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Animal Spirits and the Composition of
Innovation in a Lab-Equipment R&D

Model

Pedro Mazeda Gil

September 21, 2009

We revisit the issue of self-fulfilling “waves of enthusiasm” as stationary ra-
tional expectations equilibrium outcomes in endogenous-growth models that
merge the quality-ladders with the expanding-variety mechanism. By con-
sidering a lab-equipment specification with vertical-innovation intertemporal
spillovers but no intersectoral spillovers, we extend previous results of a neg-
ative impact of animal spirits on both horizontal aggregate R&D and number
of firms to a framework where decreasing returns to horizontal entry are not
a necessary condition. In contrast, our general-equilibrium setting allows us
to predict an effect of animal spirits on R&D composition impacting neither
on aggregate growth nor on aggregate vertical R&D, as reduced outlays in
“mature” industries compensate for the increased R&D intensity in newly-
born industries.

Keywords: endogenous growth, horizontal and vertical R&D, stationary sunspot equi-
libria
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1. Introduction

This paper studies the effect of animal spirits, or sunspots, on the composition of aggre-
gate R&D, the industrial structure (number of firms and average firm size), consumption
level and aggregate growth in an endogenous-growth model. The model merges the
quality-ladders (vertical R&D) with the expanding variety (horizontal R&D) mechanism
under a non-scale full lab-equipment specification without intersectoral spillovers. The
model is shown to admit multiple deterministic stationary equilibria and is used to study
the effect of animal spirits in a full endogenous-growth setting.
Since Azariadis (1981) and Cass and Shell (1983), among others, it is well-known that

we can construct economic environments in which changes in economic agents’ beliefs
per se, if shared by everyone, influence current choices in such a way that the variations
in beliefs are self-fulfilling, i.e., there are sunspot equilibria. More specifically, these are
rational expectations equilibria that are perfectly correlated with stochastic factors that
do not affect the preferences, endowment and production set of any individual; hence,
only purely extrinsic uncertainty affects prices and allocations.
This paper is concerned with the existence of sunspot equilibria in a continuous-time

endogenous-growth setting with multiple stationary equilibria, as highlighted by Cozzi
(2005). We focus on the concept of Stationary Sunspot Equilibria (SSE),1built as a
randomisation over multiple deterministic stationary equilibria, in the tradition of Cass
and Shell (1983). Due to the existence of multiple equilibria, there exists a coordination
problem between firms, which cannot be solved by referring solely to the fundamentals
of the economic system. Following a common practice in the literature, we assume that
firms tackle this coordination problem by referring to some extrinsic stochastic process,
which “selects” a specific equilibrium over the others. Cozzi (2005) studies simultaneously
the existence of multiple stationary deterministic equilibria and SSE, whereas we define
the latter explicitly in line with Cass and Shell (1983), after the derivation of the multiple
equilibria.
We adopt Cozzi (2005)’s approach in order to show that our lab-equipment model of

vertical and horizontal R&D admits multiple deterministic stationary equilibria (balanced-
growth paths, BGPs). Cozzi highlights the asymmetric BGPs admitted by R&D-driven
endogenous growth models that merge the quality-ladders with the expanding variety
mechanism, addressing the often observed waves of innovations characterized by a flood
of quality improving R&D into newly introduced sectors. This is in accordance to some
of the stylised facts on industry life cycle (e.g., Klepper, 1996).2

Cozzi assumes that, as soon as a new good is introduced, there will be a “wave of
enthusiasm” for that sector, in the sense that the new product line attracts more vertical
R&D than the older ones, thus implying a “supernormal” process of creative destruc-

1If the extrinsic factors are subject to a stationary stochastic process, then the sunspot equilibria are
called “stationary”, that is, the effect of beliefs agents hold about their environment does not vanish
asymptotically. As argued by, e.g., Azariadis and Guesnerie (1986), this property is relevant namely
because stationary beliefs are likely to be the asymptotic outcome of many stable learning processes
(e.g., Woodford, 1990; and, more recently, Evans, Honkapohja, and Marimon, 2007).

2For different references on this topic, see Cozzi (2005).
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tion in the new sector. He also assumes that “enthusiasm” disappears after the first
quality improvement, which implies that, along the BGP, horizontal innovation will be
discouraged owing to an expected increase in the rate of creative destruction until the
first quality jump. Therefore, the model predicts an asymmetric equilibrium (in fact,
a continuum of asymmetric equilibria) with a larger vertical R&D intensity engaged in
improving the quality of already improved products, and thus of aggregate vertical R&D
intensity, at the expense of a lower horizontal R&D intensity.
Cozzi explores a version of Howitt (1999), who - similarly to e.g., Young (1998) and

Dinopoulos and Thompson (1998) - presents a growth model that features the two types of
R&D within a knowledge-driven specification. By focusing on the removal of scale effects
of population, such models make the expanding-variety mechanism basically exogenous,
i.e., predict a steady-state flow of new goods at the same rate as (or proportional to)
exogenous population growth.
In contrast, we consider with a full lab-equipment specification, where the input to

both R&D activities and to differentiated-goods production is measured in units of the
homogeneous final good (e.g., Barro and Sala-i-Martin, 2004, ch. 6,7),3and which allows
for a fully endogenous expanding-variety mechanism, such that the flow of new goods is
independent of population growth. Moreover, we model the quality-ladders mechanism
with intertemporal spillovers but no intersectoral spillovers, similarly to, e.g., Segerstrom
and Zolnierek (1999) and Barro and Sala-i-Martin (2004, ch. 7), and in contrast to
Howitt (1999) and Dinopoulos and Thompson (1998), among others.
Apart from a few studies (e.g., Rivera-Batiz and Romer, 1991; Acemoglu, 2002), the

endogenous-growth literature has usually ignored the effect of the R&D specification on
results. In the knowledge-driven R&D models, such as Howitt (1999), horizontal inno-
vation competes away exogenously-driven scarce resources (labour) from manufacturing
and vertical innovation activities. In our lab-equipment model, this effect is dampened as
horizontal and vertical innovation re-inforce each other’s impact on aggregate productiv-
ity, thus enlarging the pool of resources (the amount of final good) available to allocate
as inputs to either manufacturing or R&D activities. On the other hand, models where
vertical innovation exhibits no intersectoral spillovers, such as ours, display an adjust-
ment mechanism that is absent from the models with intersectoral spillovers (such as
Howitt, 1999), based on the response of the relative average quality of the differentiated
goods to shocks that move the economy’s steady-state equilibrium.
Consequently, we are able to extend Cozzi (2005)’s result of a negative impact of

animal spirits on both horizontal aggregate R&D and the number of industries to a
framework where decreasing returns to horizontal entry are not a necessary condition. In
our model, the adjustment mechanism runs from the number of industries to the relative
average quality and then to the level of horizontal R&D. Instead, in Cozzi (2005), it runs
from horizontal R&D as characterised by decreasing marginal returns, to the number of
industries. Similarly to Cozzi, we predict that the “waves of enthusiasm” have an effect

3Using Rivera-Batiz and Romer (1991)’s terminology, the assumption that the final good is the R&D
input means that one adopts the “lab-equipment” version of R&D, instead of the “knowledge-driven”
specification, in which labour is the only input.
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on the composition of R&D, but without impacting on aggregate vertical R&D: in our
explicit general-equilibrium setting, reduced outlays in “mature” industries compensate
for the increased R&D intensity in newly-born industries. Thus, we have an inter-R&D
composition effect combined with an intra-(vertical)-R&D composition effect. Besides,
the “waves of enthusiasm” have no impact on the aggregate growth rate but a positive
impact on the level of per-capita consumption, which contrasts with the, respectively,
positive and negative effect obtained by Cozzi.
The rest of the paper has the following structure. The next section briefly discusses the

related literature on SSE. Section 3 outlines the symmetric equilibrium produced by the
model of vertical and horizontal R&D within a full lab-equipment specification. Section 4
focus on the class of asymmetric general equilibria characterised by supernormal waves of
creative destruction in the newly introduced intermediate goods. Section 5 is concerned
with the existence of SSE obtained as a randomisation over the multiple deterministic
equilibria. Section 6 gives the conclusion.

2. Related literature on SSE

Distinct forms of SSE have been explored by the literature, in the context of different
classes of general-equilibrium rational-expectations models.
The seminal work by Cass and Shell (1983) describes SSE obtained as a lottery, or

randomisation, over multiple deterministic equilibria within a discrete-time overlapping-
generation model. Using the stationary transition probabilities (from sunspot to no-
sunspot activity and vice versa) as weighting factors, SSE are derived as the convex
combination of the multiple solutions to the deterministic optimisation problem. Azari-
adis and Guesnerie (1986) derive a sufficient condition for the existence of SSE around
the single deterministic stationary equilibrium (or deterministic cycle) also within a
discrete-time overlapping-generation model. The authors identify a subset of all station-
ary transition probability matrices for which SSE exist as the solution of a “stochastic
deformation” of the deterministic optimisation problem. Woodford (1986) presents a
method of constructing SSE generated by a stationary transition probability matrix in a
discrete-time model that exhibits the indeterminacy of equilibrium near a steady state.
Our paper is in line with the first approach, by studying a model with multiple station-
ary equilibria and constructing SSE as a randomisation over these equilibria. In this
respect, the SSE we study have a simpler origin than the other forms of SSE extant in
the literature.
Like us, more recently some authors have studied SSE in continuous-time infinitely-

lived agents models of endogenous growth. Drugeon and Wigniolle (1996) develop an
extension of Grossman and Helpman (1991), and establish sufficient conditions for the
existence of a SSE around the single deterministic stationary equilibrium, which include
restrictions from above on the stationary transition probabilities of a continuous-time
Markov process. Nishimura and Shigoka (2006) show how to construct a SSE in multi-
sector endogenous-growth models with local indeterminacy,4 based on, e.g., Lucas (1988)

4This paper extends the continuous-time analysis in Shigoka (1994).
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and Romer (1990).5 Those papers exhibit a positive relationship between sunspots (op-
timistic expectations of firms) and the long-run aggregate growth (just like Cozzi, 2005),
while in our model sunspots have no effect on long-run aggregate growth.
By focusing on the endogenous number of firms, we also relate to some papers in the

business-cycle literature with endogenous firm entry and exit. Dos Santos Ferreira and
Dufourt (2006) study a discrete-time real-business-cycle (RBC) model, while Chatterjee,
Cooper, and Ravikumar (1993) present a discrete-time two-sector overlapping-generation
model. In both models, there is Cournot competition and variations in the number of ac-
tive firms are associated with the aggregate fluctuations due to sunspots, constructed as
a randomisation between multiple deterministic steady states. Jaimovich (2007) studies
an RBC model with firm entry and exit where the SSE are derived upon local indeter-
minacy of the deterministic steady state. Notably, in all these models, sunspots have a
positive effect on the number of active firms, whereas in our growth model (similarly to
Cozzi, 2005), sunspots have a negative effect on the number of firms.6

3. The benchmark model

In this section, we first present the full-endogenous growth model of quality ladders and
expanding variety and then derive its symmetric equilibrium. This, in turn, will serve as
a benchmark to the analysis carried out in Section 4, where “waves of enthusiasm” are
considered.
We explore a dynamic general equilibrium model of a closed economy where there is

a single competitively-produced final good that can be used in consumption, C, pro-
duction of intermediate goods, X, and horizontal and vertical R&D activities, Rn and
Rv, respectively. The final consumption good is produced by a (large) number of firms
each using labour and a continuum of intermediate inputs indexed by ω on the interval
[0, N(t)].
The economy is populated by L identical dynastic families, each endowed with one

unit of labour that is inelastically supplied to final-good firms. Thus, the total labour
level is L, which, by assumption, is constant over time. In turn, families invest in firms’
equity.
In the intermediate-good sector, firms can devote resources to R&D either to create

a new product line (a new industry) or, within an existing industry ω, to improve the
quality of its good. Quality is indexed by j, where higher values denote higher quality
products. In particular, when a new quality rung is reached in ω, the jth innovator
is the sole producer with the quality level λj(ω), where the parameter λ > 1 measures

5Also within the endogenous-growth literature, Francois and Lloyd-Ellis (2003) study the effects of
animal spirits on long-run growth by developing an extension of Grossman and Helpman (1991)
where the realisation of innovations is separated in time from their implementation. However, in
their model, expectations are deterministic.

6Note also that we study the particular class of SSE of order two, i.e. with two possible events or
states of nature, as in Cass and Shell (1983), Azariadis and Guesnerie (1986), Drugeon and Wigniolle
(1996), Nishimura and Shigoka (2006), among others, but in contrast to, e.g., Shigoka (1994) and
Dos Santos Ferreira and Dufourt (2006).
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the size of each quality upgrade. By improving on the current best quality index j, a
successful R&D firm earns monopoly profits from selling the leading-edge j(ω)+1 quality
to final-good firms and, in equilibrium, lower qualities of ω are priced out of business.
As each leader is driven out of business by further innovation supported by other firm,
the duration of the monopoly is finite.

3.1. The consumer sector

The economy consists of L identical dynastic families who consume and collect income
(dividends) from investments in financial assets (equity) and labour income. We assume
consumers have perfect foresight concerning the aggregate rate of technological change
over time,7 and choose the path of final-good aggregate consumption {C(t), t ≥ 0} to
maximise the discounted lifetime utility

U =
∫ ∞

0

(
C(t)1−Θ − 1

1−Θ

)
e−ρtdt (1)

where ρ > 0 is the subjective discount rate and Θ > 0 is the constant elasticity of
marginal utility with respect to consumption. Intertemporal utility is maximised subject
to the flow budget constraint (henceforth, the dot denotes time derivative)

ȧ(t) = r(t)a(t) + w(t)L− C(t) (2)

where a stands for households’ financial assets (equity) holdings, measured in terms of
final-good output Y . Households take the real rate of return on financial assets, r, and
the real labour wage, w, as given. The initial level of wealth a(0) is also given, whereas
the condition limt→∞e

−
∫ t
0 r(s)dsa(t) ≥ 0 is imposed in order to prevent Ponzi schemes.

The optimal path of consumption satisfies the well-known differential Euler equation

Ċ(t)
C(t)

=
1
Θ

(r(t)− ρ) (3)

as well as the transversality condition lim
t→∞

e−ρtC(t)−Θa(t) = 0.

3.2. Production and price decisions

We consider that the final-good sector faces the following production function

Y (t) = L1−α ·
∫ N(t)

0

[
λj(ω,t) · x(ω, t)

]α
dω (4)

where L is labour input; (1− α), 0 < α < 1, is the labour share in production; x(ω, t) is
the amount used of the intermediate good ω, weighted by its quality level λj(ω,t), λ > 1.

7As we will see below, the uncertainty associated with R&D at the industry level creates jumpiness in
microeconomic outcomes. However, as the probabilities of successful R&D across industries are inde-
pendent and there is a continuum of industries this jumpiness is not transmitted to macroeconomic
variables.
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It is implicit in (4) that only the highest grade of each ω ∈ [0, N(t)] are actually produced
and used in equilibrium, meaning x(j, ω, t) = x(ω, t); thus, N(t) > 0 is the measure of
how many different intermediate goods (i.e., product lines) ω exist at time t.
Letting final output be the numeraire (that is, setting its price equal to unity), firms

in the final-good sector seeks to maximise profit by choice of L and x(ω), ω ∈ [0, N(t)].
From the first-order condition with respect to x one derives the aggregate demand of ω

x(ω, t) = L ·

(
λj(ω,t)α · α
p(ω, t)

) 1
1−α

(5)

where p(ω, t) is the price of ω relative to the final-good price.
The intermediate good is nondurable and entails a unit marginal cost of production,

measured in terms of final-good output Y . Since there is a continuum of intermediate
goods, one can assume that firms are atomistic and take as given the price of final out-
put (numeraire). Monopolistic competition, therefore, prevails and firms face isoelastic
demand curves (5). The obtained intermediate-good profit maximising price is a con-
stant markup over marginal costs p(ω, t) ≡ p = 1

α ,
8 which implies the aggregate quantity

produced of ω

x(ω, t) = L ·
(
λj(ω,t)α · α2

) 1
1−α (6)

Using the results above we get the profit accrued by the monopolist in ω

π(ω, t) = π̄ · L · λj(ω,t)(
α

1−α) (7)

where π̄ ≡
(

1−α
α

)
· α

2
1−α and λ

α
1−α > 1.

Substituting (6) in (4) yields the aggregate output

Y (t) = α
2α

1−α · L ·Q(t) (8)

where

Q(t) =
∫ N(t)

0
λj(ω,t)(

α
1−α)dω (9)

is the intermediate-input aggregate quality index, which can also be interpreted as the
technological-knowledge stock of the economy, since, by assumption, there are no inter-
sectoral spillovers. Total resources devoted to intermediate input production at t are also
proportional to Q(t)

X(t) =
∫ N(t)

0
x(ω, t)dω = α

2
1−α · L ·Q(t) (10)

8We assume that 1
α
< λ⇔ 1

αλ
< 1, that is, if 1

α
is the price of the leading-edge good, the price of the

next lowest grade, 1
αλ

, is less than the unit marginal cost of production. Only in this case are the
lower grades of ω unable to provide any effective competition for the leading-edge type, so that its
producer can charge the unconstrained monopoly price.
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as are total profits

Π(t) =
∫ N(t)

0
π(ω, t)dω = π̄ · L ·Q(t) (11)

3.3. R&D decisions

As in the standard model of quality ladders, firms decide over their optimal vertical-R&D
level, which constitutes the search for new designs (blueprints) that lead to a higher
quality of existing intermediate goods. Each new design is granted a patent, meaning
that a successful researcher retains exclusive rights over the use of his/her improved
intermediate good. In each industry only (potential) entrants can do R&D and innovation
arrival follows a Poisson process.9

Let Ii(j, ω, t) denote the instantaneous probability of R&D success by potential entrant
i in industry ω when the highest quality is j (I is also interpreted as the vertical innovation
rate). This probability is independently distributed across firms, industries and over time,
and depends on the flow of resources Rvi(j, ω, t) devoted to vertical R&D by entrants in
each ω at t, measured in units of the final good. We assume perfect competition among
entrants and that each entrant’s instantaneous probability of R&D success is given by
a relation exhibiting constant returns in R&D expenditures, Ii(j, ω, t) = Rvi(j, ω, t) ·
Φ(j, ω, t), where the function Φ is the same for every firm in ω and captures the effect of
the current technological-knowledge position j (e.g., Barro and Sala-i-Martin, 2004, ch.
7). Now, let

Φ(j, ω, t) =
1

ζ · L
· λ−(j(ω,t)+1)( α

1−α) (12)

where ζ > 0 is a constant that stands for the (flow) fixed vertical-R&D cost. In order to
eschew the usual scale-effect in endogenous growth models associated to the size of the
labour force, in (12) we assume that an increase in market scale, measured as L, dilutes
the effect of R&D outlays on innovation probability. Observe also that the R&D tech-
nology exhibits intertemporal spillovers but no intersectoral spillovers (e.g., Segerstrom
and Zolnierek, 1999), in contrast with, e.g., Howitt (1999) and Dinopoulos and Thomp-
son (1998). By aggregating across firms in ω, we get Rv(j, ω, t) =

∑
iRvi(j, ω, t) and

I(j, ω, t) =
∑

i Ii(j, ω, t), such that

I(j, ω, t) = Rv(j, ω, t) ·
1

ζ · L
· λ−(j(ω,t)+1)( α

1−α) (13)

9Zero equilibrium R&D by incumbents is a well-known result claimed by the traditional quality-ladders
models (e.g., Aghion and Howitt, 1992). However, as shown by Cozzi (2007), the assumption of
R&D firms (potential entrants and the incumbent) operating under perfect competition and constant
returns at the firm level, taken rigorously, yields an indeterminate investment for the incumbent,
which is consistent with the latter doing any amount of R&D, from zero to a very large number. Our
assumption of zero equilibrium R&D by incumbents is only for the sake of simplicity in what regards
the microstructure of our model.

8



As the terminal date of each monopoly arrives with probability I (j, ω, t) per (in-
finitesimal) increment of time, the present value of a monopolist’s profits is a random
variable. Let V (j, ω, t) denote the expected value of a successful R&D firm,10such
thatV (j, ω, t) =

∫∞
t π(j, ω, t)e−

∫ s
t (r(v)+I(j,ω,v))dvds, where r is the equilibrium market

real interest rate and π(j, ω, t) is given by (7). Along the BGP, r and I are constant;
hence, we can further write

V (j) =
π(j)

r + I(j)
(14)

On the other hand, with free-entry into the vertical R&D business, we have the free-
entry condition

I(j) · V (j + 1) = Rv(j) (15)

By substituting (14) into (15) and using (7) and (13) to simplify, we get

r =
π̄

ζ
− I (16)

According to (16), the relationship between r and I is independent of t, ω, and j. Along
the BGP, where we expect I to be constant, r is also constant.

Variety expansion results from R&D aimed at creating a new intermediate-good line,
corresponding to a new firm, at a cost of η units of final output. In particular, we view
the creation of new product lines as a product development activity without positive
spillovers and allow for entry as well as exit of product lines from the market. After a
new product is launched, an initial quality level is observed, drawn at random from the
distribution of quality indexes matching the existing product lines (e.g., Dinopoulos and
Thompson, 1998; Howitt, 1999). Let q(j, ω, t) ≡ λj(ω,t)(

α
1−α) be an alternative measure

of product quality. Then, from (9), we have

Q(t) =
∫ N(t)

0
q(j, ω, t)dω = q(j, ω̄, t) ·N(t) (17)

where q(j, ω̄, t) ≡ Eω(q) is the average of q over industries and ω̄ denotes the average
intermediate-good sector for a given N(t).

We assume perfect competition among R&D firms and static constant returns com-
bined with dynamic decreasing returns to scale to horizontal R&D. That is,

.
N e(t) =

1
ηRne (t), where

.
N e(t) is the contribution to the instantaneous flow of new product line

by R&D firm e at a unit cost of η and Rne (t) is the flow of resources devoted to hor-
izontal R&D by e at t. Cost η is the same for every firm doing horizontal R&D, with
η ≡ η(N) = Nσ, σ > 0 (e.g., Barro and Sala-i-Martin, 2004, ch. 6).11By aggregating
across firms, we have Rn =

∑
eRne and

.
N(t) =

∑
e

.
N e(t), which implies

10We assume that entrants are risk-neutral and, thus, only care about the expected value of the firm.
11The positive dependence of η on N is necessary to eschew the explosive growth that would occur in

our model, e.g., if η were constant over time. This is not the case in Barro and Sala-i-Martin (2004,
ch. 6)’s basic model of pure expanding variety.
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Rn(t) = ηṄ(t) (18)

Since entry generates value V (q(j, ω̄, t)) ≡ V (j, ω̄, t), a free-entry equilibrium requires
that new product lines are created (or destroyed) at a rate Ṅ necessary to ensure the
free-entry condition Ṅ(t) · V (j, ω̄, t) = Rn (t), which simplifies to

V (j, ω̄, t) = η(N) (19)

Finally, a consistency condition between vertical and horizontal arbitrage conditions
is needed. Having in mind that horizontal entry occurs at the average product quality,
q (j, ω, t), firstwe find an expression for Rv(j − 1, ω̄, t), by solving (13) in order to Rv,
considering the average intermediate-good sector, ω̄, and applying to j − 1, for a given
N(t),

Rv(j − 1, ω̄, t) = I(t) · ζ · L · q(j, ω̄, t) (20)

where we used I(t) ≡ I(j − 1, ω̄, t). Then, from the vertical free-entry condition, (15),
solved in order to V , we get V (j, ω̄, t) = Rv(j−1,ω̄,t)

I(j−1,ω̄,t) . Together with (20), we have

V (j, ω̄, t) = ζ · L · q(j, ω̄, t) (21)

Last, equating (21) and the horizontal free-entry condition, (19), together with (17),
yields

q(j, ω̄, t) =
Q(t)
N(t)

=
η(N)
ζ · L

(22)

3.4. The symmetric general-equilibrium BGP

The dynamic general equilibrium is defined by the paths of {N(t), C(t), Q(t), I(t), r(t), t ≥ 0},
such that: (i) consumers, final-good firms and intermediate-good firms solve their prob-
lems; (ii) consistency conditions are met; and (iii) markets clear.
The final-product market equilibrium condition is

Y (t) = C(t) +X(t) +Rv(t) +Rn(t) (23)

which defines the aggregate resource constraint. At the aggregate level, the households’
equilibrium condition (balance sheet) is

a(t) = V (j, ω̄, t) ·N(t) = η(t) ·N(t) (24)

which we can prove, by substituting in (2), that is equivalent to (23) (see Gil, Brito, and
Afonso, 2008).
We now derive and characterise the interior BGP. Let gy ≡ ẏ

y , the growth rate of y.
Along the BGP, the aggregate resource constraint (23)is satisfied with Y , X, C, Rv and
Rn growing at the same constant rate. By considering (8) and by time-differentiating
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(22) with η(N) = Nσ, the following necessary conditions for the existence of a BGP are
derived: (i) gC = gQ = g; (ii) gI = 0; and (iii) gQ

gN
= (σ + 1), gN 6= 0. Observe that g is

the long-run aggregate growth rate and that gQ and gN are monotonically related.
By assuming that the number of sectors, N , is large enough to treat Q as time-

differentiable and the time interval dt is small enough to have Q̇ non-stochastic, we
time-differentiate (17) in order to get Q̇(t) =

∫ N(t)
0 q̇(j, ω, t)dω+ q(N, t)Ṅ(t). After some

algebraic manipulation of the latter, we can write

gQ = I ·
(
λ

α
1−α − 1

)
+ gN (25)

Next, solve (3) with respect to r and note that, along the BGP, gC = g, to get
r = ρ+ Θg. The latter, combined with g = (1 + σ) · gN , (25) and (16), and solved with
respect to g, yields

g =
1
Θ

(
π̄

ζ
− ρ
) (

λ
α

1−α − 1
)
· (σ + 1)(

λ
α

1−α − 1
)
· (σ + 1) + 1

Θσ
(26)

Observe that lim
σ→∞

g = gno−entry and that g > 0 requires µ > 0. Since, from (3), g = gC =
1
θ (r − ρ), then r > ρ must occur; this condition also guarantees gN > 0.12 Thus, under
a sufficiently productive technology, our model predicts a BGP with constant positive g
and gN , where the former exceeds the latter by an amount corresponding to the growth
of intermediate-good quality, driven by vertical innovation; to verify this, just check (25)
and solve to get Q̇

Q −
Ṅ
N = I ·

(
λ

1−α
α − 1

)
, which is positive if I > 0. This implies that

the consumption growth rate equals the growth rate of the number of varieties plus the
growth rate of intermediate-good quality, in line with the view that industrial growth
proceeds both along an intensive and an extensive margin. A similar result can be found,
e.g., in Arnold (1998), Peretto (1998) and Howitt (1999).13

But differently from Dinopoulos and Thompson (1998), Howitt (1999) and other
quality-ladders models with expanding variety, gN is not linked to the (exogenous) pop-
ulation growth rate.14 The dynamic decreasing returns due to η(N) = Nσ, per se,
determine a constant N along BGP (see Barro and Sala-i-Martin, 2004, ch. 6); however,
the N expansion is sustained by technological-knowledge accumulation, as the expected

12Also, having in mind (24) and (22), we re-write the transversality condition as

lim
t→∞

e−ρtC(t)−θζ · L ·Q(t) = lim
t→∞

e−ρt
(
C(t)

Q(t)

)−θ
ζ · L ·

(
Q̂egt

)1−θ
= 0 (27)

where Q = Q̂egt and Q̂ denotes detrended Q. Thus, the transversality condition implies ρ > (1−θ)g;
i.e., r > g, since g = 1

θ
(r − ρ). This condition also guarantees that attainable utility is bounded, i.e.,

the integral (1) converges to infinity.
13In Peretto (1998)’s endogenous growth model with cost-reducing R&D, the intensive margin is due to

productivity growth, whilst in Arnold (1998) reflects human-capital accumulation.
14The link between the expanding variety and the exogenous population growth can also be found in the

class of endogenous-growth model where incumbents do in-house cost-reducing R&D, while entrants
bring new products to the market, such as Peretto and Connolly (2007).
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growth of intermediate-good quality due to vertical R&D makes it attractive, in terms
of intertemporal profits, for potential entrants to always put up an entry cost, in spite of
its increase with N . In this sense, it is not necessarily the larger economy, measured by
population size, that produces the greater number of varieties, but that with the larger
technological-knowledge stock, which thus emerges as the relevant endogenous economic
size measure.

4. The model with asymmetric equilibria

We now adopt Cozzi (2005)’s approach in order to show that the lab-equipment model
of vertical and horizontal R&D admits (at least) a continuum of asymmetric station-
ary deterministic equilibria, besides the symmetric equilibrium derived in the previous
section.

4.1. R&D decisions

We focus on the class of asymmetric general equilibria characterised by supernormal
waves of creative destruction in the newly introduced intermediate goods, and which
satisfy the following assumption:

Assumption 1. Consider θ ∈ (1,∞), constant across industries and over time. When
a new intermediate good ω is introduced, vertical R&D will be θ times higher in
industry ω than in the product lines that have experienced at least one quality jump
(“mature” industries). After the next quality jump occurs in ω, its vertical R&D
level will become equal to the R&D carried out in the other “mature” industries.

This assumption is in line with some stylised facts on industry life cycle (e.g., Klepper,
1996), according to which frequently new industries are initially and quickly developed by
new entrants. Moreover, it implies that the BGP expected value of the first monopolist
in a newly introduced product line is

V E(j) =
π(j)

r + θI(j)
= Ω · V (j) (28)

where V (j) = π(j)
r+I(j) , π is given by (7) and Ω ≡

[
1− (θ−1)I(j)

r+θI(j)

]
∈ (0, 1),∀r, I,> 0, θ ∈

(1,∞) captures the negative effect of increased creative destruction on the value of the
monopolist firm (i.e., V E < V , due to θ > 1). Provided that I and r are constant along
the BGP, Ω is also constant.This implies that the horizontal R&D free-entry condition
can be rewritten as

η(N) = Ω · V (j) (29)

Now we turn to vertical innovation under Assumption 1. Let N I denote the number of
industries that have not experienced the first quality jump. Since all new industries start
without having innovated in the vertical direction, N I increases as far as N increases;
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however, at any t, there is also a number θ · I ·N I that innovates and leaves the group
of N I . Thus, Ṅ I = −θ · I ·N I + Ṅ , from which, with NI

N constant in BGP, we have

N I

N
=

gN
gN + θI

(30)

Under Assumption 1, a general BGP equilibrium with “waves of enthusiasm” requires
that financial markets recognise the “enthusiasm” about the newly-introduced industries
and thus are willing to channel savings to aggregate vertical innovation according to the
arbitrage condition

r =
π

V
−A · I (31)

where A ≡
[
1 + (θ − 1) gN

gN+θI

]
∈ (1,∞),∀gN , I, > 0, θ ∈ (1,∞). This implies that the

average Poisson rate of vertical innovation at the aggregate level, A·I, exceeds the average
Poisson rate in the “mature” industries, I. Thus, investors require that the real interest
rate, r, equals the dividend rate, π

V , plus the rate of capital gain −A · I. The latter term
incorporates the fact that all industries are undertaking vertical R&D every period but
some are still waiting for their first innovation in the vertical direction. Provided that
I and gN are constant along the BGP, A is also constant. Substituting (15) solved in
order to V , together with (7) and (13), in (31), yields

r +A · I =
π̄

ζ
(32)

Finally, given the free-entry conditions (15) and (47), we rewrite the consistency con-
dition (22) as

Q(t)
N(t)

=
η(N)
ζ · L

· Ω−1 (33)

This is our model’s version of arbitrage equation (H´) in Cozzi (2005) (itself a generali-
sation of equation (H) in Howitt, 1999).15Having in mind that 0 < Ω < 1, it is clear from
(33) that “waves of enthusiasm” imply a smaller N vis-à-vis the symmetric equilibrium
implicit in (22): a lower N enhances average quality, Q

N , for a given Q (i.e., relative
average quality 1

N ) received by a newly-born industry, in order to compensate for the
higher subsequent creative destruction rate (Ω−1 > 1) due to θ > 1. On the right-hand
side of (33), we get Ω−1 → 1 with θ → 1, and Ω−1 → +∞ with θ → +∞. In the latter
case, N must approach zero in order to elevate relative average quality to infinity.
Notice that the described mechanism: (i) stems from our assumption of no intersectoral

spillovers in vertical innovation, in as much as the latter implies that the BGP relative
average quality is given by 1

N (see (17)); (ii) is only weakened by η ≡ η(N), η′ > 0, in
(33); (iii) does not depend qualitatively on the presence of static decreasing returns to
horizontal R&D.

15To see this, consider Cozzi’s arbitrage equation with “waves of enthusiasm” as a certain event, i.e.,
pE = 1.
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In contrast, Howitt (1999)’s model features both intersectoral spillovers in vertical
innovation and static decreasing returns to horizontal R&D; the former assumption im-
plies that relative average quality is independent of the number of industries in BGP (see
Howitt’s equation (13)), and thus the latter assumption is necessary to ensure that the
consistency condition between vertical and horizontal innovation has a finite and deter-
mined solution (see Howitt’s equation (H)). “Waves of enthusiasm”, as analysed by Cozzi
(2005), imply a lower number of industries than in the symmetric equilibrium in Howitt
(1999)’s model, too, but the mechanism runs from horizontal R&D - which decreases as
a direct effect of decreasing marginal returns to horizontal R&D in Cozzi’s equation (H´)
- to the number of industries.16

4.2. The asymmetric general equilibrium BGP

In order to derive the asymmetric equilibrium characterised by “waves of enthusiasm” in
an explicit general-equilibrium setting, we must take into account that the final-product
market equilibrium condition is now given by

Y (t) = X(t) + C(t) +Rn(t) +A ·Rv(t) (34)

where A ·Rv is the aggregate vertical R&D and Rv is the vertical R&D conducted by the
“mature” industries. At the aggregate level, the households’ balance sheet, equity being
taken at its market value, is now

a(t) = V (j, ω̄, t) ·N(t) = η(t) · Ω−1 ·N(t) (35)

while the households’ flow budget constraint is

ȧ(t) = r(t)a(t) + w(t)L− C(t) + Λ(t) (36)

where Λ is a real pure profit. We can prove, by substituting (35) in (36), that the former
is equivalent to (34) (see Appendix A).
The necessary conditions for the existence of a BGP continue to be those presented in

Subsection 3.4.
Again, by time-differentiating (17), and by taking into account that the asymmetric

BGP is characterised by (30), we can write (see (25))

gQ = A · I ·
(
λ

α
1−α − 1

)
+ gN (37)

which is our version of vertical innovation equation (14) in Cozzi (2005).17 Then, solve
(3) with respect to r, to get r = ρ+ Θg. The latter, combined with (32) and (37), yields

16We can easily add static decreasing returns to horizontal R&D to our model, as in Howitt (1999) and
Cozzi (2005), such that Ṅ = 1

η
φ(Rn), φ′ > 0, φ′′ < 0, and Q(t)

N(t)
= η(·)

ζ·φ′(Rn)
· Ω−1

0 . In this case, the
impact of Ω−1

0 > 1 on the right-hand side of (33) will be matched by a decrease in both N and Rn.
See Appendix B for details.

17To see this, use pE = 1 in Cozzi’s equation.
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g =
(
σ + 1
σ

)
·A · I ·

(
λ

α
1−α − 1

)
=
(
σ + 1
σ

)
·
(
π̄

ζ
− ρ−Θg

)
·
(
λ

α
1−α − 1

)
(38)

By solving (38) with respect to g, we find

g =
1
Θ

(
π̄

ζ
− ρ
) (

λ
α

1−α − 1
)
· (σ + 1)(

λ
α

1−α − 1
)
· (σ + 1) + 1

Θσ
(39)

which is the BGP aggregate growth rate under asymmetric equilibrium satisfying As-
sumption 1. However, (26) is also the expression for the BGP aggregate growth rate
under symmetric equilibrium (i.e., θ = 1 ⇒ A = Ω = 1), as found in (26). Given
g = (1 + σ) · gN , the same is true for gN .

Now, let s denote a given variable value along the symmetric BGP, as derived for the
model in Section 3. Then, from (39) and (32), we have, respectively

g = gs ⇔ gN = gsN (40)

A · I =
π̄

ζ
− ρ−Θg = Is ⇔ I =

Is

A
< Is (41)

plus, given (33) and our assumption of η(N) = Nσ, for a given Q,

N = (Ω · ζ · L ·Q)
1

σ+1 < N s (42)

Also, by solving (33) with respect to η and substituting in (18), we get, for a given Q,

Rn = η · Ṅ = Ω · gN · ζ · L ·Q < Rsn (43)

and, by solving (13) with respect to Rv and aggregating across ω having in mind the
asymmetric BGP is characterised by an aggregate rate of creative destruction A · I,

A ·Rv = A · I · ζ · L · λ
α

1−α ·Q = Rsv ⇔ Rv =
Rsv
A0

< Rsv (44)

Finally, substitute (8), (10), (43) and (44) in (34), to get, for a given Q,

C =
[(
α

2α
1−α − α

2
1−α
)
− Ω · gN · ζ −A · I · ζ · λ

α
1−α
]
· L ·Q > Cs (45)

Observe that, given Q and L, the latter can be interpreted as the productivity-adjusted
level of per-capita consumption.
In Appendix C, we prove the existence of a finite and unique A > 1, given the set

(θ; gsN , I
s), that solves for the asymmetric BGP (26)-(45). Moreover, because the number

θ ∈ (1,∞) is arbitrary, it can then be shown that there is a continuum of asymmetric
BGPs (see Section 5, below, for more detail).
Thus, in our model, the “waves of enthusiasm” have no impact on aggregate vertical

R&D intensity (that is, for a given Q, or a given Y - see (8)), as reduced outlays in
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“mature” industries compensate for the increased R&D intensity in newly-born industries.
This intra-R&D composition effect is “forced” by the fact that financial markets link the
effective return to vertical R&D (the real interest rate plus the average rate of creative
destruction) to the fundamentals, which must be the same whether we consider the
symmetric or the asymmetric equilibrium.18 The latter effect, together with the fact that,
as a consequence of our lab-equipment specification, vertical innovation is the ultimate
growth engine, in the sense that it sustains both variety expansion and aggregate growth,
implies that the “waves of enthusiasm” have no impact on either the growth rate of the
number of varieties or the aggregate growth rate. This result contrasts with the positive
effect obtained by Cozzi (2005).
Our results coincide with Cozzi’s in what concerns the negative impact of “waves of en-

thusiasm” on horizontal R&D intensity. However, as already alluded above with respect
to the effect of “waves of enthusiasm” on N , the mechanism at work is subtly different in
our case: it predicts a lower horizontal R&D in response to a lower N vis-à-vis the sym-
metric equilibrium, since the latter requires a smaller Ṅ to sustain a given BGP growth
rate, gN , independently of the type of returns to horizontal R&D we postulate.19 Given
the fact that, in our model, “waves of enthusiasm” have no impact on the productivity-
adjusted level of per-capita final-good production, Y

QL (see (8)) , then the lower horizontal
R&D intensity implies that more resources become available to per-capita consumption,
also in productivity-adjusted terms, C

QL . This contrasts with the negative effect on the
latter found by Cozzi.

5. Stationary sunspot equilibria

In the previous sections, we described a set of multiple stationary deterministic equi-
libria (BGPs) admitted by our model: one symmetric equilibrium and a continuum of
asymmetric equilibria characterised by “waves of enthusiasm”. This section is concerned
with the existence of stationary equilibria in which all firms expect a “wave of enthusiasm”
for the new product, such that “waves of enthusiasm” constitute self-fulfilling stationary
rational expectations equilibrium outcomes.
Because of the existence of multiple equilibria, there exists a coordination problem

between firms,20which cannot be solved by referring solely to the fundamentals of the
economic system. Following a common practice in the literature, we explicitly assume
that firms tackle this coordination problem by referring to some extrinsic stochastic
process, as described below:

Assumption 2. At each t, all R&D firms observe an exogenous variable z(t) ∈ {0, 1} and
establish a link between this observation and the existence of a “wave of enthusi-

18Notice term π̄
ζ
in (32) and (16).

19Observe that the assumption of η ≡ η(N), η′ > 0, has no qualitative effects on the described mecha-
nism.

20As noted by Cozzi (2005), since after the second quality jump all sectors experience the same degree
of vertical innovation, before that jump R&D firms are indifferent among sectors, which opens the
door namely to an asymmetric allocation of R&D.
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asm” towards a newly created intermediate good ω at t: “no wave of enthusiasm”
(z(t) = 0) or “wave of enthusiasm” (z(t) = 1). Consider p ∈ (0, 1), constant across
industries and over t. With probability p, z(t) = 1, i.e., vertical R&D will be θ > 1
times higher in the new industry than in the “mature” industries. With probability
1 − p, z(t) = 0, i.e., the new industry is immediately as R&D intensive as the
“mature” industries.

Observe that, like in Cozzi (2005), the nature of extrinsic uncertainty is industry specific.
As the probabilities of “wave of enthusiasm” across industries are independent and there
is a continuum of industries, uncertainty is not transmitted to macroeconomic variables.
Therefore, the SSE studied herein do not generate aggregate uncertainty.21

Having Assumptions 1 and 2 in mind, SSE are then built as a randomisation over
the multiple deterministic stationary equilibria (e.g., Cass and Shell, 1983, Drugeon and
Wigniolle, 1996 and Dos Santos Ferreira and Dufourt, 2006). First, consider the BGP
expected value of the first monopolist in a newly introduced product line, which is now

V (j) =
π(j)
r + I

with probability 1− p (46a)

V E(j) =
π(j)
r + θI

=
[
1− (θ − 1)I(j)

r + θI(j)

]
· V (j) with probability p (46b)

where π is given by (7).
Next, recall from Subsection 3.3 that the contribution to the instantaneous flow of

new goods by R&D firm e in the horizontal-R&D sector is Ṅe = 1
η(N)Rne. Given perfect

competition among innovator firms, each of them takes as given the marginal value of
entry, V . Under Assumption 2, R&D firms solve the lottery22

Rne = argmax
[
p ·
(
Ṅe · V E −Rne

)
+ (1− p) ·

(
Ṅe · V −Rne

)]
The single-valuedness and continuity of the latter, for a given p, is guaranteed by the
strict concavity and continuity of the maximand with respect to Rne. After aggregation,
the associated first-order condition implies the horizontal R&D free-entry condition

η(N) = (1− p) · V (j) + p · V E(j) = Ωp · V (j) (47)

where Ωp ≡
[
1− (θ−1)I

r+θI · p
]
∈ (0, 1),∀r, I,> 0, p ∈ (0, 1), θ > 1 and p = 1 ⇒ Ωp = Ω.

By using Ωp in (33), we have Ω−1
p → 1 with p → 0 ∨ θ → 1, and Ω−1

p → (1− p)−1 with
θ → +∞. Thus, in the latter case, with p ∈ (0, 1), N need not approach zero and hence
elevate relative average quality to infinity.

21Thus, the deterministic nature of the households’ optimisation program is not affected by the consid-
eration of sunspots (see Subsection 3.1, above).

22Without sunspots, R&D firms solve Rne = argmax
(
Ṅe · V −Rne

)
, with the associated first-order

condition implying (19). Given constant returns to scale, this is equivalent to consider directly the
free-entry condition Ṅe · V = Rne, as in Subsection 3.3.
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On the other hand, the vertical-innovation arbitrage condition and the aggregate
growth rate are now given by

r +Ap · I =
π̄

ζ
(48)

gQ = Ap · I ·
(
λ

α
1−α − 1

)
+ gN (49)

where Ap ≡
[
1 + (θ − 1) gN

gN+θI · p
]
∈ (1,∞),∀gN , I, > 0, p ∈ (0, 1), θ > 1 and p =

1 ⇒ Ap = A.Then, the combination of (3), (48) and (49) yields (39), while the BGP
relationships (40)-(45) apply now with Ω and A replaced by Ωp and Ap, respectively.
In Appendix C, we prove the existence of a finite and unique Ap > 1, given the set
(θ, p; gsN , I

s), that solves for the asymmetric BGP under Assumption 2.
Let the variables in the state without “waves of enthusiasm” be indexed by 0, whereas

the ones in the state with “waves of enthusiasm” be indexed by 1. We define formally a
SSE as follows:

Definition. For a given θ ∈ (1,∞), a SSE is a quintuple (Ωz, Az, p)z∈{0,1}, with Ω0 =
A0 = 1, Ω1 = Ωp ∈ (0, 1), A1 = Ap ∈ (1,∞) and p ∈ (0, 1), that yields the equality
parts in (40)-(45), with Ω and A replaced by Ωz and Az, z ∈ {0, 1}, respectively.

Finally, a continuous monotonic relationship between the BGP values of the endogenous
variables under Assumption 1 and 2 and, respectively, θ and p is needed, such that
a continuum of SSE exists. By using the implicit function theorem to compute dAp

dθ

and dΩp
dθ , it is easy to verify that Ap and Ωp relate monotonically with θ. In concrete,

Ap increases monotonically with θ at a decreasing rate (limθ→∞
dAp
dθ = 0), whereas Ωp

decreases monotonically with θ also at a decreasing rate. With respect to the latter,
we add that, on one hand, the direct negative effect of θ on Ωp overweights the positive
effect of θ through Ap on Ωp and, on the other hand, the decreasing marginal direct effect
of θ on Ωp overweights the impact of limθ→∞

dAp
dθ = 0. Re-iterating the same steps as

above, one can give a proof of the monotonic relationship between p and, respectively, Ap
and Ωp. Because sunspots are the random factors that, with probability p, choose one
specific realisation from the underlying multiple deterministic equilibria, and because the
numbers θ and p are arbitrary, then there is a continuum of SSE.
With these ingredients, we are able to rewrite Cozzi (2005)’s Proposition 1 as

Proposition 1. A continuum of BGPs exist parametrised by “wave of enthusiasm” prob-
abilities p ∈ (0, 1) and amplitudes θ ∈ (1,∞). Comparing such BGPs, the larger p
and θ, the smaller the number of firms, aggregate horizontal R&D and vertical
R&D in “mature” industries, and the larger vertical R&D in newly-born industries
and the level of per-capita consumption. Aggregate vertical R&D, the growth rate
of the number of varieties and of intermediate-good quality, and thus the aggregate
growth rate, do not depend on either p or θ.

In what follows, we briefly relate our main results to recent work on SSE. With respect
to the impact of sunspots (optimistic expectations of firms) on the number of firms, our
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growth model predicts a negative relationship similarly to Cozzi (2005). The opposite re-
sult obtains in the business-cycle models with endogenous firm entry by, e.g., Chatterjee,
Cooper, and Ravikumar (1993), Dos Santos Ferreira and Dufourt (2006) and Jaimovich
(2007). In our study, sunspots have no effect on long-run aggregate growth, in contrast
to Cozzi (2005), but also to, e.g., the endogenous-growth models analysed in Drugeon
and Wigniolle (1996) and Nishimura and Shigoka (2006). These papers all exhibit a
positive relation between sunspots and the aggregate growth rate. On the other hand,
the positive impact we find of sunspots on per-capita consumption is in line with, e.g.,
Chatterjee, Cooper, and Ravikumar (1993) and Dos Santos Ferreira and Dufourt (2006),
but opposes to the negative effect described by Cozzi (2005).

6. Concluding remarks

In this paper, we revisit the issue of self-fulfilling “waves of enthusiasm” as stationary
rational expectations equilibrium outcomes in endogenous-growth models that feature
both the quality-ladders and the expanding-variety mechanism. For that purpose, we
develop a model that merges the two mechanisms under a non-scale full lab-equipment
specification without intersectoral spillovers.
The model predicts, under a sufficiently productive technology, a stationary BGP with

constant positive growth rates, and where the consumption growth rate equals the growth
rate of the number of varieties plus the growth rate of intermediate-good quality, in line
with the general view that industrial growth proceeds both along an intensive and an
extensive margin. Nevertheless, different from Dinopoulos and Thompson (1998) and
Howitt (1999), among others, the growth of the number of varieties is not linked to the
exogenous population growth rate. It is sustained by endogenous technological-knowledge
accumulation, as the expected growth of intermediate-good quality makes it attractive
for potential entrants to always put up an entry cost, in spite of its upward trend.
In line with Cozzi (2005), this paper focuses on asymmetric equilibria derived from

self-fulfilling prophecies a la Cass and Shell (1983), instead of any asymmetry in market
fundamentals, such as cost structures or technologies. It shows that the BGP composition
of aggregate R&D, the industrial structure (number and average firm size) and the per-
capita consumption level can be affected in a relevant manner by animal spirits.
However, by considering a vertical and horizontal R&D model in some aspects distinct

from Howitt (1999), our results coincide only partially with those presented by Cozzi
(2005). Both models predict a smaller number of firms in the asymmetric equilibrium
with sunspots, in order to enhance the returns to horizontal entry, given subsequent
higher obsolescence (creative destruction) rate. In our model, returns are increased be-
cause relative average quality is higher when the number of varieties is lower, whereas
in Cozzi (2005), returns are increased because marginal returns to horizontal R&D are
higher when R&D outlays are lower, which in turn imply a smaller number of industries
in equilibrium.
More importantly, balanced growth dynamics are distinct. In our model, long-run

aggregate growth is not affected by the “waves of enthusiasm”, while Cozzi’s model pre-
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dicts a higher aggregate growth rate, due to a higher aggregate rate of vertical innovation.
The mechanism behind our result is twofold. One one hand, we consider an explicit gen-
eral BGP equilibrium where financial markets link the effective return to vertical R&D
(the real interest rate plus the average rate of creative destruction) to the fundamentals,
which must be the same whether we consider the symmetric equilibrium or the asymmet-
ric equilibrium with sunspots. This “forces” an intra-R&D composition effect between
“mature” and newly-born industries, thus dampening the impact of animal spirits on
aggregate vertical R&D intensity. The latter, together with the fact that in our model
vertical innovation is the ultimate growth engine, in the sense that it sustains both va-
riety expansion and aggregate growth, implies that the “waves of enthusiasm” have no
impact on the growth rate of the number of varieties and on the aggregate growth rate.
However, our model predicts a positive impact on the level of per-capita consumption,
in contrast to Cozzi’s negative effect.
This set of results suggests that the risk that policy intervention, by acting itself as

a potential source of extrinsic uncertainty, sees its effectiveness reduced - as explained
by Cozzi (2005) - may ultimately be more relevant to the impact of public policy on
the industrial structure and the level of consumption per capita than on the long-run
aggregate growth rate.
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A. Derivation of the aggregate resource constraint with
“waves of enthusiasm”

Consider the households’ balance sheet (35), in the text. Hence, we can characterise the
change in the value of equity as

ȧ(t) = η(t) · Ω−1 · Ṅ(t) + η̇(t) · Ω−1 ·N(t) (50)

Substitute (36) in the left-hand side of (50) and η̇
η = Q̇

Q −
Ṅ
N = AI

(
λ

α
1−α − 1

)
- derived

from (33) and (37) - in the right-hand side, to get

(r(t) +A · I) · a(t)−A · I · a(t) + w(t) · L− C(t) + Λ(t) =

= A · I ·
(
λ

α
1−α − 1

)
· η(t) · Ω−1 ·N(t) + η(t) · Ω−1 · Ṅ(t) (51)

Then, using (31) solved in order to π, together with Y − X = wL + πN ,23in (51), we
find
23Having in mind the price markup p = 1

α
, equations (4), (8), (10) and (11), and that, in equilibrium,

w and p are equated to the marginal product of labour and the marginal product of intermediate
goods, respectively, it is easily shown that wL = (1 − α)Y , X = α2Y , pX = αY and total profits
Π = X · (p− 1) = αY − α2Y . Also, have in mind that, by definition of q(j, ω̄, t), total profits can be
represented as Π = π(j, ω̄, t) ·N .
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Y (t)−X(t)− C(t) + Λ(t) = A · I · λ
α

1−α · a(t) + η(t) · Ω−1 · Ṅ(t) (52)

Finally, recall that Rn = ηṄ and Rv = Iλ
1−α
α a,24and let

Λ = (Ω−1 − 1)ηṄ (53)

such that (52) reads

Y (t) = X(t) + C(t) +Rn(t) +A ·Rv(t)

which is (23), in the text. Observe that (53) means that the “real pure profit” term, Λ,in
(36) must capture the net increase in the households’ balance sheet induced by horizontal
entry, in turn explained by the fact that the average value from entry exceeds the average
cost, V > η, when θ > 1 (thus implying Ω−1 > 1). Notice that Λ is zero in the symmetric
equilibrium, θ = 1 (in that case, Ω−1 = 1), which means that in fact (36) generalises (2).

B. Model with static decreasing returns to horizontal R&D

We consider first the symmetric equilibrium. Let horizontal R&D technology (18), in the
text, be replaced by25

Ṅ =
1

η(N)
φ(Rn) (54)

where φ′ > 0, φ′′ < 0 and η(·) as defined in the text. Term φ(Rn) introduces static de-
creasing returns to horizontal R&D in the model. We keep term 1

η(N) in (54), as the
dynamic decreasing returns to horizontal R&D implied by η(N), η′ > 0, are necessary
to eschew the explosive growth that would occur, e.g., if η were constant over time.26

More specifically, in line with Segerstrom (2000), let Ṅe(t) be the contribution to the
instantaneous flow of new goods by R&D firm e in the horizontal-R&D sector and Rne(t)
the flow of resources devoted to horizontal R&D by e at t (measured in units of final-
good output Y ), such that Ṅe = 1

η(N)φ(Rne). Given perfect competition among R&D
firms, each of them takes as given the marginal value of entry, V . R&D firms solve
maxRneṄe · V −Rne, with the associated first-order condition implying, under a conve-
nient aggregation procedure, V = η(N) 1

φ′(Rn) . Combining the latter with (21), in the
text, we get the consistency condition

Q

N
=

η(N)
ζ · L · φ′(Rn)

(55)

24By solving (13) with respect to Rv and aggregating across ω, we obtain Rv =
∫ N

0
Φ(ω)−1I(ω)dω =

IζLλ
α

1−αQ (see (44)). From (33) and (35), we then get Rv = IζLλ
α

1−αQ = Iλ
α

1−α a.
25In this appendix we omit time subscripts for sake of simplicity.
26More generally, we need some type of dynamic friction in horizontal entry in order to eschew the

explosive growth that would otherwise occur given the feedback between horizontal and vertical
innovation in a lab-equipment setup. It can be shown that the specification η ≡ η(Q), η′ > 0, η′′ < 0,
produces a similar result.
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For concreteness, assume the specification φ(Rn) = Rσ1
n and η(N) = Nσ2 , with 0 <

σ1 < 1 and σ2 > 0.27 By considering the latter and that, along the BGP, ṘnRn = Q̇
Q = g,

time-differentiation of (59) yields the BGP relationship

g =
(

1 + σ2

σ1

)
· gN (56)

where
(

1+σ2
σ1

)
> 1. Solving (54) in order to Rn, together with (55), leads to

Rn = gN · σ1 · ζ · L ·Q (57)

N =
[
ζ · L · φ′(Rn) ·Q

] 1
σ2+1 =

[
(ζ · L · σ1 ·Q)σ1 g1−σ1

N

] 1
σ2+1 (58)

Now, we focus on the asymmetric equilibrium under Assumption 1. Re-iterating the
same steps as in Section 4, we find that the consistency condition (55) is replaced by

Q

N
=

η(N)
ζ · L · φ′(Rn)

· Ω−1 (59)

where Ω ≡
[
1− (θ−1)I

r+θI

]
∈ (0, 1),∀r, I,> 0, θ ∈ (1,∞). Given (59), we get

Rn = gN · σ1 · ζ · L · Ω ·Q (60)

N =
[
ζ · L · Ω · φ′(Rn) ·Q

] 1
σ2+1 =

[
(ζ · L · Ω · σ1 ·Q)σ1 gσ1−1

N

] 1
σ2+1 (61)

It is straightforward to show that the presence of φ(Rn) in (54) reduces the (negative)
impact of “waves of enthusiasm” on Rn vis-á-vis the symmetric equilibrium without
sunspots (in absolute terms), because now Ω multiplies by σ1 < 1 in (60). The effect of
φ(Rn) on the (negative) impact of “waves of enthusiasm” on N is ambiguous: since Rn
feeds back on N through φ′(Rn) - Ω multiplies by φ′(Rn) in (61) - the exact magnitude
depends also on the level of φ′(Rn), in particular whether it is below or above unity.

C. Existence and uniqueness of Ap > 1

We give a sketch of the formal proof for the existence and uniqueness of the value of
Ap > 1, given the set (θ, p; gsN , I

s), that solves for the asymmetric BGP both under
Assumption 1 (p = 1 ⇒ Ap = A) and Assumption 2 (p ∈ (0, 1)). Recall from (41) that
I ≡ I(Ap) = 1

Ap
Is, where Is = π̄

ζ − ρ−Θg. Thus, we wish to show that the equation

27Given this specification for φ(Rn), the aggregation procedure that allows one to derive (54), and thus
(55), can be achieved by postulating Ṅe = 1

η(N)
Rσ1
neM

σ1−1, where M is the total number of firms in
the horizontal-R&D sector (e.g., Segerstrom and Zolnierek, 1999). With all R&D firms choosing the
same amount of R&D, this technology allows for convenient aggregation, such that Ṅ = 1

η(N)
Rσ1
n ,

where Ṅ = M · Ṅe and Rn = M · Rne. Observe that, as M → ∞, the aggregate flow of new goods
does not change, but the individual contribution of any firm e becomes negligible.
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Ap = 1 + (θ − 1) · gN ·Ap
gN ·Ap + θ · Is

· p ≡ χ(Ap) (62)

has a unique and finite solution, i.e., that the locus of Ap (i.e., the 45º line) and χ(Ap)
coincide for a unique and finite value of Ap > 1. Firstly, see that χ(Ap) is a continuous
increasing concave function, that is, for Ap finite,

dχ(Ap)
dAp

= (θ − 1)
gN · p

gN ·Ap + θ · Is

(
1− gN ·Ap

gN ·Ap + θ · Is

)
> 0

and

d2χ(Ap)
dA2

p

= 2(θ − 1)
g2
N · p

(gN ·Ap + θ · Is)2

(
−1 +

gN ·Ap
gN ·Ap + θ · Is

)
< 0

since 1 − gNAp
gNAp+θIs > 0. Secondly, note that limAp→∞

dχ
dAp

= 0. Thus, χ(Ap) is mono-

tonically increasing such that ∃Ap > 1, dχ
dAp

< 1. The latter, combined with χ(0) = 1,
implies that the curve χ(Ap) and the 45º line cross only once, at a given Ap > 1 finite.
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