses the 
implications of considering a conjunctive ground and surface water system where water 
quality varies according to source, with and without uncertainty in hydrological 
parameters. 
 

 

 

 

 

 

 

 



Conjunctive Use of Surface Water and
Groundwater with Quality Considerations

Catarina Roseta Palma

February 10, 2004

Abstract

Deterministic models of conjunctive surface and groundwater man-
agement aren’t much more complicated than typical groundwater-only
management models under simple assumptions. However, when water
quality problems exist, the fact that there are two alternative sources
of water gains a new signi…cance, as there is no guarantee that they
will be of comparable quality. Thus the bene…t from using one unit of
surface water may not be the same as that of one unit of groundwa-
ter. This paper analyses the implications of considering a conjunctive
ground and surface water system where water quality varies according
to source, with and without uncertainty in hydrological parameters.

1 Introduction

In most water systems groundwater is not used on its own but rather as a
complement of whatever surface water supplies are available (rainfall, stream
‡ows, surface water reservoirs). Accordingly, the literature that analyses
management of groundwater stocks has included conjunctive use from the
beginning (see the seminal article by Burt [1] and the reviews on the topic
by Provencher [10] and Tsur [17]). With a set of simple assumptions, such
as that surface water is constant, cheaper, and that surface and groundwater
are perfect substitutes, deterministic conjunctive use models are not much
more complicated than groundwater-only management models. The main
di¤erence is that groundwater is used only after the given endowment of
surface water has been exhausted.
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A natural extension that brings these models closer to reality is to consider
stochastic surface water supplies, highlighting the role played by groundwa-
ter in protecting users against uncertainty. Tsur [15] studies the bu¤er role of
groundwater in a static setting and shows that it is positive under standard
concavity assumptions of the bene…t function, so that groundwater is more
highly valued when surface water varies than when it is constant. Tsur and
Graham-Tomasi [?] provide a similar analysis for a dynamic setting, although
in this case the proof of positive bu¤er values requires more restrictive as-
sumptions (namely, that marginal bene…ts are convex). Knapp and Olson
[7] also consider surface water variability; their paper analyses decision rules
and establishes conditions for convergence of extraction and stock to lim-
iting probability distributions using lattice programming, which is a useful
method in problems where the value function associated with the dynamic
programming problem is not concave. Provencher and Burt [11] consider a
two period model of surface water variability with risk averse …rms to identify
the risk externality associated with common property situations.

However, there is one aspect of water use that seems to have been some-
what overlooked in typical conjunctive use models. Considering that water
quality is a relevant parameter in many regions, the fact that there are two
alternative sources of water gains a new signi…cance, since there is no guar-
antee that both sources will be of comparable quality. Therefore, the bene…t
for users of using one unit of surface water may not be the same as that of
using one unit of groundwater. Yet they should still be regarded as part of
one single management system, except in the few extreme situations where
only one source of water is explored.

There are some examples of deterministic models of joint quantity-quality
management of groundwater in economic literature, but the only case where
a conjunctive system is considered is the salinity model of Dinar[2], Dinar
and Xepapadeas [?]. There is also a paper on drainage problems by Tsur [16]
which brie‡y touches the issue. Tsur and Zemel’s [19] paper on irreversibility
has a stochastic element (the size of stock below which groundwater use be-
comes unfeasible is unknown), but it does not consider conjunctive use. Two
other papers that consider uncertainty but not conjunctive use are Fisher
and Rubio [5] where the recharge ‡ow is variable and the maximum size of
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water stock depends on how much capital is invested, and Rubio and Castro
[13], where there is both recharge and demand uncertainty.

This chapter analyses the implications of considering a conjunctive ground
and surface water system where water quality varies according to source, with
and without uncertainty in hydrological parameters. A simple, static model
of conjunctive use is introduced in section 2 to illustrate the issues that en-
sue from the inclusion of a quality parameter in the water revenue function.
Results are compared to those of Tsur [15]. Finally, a dynamic model of
groundwater evolution is presented, both in the standard deterministic ver-
sion and in a stochastic version that uses methods similar to those in Fisher
and Rubio [?], Rubio [12].

2 Model (static case)

Users of the water (such as farmers) are assumed to maximize their pro…t by
choosing the amount of water they want to apply. Surface water is exogenous,
so that by choosing total water use the amount of groundwater to be pumped
is established. There is a …xed unit cost of pumping, z, surface water, s, is
provided at no cost, and there is a water revenue function which depends on
total water used, w, and on the concentration of some undesirable pollutant
in that water: y(w, C). The maximum pro…t, ¦, is:1

¦ = maxfwg y(w, C) ¡ z(w ¡ s) (2)

Under the usual assumptions on y (namely, considering that the derivatives
of y have the following properties: yw > 0, yww < 0, yC < 0, ywC · 0)2 this

1If s was costly or Cg¡Cs < 0, then the choice of s might become endogenous, although
there would still be an exogenous maximum available amount of surface water (this makes
sense for certain types of surface water, such as stream ‡ows and lakes, and not for others,
such as precipitation). The water management problem would become:

maxw,s y(w,Cs s
w + Cg w¡s

w ) ¡ z(w ¡ s)
s.t. s · smax (1)

2The expected sign of the second derivative on concentration, yCC , depends on whether
additional pollution is more harmful for small values of concentration or for large ones.
This is an empirical question. See Letey and Dinar [?], which contains a number of
estimated agricultural production functions when the quality problem is salinity.
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looks like a simple conjunctive use problem. However, even if the pollutant
concentration levels in surface water and groundwater are both exogenous,
C will be a weighted average of the two, thus it will be endogenous:

C = Cs s
w

+ Cg w ¡ s
w

(3)

= Cg ¡ s(Cg ¡ Cs)
w

where Cs and Cg are respectively pollutant concentrations in surface and
groundwater.

This introduces two di¤erent sorts of new problems: …rst, the likelihood of
getting a di¤erentiable and concave objective function using only the intuitive
assumptions presented above is a lot smaller, so that second order conditions
will be more di¢cult to check. All cases that will be analyzed in this chapter
assume that the functional objective is well behaved: concavity is satis…ed,
and w > s (ensuring di¤erentiability in the relevant range of w). Situations
where excess water is harmful, such as ‡oods, although possible, are ruled
out. It is considered that the amount of surface water is never too large, so
that the last unit of water received is still revenue-increasing.

Second, the optimal choice of water will vary with the amount of avail-
able surface water, which is something that did not happen in quantity-only
static conjunctive models. To show this, consider the …rst order condition
for problem 2:

yw + yCCw = z
() yw + yC

s(Cg¡Cs)
w2 = z

(4)

Thus the marginal bene…t of pumping has two terms: the …rst one is the
direct impact on production of oumping additional water, and the second is
the impact on production through the e¤ect on water quality. Note that this
term is positive if groundwater is less contaminated than surface water and
negative otherwise.

Equation 4 implicitly de…nes the optimal water decision, w¤(s,Cg, Cs, z),
so that:

w¤
s = ¡ywC

¡(Cg¡Cs)
w + yCC

¡s(Cg¡Cs)2

w3 + yC
(Cg¡Cs)

w2

yww + 2ywCCw + yCC (Cw)
2 + yCCww

(5)

Note that if Cg = Cs = C, w¤
s = 0 and the traditional conjunctive

use model holds. In that case, if surface water ‡uctuates, groundwater is
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simply pumped so as to keep total water used constant (ie. stabilizing water
consumption).3 If Cg 6= Cs, however, optimal water consumption is not
stable when s varies. It may increase or decrease, depending on the sign
of the numerator in 5 (the denominator is negative by the assumption of
concavity).

Example 1 Suppose s is rainfall; then it should be true that Cg ¡ Cs > 0.
If yCC = 0 and ywC = 0, then w¤

s < 0. Thus, an increase in rainfall will
decrease total water used. The reason is that an increase in s increases the
negative impact on concentration of additional pumped units of water (Cw

increases), so that if w remained constant the marginal bene…t of pumping
an extra unit would be lower than the marginal cost. This requires optimal w
to decrease. If yCC > 0 (ie. bene…t is convex in C) the e¤ect of a larger s
would be even stronger, and w would decrease even more, whereas if yCC < 0
then w would decrease less or even increase. If ywC < 0, on the other hand,
there is an extra increase in the marginal bene…t of using water due to the
higher availability of the better quality water (s), so that w¤

s tends to increase,
although it may be positive or negative.

Performing comparative static analysis with the remaining parameters of
the model highlights some other interesting properties of the optimal water
choice. Denoting ζ = yww +2ywCCw +yCC (Cw)

2+yCCww, and recalling that
ζ < 0, the following results are obtained:

w¤
z =

1
ζ

< 0 (6)

w¤
Cg = ¡ywC

(w¡s)
w + yCC

(w¡s)
w

s(Cg¡Cs)
w2 + yC

s
w2

ζ
(7)

w¤
Cs = ¡ywC

s
w + yCC

s
w

s(Cg¡Cs)
w2 ¡ yC

s
w2

ζ
(8)

Note that an increase (decrease) in w¤ corresponds to an increase (decrease)
in pumped water, since surface water is now being held constant. Thus, equa-
tion 6 shows that, as expected, less water is pumped when pumping costs
increase. However, equations 7 and 8 are ambiguous. The optimal reaction

3The …rst order condition for the model without quality is the same as for the model
with constant quality Cg = Cs = C, ie. yw = z. This expression does not depend on s.
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to a higher level of contamination in either type of water is undetermined,
depending again on yCC, ywC and (Cg ¡ Cs). If the second order derivatives
are zero, then w¤

Cg < 0 (less groundwater is pumped when its quality dete-
riorates4) and w¤

Cs > 0 (more groundwater is pumped to compensate a fall
in surface water quality). These results seem reasonable, but they do not
hold in general. For instance, it is actually possible for more groundwater
to be pumped even though its quality has fallen; notice that the numerator
of 7 can be written as

³
d(yC)

dw

´
w¡s
w + yC

s
w2 . The second term is negative, so

that w¤
Cg > 0 requires d(yC)

dw > 0, which implies that the (negative) impact
of quality on revenue will increase (ie. become less negative), increasing the
attractiveness of pumping extra water. If this e¤ect is strong enough, more
water will be pumped.

2.1 Surface water variability

In many geographical regions surface water supplies ‡uctuate greatly between
periods. In Portugal, for example, the available water supplies in a dry year
can be as little as one third of their average values [?]. It has already been
remarked in the previous section that the optimal consumption of water
in a simple model, without quality considerations, is invariant with surface
water. Accordingly, in the presence of a stochastic surface water supply,
groundwater will be used to complement surface water so that total water
use remains constant. When there are quality di¤erences between the two
types of water, this result no longer holds, and groundwater use may ‡uctuate
more or less than surface water. Moreover, the impact on groundwater use
will depend on whether pumping decisions are made before (ex ante) or after
(ex post) the exact realization of surface water is known. The latter is the
more realistic assumption for most systems, thus it will be the one pursued
here.

Surface water variability is introduced into a static conjunctive use model
in Tsur [15]. As he notes, in a static model where decisions are made ex post
“the uncertainty of water supplies is really an instability”. He compares the
value of groundwater when s is a random variable to its value when s is …xed
at the mean (s), naming the di¤erence the bu¤er value of groundwater. He

4If only groundwater is used (s = 0), this result also holds, as expected.

6



shows that the bu¤er value is positive as long as the water bene…t function
is concave. In this section the same concept is applied to the case where
there are quality di¤erences. To ensure di¤erentiability for any s, it must be
assumed that desired water use will be greater than the highest admissible
value for s.

By de…nition, the bu¤er value of groundwater is given by:

BV = E fy(w¤(s), C(w¤(s), s)) ¡ y(s,Cs) ¡ z(w¤(s) ¡ s)g
¡ [y(w¤(s), C(w¤(s), s)) ¡ y(s, Cs) ¡ z(w¤(s) ¡ s)]

=
y(s, Cs) ¡ E fy(s, Cs)g| {z } +E f¦(s)g ¡ ¦(s)| {z }

1 2
(9)

By Jensen’s inequality, the …rst term is positive under simple concavity
of y in w. In fact, in Tsur’s model the bu¤er value is exactly equal to this
term,5 since other terms are zero when w¤ is independent of surface water.
Thus he concludes that the bu¤er value is always positive. In our case, to
ascertain the sign of the bu¤er value the curvature properties of ¦ have to
be investigated. Using the envelope theorem and recalling expressions 2 and
3:

¦s = yC
¡ (Cg ¡ Cs)

w
+ z (10)

The sign of ¦s depends on which source of water is more contaminated,
with ¦s > 0 whenever surface water is the relatively cleaner source (ie.
(Cg ¡ Cs) > 0), and ¦s < 0 when surface water is the relatively more pol-
luted source. It should be stressed that the increase in maximum pro…t de-
pends only on the relative contamination of surface water, not on its absolute
value.6 As for second order conditions, di¤erentiating 10 yields:

¦ss =
µ

yCC
¡ (Cg ¡ Cs)

w
+ ywCw¤

s

¶ ¡ (Cg ¡ Cs)
w

+ yC
(Cg ¡ Cs)

w2 w¤
s (11)

If ¦ss > 0, then the bu¤er value is always positive and it is greater than
in the no quality model. Otherwise its sign is undetermined. Although the

5Note that y(µ,Cs) ¡ E fy(s,Cs)g = y(µ, 0) ¡ E fy(s, 0)g ; since only surface water is
being used in either case, the y(.) simply shifts down when Cs > 0.

6As for ¦Cg = yC
w¡s

w and ¦Cs = yC
s
w , they are both negative, as expected.
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sign of ¦ss cannot always be ascertained, it is possible to check that it is
positive for the case of yCC = 0. In this case, taking into account that w¤

s is
given by 5, expression 11 can then be rewritten as:

¦ss = ¡1
ζ

·³yC

w
¡ ywC

´ (Cg ¡ Cs)
w

¸2

> 0

On the other hand, if ¦ss < 0, then the bu¤er value is lower than in the no
quality case, and it cannot be guaranteed that its sign will be positive. Thus
the incorporation of quality di¤erences raises new questions on the bu¤er
role of groundwater.

3 Dynamic water stock evolution

3.1 Optimal choices under certainty

Considering that the groundwater stock is not constant implies that pump-
ing cost is not constant either. Moreover, when taking aquifer dynamics
into account all users of the aquifer system must be considered simultane-
ously. It is assumed that there are M identical agents exploiting a single
stock of groundwater, which contains Gt units of recoverable water and is
characterised by a ‡at bottom and perpendicular sides. The aquifer receives
a constant recharge, R. The unit cost of groundwater extraction, denoted by
z(Gt), depends negatively on the size of the groundwater stock and the cost
increase per unit depleted is higher the lower the remaining stock (i.e. z(Gt)
is decreasing and convex). A percentage α of the applied water returns to
the aquifer, so that G evolves according to:

_G = M [¡(w ¡ s) + αw] + R (12)

Depending on the source of surface water being considered, it would also
be possible for its amount and quality to be stock variables (surface water
reservoirs, lakes). However, that would bring additional complexity to the
model without bringing new insights, so in this chapter surface water is
always considered a ‡ow variable in the sense that it is used up immediately.7

s, Cs and Cg are known, constant values.
7Note that the one stock/one ‡ow model can also be used in the absence of groundwater,

whenever there are alternative sources of surface water of which at least one is a stock.
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Optimal use of the aquifer requires (let M = 1 for the moment since it
does not a¤ect optimal choices):

maxfwtg
R1
0 [y(wt, Ct) ¡ z(Gt)(wt ¡ s)] e¡ρtdt (13)

subject to equation 12, and to non-negativity restrictions on wt and Gt, as
well as an initial condition G0 = G. The current value Hamiltonian for this
problem is:8

H =
·
y(w,Cg ¡ s(Cg ¡ Cs)

w
) ¡ z(G)(w ¡ s)

¸
+ λ

³
_G
´

Letting π denote instantaneous pro…t, πw = yw + yC
s(Cg¡Cs)

w2 ¡ z(G) and
…rst order conditions for interior solutions can be stated as:

πw = λ(1 ¡ α) (14)
_λ = ρλ + zG(w ¡ s) (15)
_G = ¡(1 ¡ α)w + s + R (16)

From conditions 14 to 16, the behaviour of w along the optimal path can
be derived:

_w =
ρπw + zG (αs + R)

πww
(17)

Considering cost function properties and concavity of y(.), the _w = 0
locus has a positive slope:

wGj _w=0 = ¡¡ρzG + zGG (αs + R)
ρπww

> 0

Thus the steady state will be a saddle point. The _w = 0 locus may be
convex or concave, depending on the signs of πwww and zGGG, since:

wGGj _w=0 = ¡ [¡ρzGG + zGGG (αs + R)] ρπww ¡ ρπwwwwG [¡ρzG + zGG (αs + R)]
(ρπww)

2

The case of linear pumping costs and convex marginal bene…ts for water
use (πwww > 0) provides an example of a convex _w = 0 locus. A phase
diagram of the system might look like that of Figure 1. There is a stable arm
that leads to the steady state equilibrium. For a given G0, the chosen level
of w0 must be on that stable arm, so that the optimal path will converge to
the steady state.

8t subscripts have been dropped for ease of exposition.
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Figure 1: Possible phase diagram for wGG > 0

3.2 Uncertainty in hydrological parameters

There are several ways in which uncertainty could a¤ect the problem of
groundwater extraction. One of them, as noted in section 2.1, is through
surface water variability. When surface water and groundwater have di¤er-
ent quality levels, these can also ‡uctuate, depending on weather conditions
or imperfectly known pollution processes (some references to stochastic pol-
lution processes can be found in Kampas and White [6], Shortle and Dunn
[14], Xepapadeas [20]). Hence, none of the three hydrological parameters, s,
Cs and Cg will generally be known with certainty, so that a stochastic setting
in the decision problem may be more adequate.

It is assumed that the current realization of all parameters is known,
although their future increments are stochastic, according to the following:

ds = σ1sdω1 (18)

dCs = σ2Csdω2 (19)

dCg = σ3Cgdω3 (20)

where ω1, ω2, ω3 are brownian motions with correlation coe¢cients given
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by ρ12, ρ13 and ρ23, respectively.9 The speci…c type of stochastic behaviour
chosen for the hydrological parameters (as geometric brownian motions with-
out drift) implies that each of them is lognormally distributed, taking only
positive values and with constant expected value (equal to its initial value).
Similar assumptions are used in Fisher and Rubio [5] for a hydrological pa-
rameter like s. If a drift component was relevant in shaping the behaviour
of s, Cs or Cg, it would have to be incorporated in the above equations (see
also Appendix A.1).

The expected present value of total discounted pro…t is similar to that of
problem 13. Thus the optimal value function will be:

V (G, s,Cs, Cg) = maxfwtg E0
R1
0 [y(wt, Ct) ¡ z(Gt)(wt ¡ s)] e¡ρtdt (21)

The associated Bellman equation is:10

ρV (.) = maxfwg y(w, C) ¡ z(G)(w ¡ s) + 1
dtEdV (22)

Label as x the set of variables x = fG, s,Cs, Cgg , and de…ne the Jacobian
as Vx, the Hessian as Vxx, the transition vector as Tx = (dG, ds, dCs, dCg) ,
as well as σ = (σ1s, σ2Cs, σ3Cg) . Then, using Ito’s Lemma:

dV = VxT T
x +

1
2
TxVxxT T

x (23)

Expanding terms and taking the expected value of dV as dt ! 0 yields:11

1
dt

EdV = VG (¡(1 ¡ α)w + s + R) +
1
2

£
σ2
1s

2Vss + σ2
2 (C

s)2 VCsCs + σ2
3 (C

g)2 VCgCg
¤
+

σ1σ2sCsVsCsρ12 + σ1σ3sCgVsCgρ13 + σ2σ3CsCgVCsCgρ23 (24)

Or, in more compact notation, with cVyy = [ρijVij ] for i, j = s, Cs, Cg (ie.
y refers to elements of x except G):12

1
dt

EdV = VG (¡(1 ¡ α)w + s + R) +
1
2
σ cVyyσT (25)

9The increments of brownian motions have mean zero and variance dt (thus E(dωi) = 0,
E(dωi)2 = dt , E(dωidωj) = ρijdt, i, j = 1, 2, 3). For an introduction to stochastic
processes, see Dixit and Pindyck [4, cp.3].

10Unless otherwise speci…ed, the operator E refers to the expected value at moment t.
For an introductory reference to stochastic dynamic programming, see [4, cp.4].

11In going from 23 to 25, all terms in dωi disappear as their expected value is zero.
Terms of order dt are kept, whereas terms in dt of any order higher than one go to zero.

12Note that second derivatives with respect to G are absent, since the transition for
stock does not have a variance term. Also note that ρii = 1.
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Replacing expression 25 in 22 and undertaking the maximization yields:

πw = (1 ¡ α)VG (26)

Di¤erentiating 22 with respect to G at the optimal value of w :

ρVG = ¡zG(w ¡ s) + VGGdG +
1
2

£
σ2
1s

2VssG + σ2
2 (C

s)2 VCsCsG + σ2
3 (C

g)2 VCgCgG
¤
+

σ1σ2sCsVsCsGρ12 + σ1σ3sCgVsCgGρ13 + σ2σ3CsCgVCsCgGρ23 (27)

Now, considering that VG = VG(G, s, Cs, Cg), and using Ito’s lemma to
obtain 1

dtEdVG, this expression reduces to:

ρVG = ¡zG(w ¡ s) +
1
dt

EdVG (28)

Note that equations 26 and 28 are the counterparts for the stochastic
problem of equations 14 and 15, and they can be used to …nd the stochastic
equivalent of 17. Using similar notation as above, but de…ning X = fw, xg
(ie. w and all elements of x), and noting that πw = πw(w,G, s, Cs, Cg):

dπw = πwXT T
X +

1
2
DXπwXXDT

X (29)

Before expanding equation 29, the expressions for dw and (dw)2 must be
developed. Along the optimal path, w = w(G, s, Cs, Cg), so that:

dw = wxT T
x +

1
2
TxwxxT T

x (30)

As for (dw)2, it is greatly simpli…ed by recalling that all terms of order
higher than dt can be discarded, leaving:

(dw)2 = TxwT
x wxT T

x (31)

Equation 29 can now be rewritten, in expected value form (considering
in…nitesimal dt):13

1
dt

Edπw = πww
1
dt

Edw + πwG
dG
dt

+
1
2

n
πwww

h
σ\wT

y wyσT
i
+ σ dπwyyσT

o

+ πwwy

h
wy

dσTσ
i

(32)

13Note that πwww is a scalar, whereas πwwy is a 3£ 1 vector and πwyy is a 3£3 matrix.
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where, as before, a matrix with a hat means that each of its elements appears
multiplied by the appropriate correlation coe¢cient. De…ne:

A =
1
2

n
πwww

h
σ\wT

y wyσT
i
+ σ dπwyyσT

o
+ πwwy

h
wy

dσTσ
i

(33)

Using conditions 26 and 28:

ρ
πw

1 ¡ α
= ¡zG(w ¡ s) +

1
dtEdπw

1 ¡ α
(34)

Replacing 1
dtEdπw with the expression obtained in equation 32, substi-

tuting πwGdG and reorganizing terms:

1
dt

Edw =
ρπw + zG(αs + R) ¡ A

πww
(35)

This expression can be compared with 17. The sign of A will determine
whether expected steady state water stock is greater or smaller than in the
optimal case.14 If A > 0 then the 1

dtEdw = 0 locus is below the _w = 0 locus
and expected water stock is greater with uncertainty, as can be seen in the
phase diagram of Figure 2. If A < 0 the opposite occurs. Unlike Fisher and
Rubio [5], it is not su¢cient to have convex marginal bene…ts to ensure a
clear result, since A has a number of additional terms with generally unknown
signs. Note that the term 1

2

n
πwww

h
σ\wT

y wyσT
io

is positive if πwww > 0

because all terms in σ\wT
y wyσT are positive.

3.2.1 Surface water variability

Since the derivation of equation 35 in the general uncertain case above is
rather abstract, it might be useful to look at the case of only one uncertain
variable so that the meaning of those extra terms in A is clari…ed. When
surface water is variable (with increments described by equation 18 as before),
the expanded version of 25 is simply:

1
dt

EdV = VG (¡(1 ¡ α)w + s + R) +
1
2
σ2
1s

2Vss (36)

14The stochastic steady state equilibrium, if it exists in the sense of convergence to a
distribution for w and G, will satisfy 1

dtEdw = 1
dtEdG = 0.
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Figure 2: Phase diagram for A > 0

As for dπw and terms in dw, expressions 29, 30 and 31 reduce to:

dπw = πwwdw + πwGdG + πwsds

+
1
2

£
πwww(dw)2 + πwss(ds)2

¤
+ πwwsdwds (37)

dw = wsds + wGdG +
1
2
wss (ds)2 (38)

(dw)2 = (wss)
2 σ2

1s
2dt (39)

So that the expression for the optimal expected motion of water is:

1
dt

Edw =
ρπw + zG(αs + R) ¡ σ2

1s2
©
1
2 [πwww(ws)2 + πwss] + πwwsws

ª

πww
(40)

This equation corresponds to equation 35 except shocks exist only in s.
It is clear now that the additional terms in A result directly from the inclu-
sion of surface water in the production function through weighted-average
concentration, since instantaneous pro…t is no longer linear in s. Thus the
cross-derivatives of πw with respect to s do not disappear.

The e¤ects of increasing surface water variability (ie. increasing σ1) on
stock size can also be derived analytically, for a given level of surface water.
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At the steady state, 1
dtEdw = 1

dtEdG = 0, so that 0 = Es+R ¡ (1¡ α)Ew,
which implies:

w ´ Ew =
s + R
1 ¡ α

(41)

Furthermore, evaluating all derivatives at w and s:

ρπw + zG(αs + R) ¡ σ2
1s

2
½
1
2

£
πwww(ws)2 + πwss

¤
+ πwwsws

¾
= 0 (42)

None of the terms in A depends on G, so the total di¤erential of 42 is:

[¡ρzG + zGG(αs + R)] dG ¡ s2
½
1
2

£
πwww(ws)2 + πwss

¤
+ πwwsws

¾
dσ2

1 = 0

(43)
From this expression it is clear that:

dG
dσ2

1
=

s2
©1
2 [πwww(ws)2 + πwss] + πwwsws

ª

[¡ρzG + zGG(αs + R)]
(44)

The denominator is positive under cost convexity, so that the sign of dG
dσ21

will be the same as the sign of A. If A > 0, increasing the variance results
in a higher groundwater stock, which is consistent with the result shown in
Figure 2, since in that case variance is going from zero to a positive value.

4 Conclusion

A truly integrated approach to water management must embody not only
quantity-quality interactions but also conjunctive use of surface water and
groundwater. This paper is an attempt at analysing optimal choices when
both aspects of water systems are considered, emphasizing the economic
implications of conjunctive use when the quality of the water varies according
to the source.

Water productivity depends on its quality. When di¤erent types of wa-
ter are mixed, the relevant pollutant concentration is a weighted average of
individual concentration levels. This simple fact alters a well established re-
sult in the conjunctive use literature, which was that for di¤erent levels of
surface water endowments, groundwater would be pumped so as to keep a
given optimal level of total water consumption, as that level was invariant

15



with respect to surface water realizations. Now the optimal level of water
consumption will no longer remain the same, and performing comparative
statics shows that its reaction to parameter variations will always depend on
the di¤erence between surface water quality and groundwater quality.

Another aspect that has rightly received attention in the water manage-
ment literature regards the e¤ect of uncertainty on optimal choices. In this
chapter uncertainty in hydrological parameters was modelled in a dynamic
setting through their description as geometric brownian motions, and the
impact of such uncertainty on the evolution of water consumption and on
optimal steady state stock was described, although no general results can be
obtained without specifying a production function.

There are two aspects that have been treated in the literature and were
not incorporated in the present analysis. One deals with the choice of op-
timal storage capacity in the context of ground or surface water stocks (see
Tsur [15], Fisher and Rubio [5]). Another deals with models where surface
water does not have to be entirely consumed, so that surface water used and
groundwater pumped are actually two di¤erent, albeit related, choices. With
uncertainty in quality parameters, each type of water has di¤erent risk and
return. The conjunctive use problem could then be viewed as a choice of
optimal portfolio mix. These are areas for future research.

A General dynamic case

In this appendix it is acknowledged that both the amount and the quality of
available groundwater are stock variables whose dynamics are a¤ected by the
agents’ choices. Pollutant concentration is, as before, a weighted average of
surface and groundwater. However, groundwater quality evolves according
to the pollutant concentration in the contaminant load (emissions) and a
natural regeneration rate:

_Cg = e(w, γ) ¡ δCg (45)

where γ refers to the amount of polluting input used in the productive
process, as in chapters 1 and 2.15

15A more realistic equation for groundwater quality’s evolution could take into consider-
ation the relative weights of emissions quality, recharge quality and existing groundwater
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If there was no uncertainty, the solution would result from the following
problem:

maxfwt,γtg
R1
0 [y(wt, γt, Ct) ¡ z(Gt)(wt ¡ s)] e¡ρtdt

subject to equations 12 and 45, initial conditions and non-negativity con-
straints.

The current value Hamiltonian for this problem is:

H =
·
y(w, γ,Cg ¡ s(Cg ¡ Cs)

w
) ¡ z(G)(w ¡ s)

¸
+ λ

³
_G
´
+ β

³
_Cg

´

First order conditions:

πw = λ(1 ¡ α) ¡ βew (46)

πγ = ¡βeγ (47)
_λ = ρλ + zG(w ¡ s) (48)

_β = (ρ + δ)β ¡
µ

yC
w ¡ s

w

¶
(49)

Conditions 46 to 49 can also be used for the case of dynamic quantity-
quality evolution when only groundwater is used (see chapter 2); in that case
s = 0 and C = Cg, simplifying 46, and w¡s

w = 1 in 49.
Unfortunately, this model is too general to produce tractable expressions

for _w and _γ, which are the relevant decision variables.16 However, for the
purpose of analysing the impact of shocks on water choices while considering
a dynamic quality evolution, it will be assumed that the amount of pollut-
ing input is exogenous and that emissions vary linearly with water use, ie.
e(w, γ) = εwγ. Under these circumstances:

quality, making e(.) a function of G, R, CR and C.
16Equations 46 and 47 imply β = ¡πγ

eγ
´ © and λ =

πw+ πγ
eγ

ew

(1¡α) ´ ¨, which are both non-
linear with respect to w, γ, and C(w,Cg). Even if it is assumed that πγC = 0, calculating
their time derivatives and using the remaining …rst order conditions yields:

_w =
(1 ¡ α)

h
ρ¨ ¡ ¨Cg _Cg ¡ ¨γ

©γ

¡
(ρ + δ)© ¡ yC

w¡s
w

¢i
+ zG(αs + R)

(1 ¡ α)
h
¨w ¡ ¨γ

©w
©γ

i
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_w =
ρπw + zG (αs + R) ¡ πwCg (εwγ ¡ δCg) ¡ εγ

¡
δβ + yC

w¡s
w

¢

πww
(50)

The new terms in this expression, as compared to equation 17, appear
because water pro…tability varies with pollutant concentration in groundwa-
ter, which is now endogenous. The fact that there is a single control variable
and two state variables implies that the term in the costate β cannot be fully
eliminated.

A.1 Stochastic shocks in water quality

The three types of hydrological shocks described in section 3.2 could be
introduced into the general dynamic model developed above. However, one of
them must be treated in a di¤erent manner now that groundwater pollutant
concentration is not exogenous, since the stochastic increments in Cg can
no longer be modeled as a simple geometric brownian motion without drift,
like in equation 20. Therefore, to avoid the cumbersome notation of the
multiple-shock case, this section considers that surface water and its pollutant
concentration are constant, so that only Cg is prone to stochastic shocks.

The increments in groundwater pollutant concentration are assumed to
follow:

dCg = (εwγ ¡ δCg) dt + σ4dω4 (51)

where ω4 is a brownian motion.
The Bellman equation for the problem becomes:

ρV (.) = max
w

·
y(w, C; γ) ¡ z(G)(w ¡ s) + VG (¡(1 ¡ α)w + s + R)

+VCg (εwγ ¡ δCg) + 1
2VCgCgσ2

4

¸
(52)

Using similar methods as in section 3.2, the stochastic analogues of equa-
tions 46, 48 and 49 can be derived:

πw = VG(1 ¡ α) ¡ εγVCg (53)
1
dt

EdVG = ρVG + zG(w ¡ s) (54)

1
dt

EdVCg = (ρ + δ)VCg ¡
µ

yC
w ¡ s

w

¶
(55)
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From 53:
1
dt

Edπw = ρπw + (1 ¡ α)zG(w ¡ s) ¡ δεγVCg ¡ εγyC
w ¡ s

w
(56)

Using Ito’s Lemma to obtain 1
dtEdπw from πw = πw(w, Cg, G), replacing

that expression in the right hand side of 56, and rearranging terms:

πww
1
dt

Edw = ρπw + zG(αs + R) ¡ εγ
µ

δVCg + yC
w ¡ s

w

¶
¡ πwCg (eαw ¡ δCg)

¡ σ2
4

½
1
2

£
πwww(wCg)2 + πwCgCg

¤
+ πwwCgwCg

¾
(57)

This expression depends explicitly on VCg , which cannot be eliminated.
However, it can be seen that the impact of uncertainty is similar to the case
where quality was exogenous.
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