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Abstract

This paper considers estimation of likelihood-based models in a panel setting. That

is, we have panel data, and for each time period separately we have a correctly specified

model that could be estimated by MLE. We want to allow non-independence over time.

This paper shows how to improve on the QMLE. It then considers MLE based on joint

distributions constructed using copulas. It discusses the efficiency gain from using the

true copula, and shows that knowledge of the true copula is redundant only if the vari-

ance matrix of the relevant set of moment conditions is singular. It also discusses the

question of robustness against misspecification of the copula, and proposes a test of the

validity of the copula. GMM methods are argued to be useful analytically, and also for

reasons of efficiency if the copula is robust but not correct.
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1 Introduction

In this paper we suppose that we have panel data, with individuals i = 1, . . . , N and time

periods t = 1, . . . , T . We presume that N is large and T is small, and we will consider

asymptotic arguments as N → ∞ with T fixed. In this setting, suppose that we have a

correctly specified likelihood-based model (e.g. a logit model, or a parametric duration model,

or a stochastic frontier model, etc.) which could be consistently estimated from any of the T

cross sections. However, we would like to be able to use the data from the whole panel. So,

for example, we would be perfectly comfortable estimating our logit model from a single cross

section, but we wish to combine information over time to get a more efficient estimate.

In this paper the motivation for using the whole panel is solely to improve efficiency of

estimation, and not to correct bias caused by unobservables. An obvious limitation of the

paper is that we cannot accommodate fixed individual effects. The paper is firmly rooted in a

likelihood approach, and at out level of generality the so-called incidental parameters problem

that fixed effects would cause cannot be addressed. The methods we discuss below (based on

copulas) for allowing correlations over time can be viewed as an alternative to the traditional

random effects approach, which is obviously cumbersome except under joint normality.

For a single cross section at time t, we would have a log-likelihood of the generic form

lnL =
N∑
i=1

ln f(yit, θ),

where yit represents the data for person i at time t, and this is what we would like to extend

to the panel. The obvious extension (in principle) is to specify a joint log-likelihood of the

generic form

lnL =
N∑
i=1

lnh(yi1, . . . , yiT , θ).

The problem, of course, is that there are many joint (all T time periods) distributions consis-

tent with the marginal (individual time period) distributions. How to go from the marginal

distributions to the joint distribution is clear under independence, and more or less standard

under normality (where the multivariate normal is the obvious extension of marginal normals),

but not in general. So there are issues of whether we wish to specify a joint distribution and

how to do so.

In Section 2 of the paper we ask what can be done without specifying a joint distribu-

tion. It is well known that the QMLE based on the likelihood that would be correct under
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independence (over t) is robust to non-independence. Using GMM methods, we suggest an

improved QMLE estimator (IQMLE) that dominates the QMLE, and we derive the condition

under which the efficiency gain is positive.

Section 3 considers construction of the joint distribution using copulas. We provide a

GMM interpretation of the MLE estimator based on the joint distribution: it adds another

set of moment conditions, which we call the “copula score,” to the moment conditions that

the IQMLE uses.

In Section 4, under the assumption that the copula is correct, we ask under what circum-

stances the MLE based on the joint distribution is more efficient than the IQMLE. This is so

when the copula score is not redundant. We show that in this setting redundancy can only

occur when the covariance matrix of the full set of moment conditions is singular.

In Section 5 we discuss the question of robustness. In general, if we misspecify the copula

we have misspecified the joint distribution and the MLE will be inconsistent. However, we

show that it is possible that the copula score has mean zero even if the copula is incorrect,

so that the MLE is robust to the misspecification of the copula. In this case the GMM

estimator based on the full set of moment conditions dominates the (pseudo) MLE based on

the incorrectly specified joint likelihood.

In Section 6 we provide a test of the validity of the copula, in the sense that the copula

score has mean zero. The copula is valid if it is correctly specified, but also if it is misspecified

but the MLE based on it is robust. Our test is a conditional moment test of whether the

copula score moment conditions hold, assuming that the moment conditions based on the

marginal scores do hold.

Finally, Section 7 contains our concluding remarks.

2 QMLE and Improved QMLE

In this section we ask what can be done using only the marginal distributions. It is known

that the QMLE (which maximizes the likelihood that would arise if there were independence

over t) is consistent even if there is dependence over t. We discuss this result briefly, and

show how to define an improved QMLE (IQMLE).

In this section, and throughout the paper, we will assume that (yi1, . . . , yiT ) is i.i.d. over

i, but we do not generally assume independence over t.

The following discussion is textbook material (e.g., Hayashi, 2000, section 8.7). The QMLE
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is the value of θ that maximizes the quasi-likelihood

lnLQ =
∑
i

∑
t

ln f(yit, θ). (1)

The expression in (1) is the likelihood if we have independence over i and t. However, the

QMLE remains consistent if we have dependence over t. To discuss this point, we define a

little notation. We define the score functions

sit(θ) = ∇θ ln f(yit, θ), (2)

si(θ) =
∑
t

sit(θ), (3)

where “∇θ” means partial derivative with respect to θ. Then the QMLE θ̂ solves the first-order

condition∑
i

si(θ̂) = 0. (4)

As such, it is a GMM estimator based on the moment condition

Esi(θo) = 0. (5)

But this condition holds so long as the marginal density f(yit, θ) is correctly specified, because

(subject to the usual regularity conditions for MLE) correct specification of the marginal

density f(yit, θ) implies that Esit(θo) = 0 for all t, and therefore Esi(θo) =
∑

t Esit(θo) = 0.

We further define the Hessian

Hit(θ) = ∇θsit(θ) = ∇2
θ ln f(yit, θ) (6)

and correspondingly Hi(θ) =
∑

tHit(θ) and H = EHi(θo). Also we define the variance matrix

of the score:

V = Esi(θo)si(θo)′. (7)

Then under suitable regularity conditions the asymptotic variance of θ̂ is (HV−1H)−1 =

H−1VH−1. (We use the standard terminology that “the asymptotic variance of θ̂ is Σ” means

that
√
N(θ̂ − θo) converges in distribution to N(0,Σ).) The “sandwich form” is necessary

because H = −V under independence over t, but not (in general) otherwise.

We now make an observation which, though very simple, appears to be original. Except

under independence, summation is not generally the optimal way to combine the observations.
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That is, instead of summing over t, we can stack all T values and let GMM perform the optimal

weighting. So instead of Esi(θo) = 0 as in (5), we use the stacked moment conditions

Es∗i (θo) = 0, (8)

where

s∗i (θ) =


si1(θ)

si2(θ)
...

siT (θ)

 . (9)

We will call the optimal GMM estimator based on the moment conditions in (8) the

improved QMLE (IQMLE).1 Like the QMLE, it should be consistent so long as the marginal

distributions are correctly specified, since Es∗i (θo) = 0 if Esit(θo) = 0 for all t. Define H∗ =

E∇θs
∗
i (θo) and V∗ = Es∗i (θo)s∗i (θo)′. Then, if θ̃ is the IQMLE estimator, standard results

would indicate that the asymptotic variance of θ̃ is (H′∗V−1
∗ H∗)−1.

It is obvious from basic principles that the IQMLE estimator is efficient relative to the

QMLE estimator (optimal weighting is optimal), and the only remaining question is when

they are equally efficient. The following result states the first result formally, and answers the

remaining question.

To state the result, we define some additional notation. Let A = 1′T ⊗ Ip, where 1T is a

T × 1 vector of ones, and where p = dim(θ). The matrix A arises naturally because si = As∗i ,

and correspondingly H = AH∗, and V = AV∗A′.

Theorem 1 (a) The IQMLE estimator is efficient relative to the QMLE estimator. (b) The

two estimators are equally efficient if and only if H∗ is in the space spanned by (V∗A′).

Proof. See the Appendix for all proofs that are not given in the main text. �

The condition in part (b) of Theorem 1 is not very intuitive. However, we can identify

two cases when it holds.

Theorem 2 The QMLE and IQMLE estimators are equally efficient if either of the two

following conditions holds.

1Because we deal only in asymptotics here, we will not be explicit about issues like how to estimate the

optimal GMM weighting matrix. Nor would it matter if instead of GMM we considered other asymptotically

equivalent estimates, such as empirical likelihood, exponential tilting, etc.
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(a) yit is i.i.d. over both i and t.

(b) yit is identically distributed over t and the scores are “equicorrelated”, in the sense that

V∗ = E ⊗ Vo, where

E =


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

 , T × T

and Vo is a positive definite p× p matrix and ρ > − 1
T−1

.

Condition 2(a) is obvious. Condition 2(b) is less so. However, it could arise in a variety of

random effects models (where the random effects error structure generates E) with regressors

that are the same for all t (so that Vo would be the variance matrix of the marginal score for

all t).

3 Copulas, Likelihoods, and a GMM Interpretation of

MLE

In this section we summarize the relationship between copulas and likelihoods, and we consider

MLE from a GMM perspective. We show that the difference between the MLE based on the

joint distribution and the IQMLE estimator based on the marginal scores lies in a term we

call the copula score.

A standard definition is that a copula is a joint distribution whose marginals are uniform

on [0,1]. That is, it is the distribution of a set of generally non-independent uniform random

variables. The connection between a copula and a joint distribution with specified marginals

is given by the following well-known theorem.

Theorem 3 (Sklar, 1959, p.229-230) Let H be an T -dimensional distribution function with

marginals F1, . . . , FT . Then there exists a T -dimensional copula C such that for all (y1, . . . , yT ),

H(y1, . . . , yT ) = C(F1(y1), . . . , FT (yT )). (10)

If F1, . . . , FT are continuous, then C is unique. Conversely, if C is an T -dimensional copula

and F1, . . . , FT are distribution functions, then the function H in (10) is an T -dimensional

distribution function with marginals F1, . . . , FT .
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Thus, a copula is a multivariate distribution function that connects two or more marginal

distributions to form the joint distribution. A copula thus completely parameterizes the entire

dependence structure between two or more random variables. It is important to note that a

given joint distribution function H defines a unique set of marginal distribution functions Ft,

t = 1, . . . , T , and a unique copula C, whereas given marginal distributions do not determine

a unique joint distribution (and the implied copula).

Most uses of copulas in economics and related fields have used the “converse” part of

Sklar’s theorem. That is, you have a set of marginal cdf’s F1, . . . , FT implied by some model,

but you want a joint cdf H. So you pick a copula and it generates a joint cdf consistent

with the marginals. Lee (1983) appears to be the earliest application of this approach in

econometrics. Copulas have recently received more attention in the finance literature. They

are used to model dependence in financial time series (e.g., Patton, 2006; Breymann et al.,

2003) and in risk management applications (e.g., Embrechts et al., 2003, 2002). Cherubini

et al. (2004) and Bouyé et al. (2000) cover a wide range of copula applications in finance.

Use of copulas in other subfields of econometrics still appears rather limited. Smith (2003)

incorporates a copula in selectivity models and provides applications to labor supply and

duration of hospitalization; Cameron et al. (2004) use a copula to develop a bivariate count

data model with an application to the number of doctor visits. Zimmer and Trivedi (2006) use

copulas in a selection model with count data. Trivedi and Zimmer (2007) consider benefits of

copula-based estimation relative to simulation-based approaches. A series of works (see, e.g.,

Chen and Fan, 2006) consider semiparametric estimation of copulas when unknown marginals

are estimated nonparametrically in the first step.

On the other hand, our interest in copulas stems from the first part of Sklar’s theorem.

This says that any continuous joint distribution uniquely implies the marginal distributions

and the copula (the case of non-unique copulas corresponding to discrete joint distributions

is not considered here). Therefore we can examine the properties of the MLE based on the

joint distribution of (yi1, . . . , yiT ) in terms of its components, the marginal distributions of

the yit, and the copula cdf C.

In what follows we will restrict our exposition to the bivariate case, T = 2. (Most of the

copula literature follows this expositional convention, just to keep the notation under control.)

Also, for notational simplicity, we will henceforth dispense with the cross-sectional index i

except where needed. Thus (y1, y2) will be the data for which we seek a joint distribution.

Suppose that the joint cdf of (y1, y2) is H(y1, y2; θ, ρ), the marginal cdf’s are F1(y1; θ) and
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F2(y2; θ), and the copula cdf is C(·, ·; ρ). Note that the parameters of interest are the θ’s. The

nuisance parameter “ρ” is present only in the copula.2 Then Sklar’s theorem says:

H(y1, y2; θ, ρ) = C(F1(y1; θ), F2(y2; θ); ρ). (11)

Differentiating with respect to (y1, y2), we have the corresponding expression in terms of

densities:

h(y1, y2; θ, ρ) = c(F1(y1; θ), F2(y2; θ); ρ) · f1(y1; θ) · f2(y2; θ), (12)

where c(·, ·; ρ) is the “copula density,” the density function corresponding to the copula cdf

C(·, ·; ρ). Finally, taking logs, we obtain

lnh(y1, y2; θ, ρ) = ln c(F1(y1; θ), F2(y2; θ); ρ) + ln f1(y1; θ) + ln f2(y2; θ). (13)

Now consider summing this expression over the suppressed index i. The left hand side

would be the log of the joint likelihood. The first two terms on the right hand side would

be the quasi-log-likelihood. The difference between the joint log-likelihood and the quasi-log-

likelihood is the sum of the log copula density terms.

Finally, we consider the score functions (with respect to θ and to ρ) corresponding to (13).

It is well known that MLE can be viewed as GMM based on the score function (see Godambe,

1960, 1976). The expected value of the score function for the correctly specified joint log-

likelihood is zero at the true value of parameters. Furthermore, if the marginal densities are

correctly specified, the same is true for the marginal log-likelihoods. Hence, under classical

regularity conditions, the following four sets of moment conditions hold at the true values of

the parameters (θo, ρo):

E∇θ ln f1(y1; θo) = 0, (A)

E∇θ ln f2(y2; θo) = 0, (B)

E∇θ ln c(F1(y1; θo), F2(y2; θo); ρo) = 0, (C)

E∇ρ ln c(F1(y1; θo), F2(y2; θo); ρo) = 0. (D)

(14)

We call (A) and (B) the “marginal scores” and (C) and (D) the “copula scores”. Note

that the GMM problem as stated in (14) is overidentified. If the dimension of θ is p× 1, and

the dimension of ρ is q × 1, we have p+ q parameters and 3p+ q moment conditions.

2Note that “ρ” need not be a correlation. Most copulas contain some parameters that govern the depen-

dence between the marginals, and “ρ” is a generic notation for those parameters.

8



We can now consider how the various estimators that we consider relate to each other.

The QMLE is based on a moment condition that equals (A)+(B), the sum of the two

marginal scores.

The IQMLE is based on the moment conditions (A)&(B). Here “&” is used to indicate

that the set of moment conditions includes (A) and (B), which will be weighted as appropriate

by the GMM machinery.

If there are no parameters in the copula, (D) does not exist. In this case the MLE is

based on (A)+(B)+(C). It is asymptotically equivalent to the GMM estimator based on

(A)&(B)&(C), since (assuming the copula is correct) the optimal weighting is indeed sum-

mation. The efficiency gain from MLE, as opposed to IQMLE, is due to the additional

information in the copula score (C).

If there are parameters (ρ) in the copula, (D) does exist. Now the MLE is based on

[(A)+(B)+(C)]&(D), whereas the asymptotically equivalent GMM estimator is based on

(A)&(B)&(C)&(D). Once again the difference between these estimators and the IQMLE lies

in the copula scores, (C) and (D).

4 Efficiency and Redundancy

In this section, we assume that the joint distribution is correctly specified, so that both

the marginal distributions and the copula are correct. Therefore the MLE is efficient. The

question we address is under what circumstances the IQMLE is efficient; that is, under what

circumstances the MLE is no more efficient than the IQMLE. This is the question of when

the copula scores are redundant in the sense of Breusch et al. (1999). Perhaps surprisingly,

this turns out to be the case only when the full set of scores (A) - (D) is linearly dependent.

We first prove a lemma that reveals the structure of the variance and derivative matrices of

the moment functions in (14). We repeat that correct specification of the copula is assumed.

Lemma 1 Denote the covariance matrix of the moment functions in (14) by V, their expected

derivative matrix with respect to (θ, ρ) by D. Then,

V =


A G −G 0

G′ B −G′ 0

−G′ −G J E

0 0 E′ F

 (15)
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and

D =


−A 0

−B 0

G + G′ − J −E

−E′ −F

 , (16)

where A,B,E,F,G,J are matrix-functions of (θ, ρ) defined in the Appendix.

Several interesting observations follow from the Lemma. First, the covariance of the first

marginal score with the copula score with respect to θ equals minus the covariance of the first

marginal score with the second marginal score. Thus the marginal scores are uncorrelated with

the copula score with respect to θ if and only if they are uncorrelated with each other. Second,

both marginal scores are uncorrelated with the copula score with respect to ρ. Third, it is easy

to see that, if V is nonsingular, the optimal GMM estimate based on (14) is asymptotically

equivalent to the MLE. To see this, note that the optimally weighted GMM estimate based

on a set of moment conditions “g” is asymptotically equivalent to the GMM estimate based

on the exactly identified set of moment conditions D′V−1g. Let I denote the identity matrix.

By Lemma 1,

D′ = −

[
I I I 0

0 0 0 I

]
V

and so

D′V−1 = −

[
I I I 0

0 0 0 I

]
VV−1 = −

[
I I I 0

0 0 0 I

]
. (17)

Then D′V−1g = 0, with “g” as given in (14), gives the first order conditions for the MLE.

For nonsingular V, the asymptotic variance matrix of the optimal GMM estimator based

on (14) is of the familiar form VGMM = (D′V−1D)−1. By Lemma 1, this is identical to the

asymptotic variance matrix of the MLE estimator of (θ, ρ)

VMLE = −

([
I I I 0

0 0 0 I

]
D

)−1

=


[

I I I 0

0 0 0 I

]
V


I 0

I 0

I 0

0 I



−1

. (18)

In contrast to VGMM, VMLE is defined even if V is singular. In fact the last representation

in (18) involves the outer-product-of-the-score form of the information matrix, while the
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one before the last involves the expected-Hessian form of the information matrix. Both are

nonsingular under the usual regularity conditions.

We now return to the question of when the IQMLE is as efficient as the MLE. Denote the

asymptotic variance matrix of IQMLE by VIQMLE. Logically, this is the question of when the

copula scores are partially redundant for θ, given the marginal scores.3 Breusch et al. (1999)

developed a very useful toolbox for analyzing redundancy of a set of moment conditions given

another set of moment conditions. However, their analysis assumes nonsingular V. For this

reason, we do not employ their results here but instead compare VIQMLE with the relevant

block of VMLE directly.

Theorem 4 VMLE for θ and VIQMLE are equal if and only if

J−Vθ
21V−1

11 Vθ
12 − EF−1E′ = 0, (19)

where Vθ
21 = Vθ

12
′
= [−G′ −G] and V11 =

[
A G

G′ B

]
.

The cumbersome expression in (19) has a simple interpretation in terms of singularity

of V. It states that the error in the linear projection of moment condition (C) on moment

conditions (A), (B) and (D) is uncorrelated with moment condition (C). More specifically,

(19) can be rewritten as follows

E


∇θ ln c−Ω21Ω−1

11


∇θ ln f1

∇θ ln f2

∇ρ ln c


∇′θ ln c

 = 0,

where

Ω21 = [−G′ −G E], Ω11 =


A G 0

G′ B 0

0 0 F


and the arguments of the moment functions have been suppressed for brevity. In other words,

(C) has to be a linear combination of (A), (B) and (D) for the copula information to be

redundant in terms of asymptotic efficiency of estimation of θ. Thus V has to be singular.

3Suppose that θ is identified by some moment conditions g1. Now we consider estimation based on g1 and

some additional moment condition g2. Then g2 is partially redundant for θ given g1 if the estimate of θ based

on g1 and g2 is no more efficient than the estimate of θ based on g1 only. The word “partially” refers to the

possibility that g2 may increase efficiency of estimation for some parameter other than θ (in our case, nuisance

parameters in the copula scores).
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To understand why this is an important result, we consider a distinction not made in the

Breusch et al. (1999) paper. Consider estimation of the mean of y, Ey = µo. Suppose that

we have moment conditions

E(y − µo) = 0 [“g1”] (20)

E[3(y − µo)] = 0 [“g2”] (21)

Clearly g2 is redundant given g1 (or vice versa). This is a case of “numerical redundancy” in

that one of the moment conditions is a linear combination of the others. The variance matrix

V is singular.

This can be contrasted with “statistical redundancy” (but not “numerical redundancy”)

in the next example. Now suppose we have

E(y − µo) = 0 [“g1”] (22)

E[(y − µo)2 − σ2
o ] = 0 [“g2”] (23)

where σ2
o is known. The matrix V is not singular. Here g2 is redundant given g1 if and only

if E(y − µo)3 = 0.

The point of the distinction is that numerical redundancy is obvious, while statistical

(but not numerical) redundancy is subtle. One can be seen by inspection whereas the other

requires calculation. According to Theorem 4 and the subsequent discussion, the only way

the copula score can be redundant is numerical redundancy. If there are any algebraic terms

in the copula score with respect to θ that are not a linear combination of the other scores,

they cannot be redundant, and the MLE must be strictly more efficient than the IQMLE.

In some cases the copula may not contain parameters. In this case in (15) and (16) the

rows and columns of D and V that contain the terms E and F do not exist, and (C) is

redundant given (A) and (B), so that the IQMLE is efficient, if and only if (C) is a linear

combination of (A) and (B). A third possibility is that the copula does contain parameters (ρ)

but they are “known” (specified). The following Corollary indicates that the same singularity

result holds.

Corollary 1 If (C) is a linear combination of (A) and (B) with ρ known then

1. E = 0;

2. J−Vθ
21V

−1
11 Vθ

12 = 0;

3. IQMLE is efficient.
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We now present five examples that show how the redundancy results can be used in

practice.

Example 1 Bivariate Normal with common mean. Assume Normal marginal densi-

ties with σ2
1 = σ2

2 = 1 and µ1 = µ2 = µ

f1(x1;µ) =
1√
2π
e−

(x1−µ)2

2 ,

f2(x2;µ) =
1√
2π
e−

(x2−µ)2

2 .

Let the true joint density be Bivariate Normal, i.e.,

h(x1, x2;µ, ρ) =
1

2π
√

1− ρ2
e
− (x1−µ)2+(x2−µ)2−2ρ(x1−µ)(x2−µ)

2(1−ρ2) .

Then, the implied copula is the Normal copula

c(F1(x1;µ), F2(x2;µ); ρ) =
1√

1− ρ2
e
−
ρ(ρ(x1−µ)2+ρ(x2−µ)2−2(x1−µ)(x2−µ))

2(1−ρ2) ,

where ρ is the copula dependence parameter (Pearson’s correlation coefficient).

The relevant moment conditions are

E {X1 − µ} = 0 (A)

E {X2 − µ} = 0 (B)

E
{
− ((X1−µ)+(X2−µ))ρ

ρ+1

}
= 0 (C)

E
{
−ρ(X2

1+X2
2 )+µ(1−ρ)2(X1+X2)−(1+ρ2)X1X2+ρ(ρ2−1)−µ2(1−ρ)2

(ρ−1)2(ρ+1)2

}
= 0 (D)

Clearly (C) is a linear combination of (A) and (B), so it is a linear combination of (A),

(B) and (D). Therefore the IQMLE is efficient.

Example 2 T -variate Normal with common mean. This example is an extension of

the previous example. It shows how our efficiency results generalize to T > 2. As above

assume Normal marginals with σ2
t = 1 and µt = µ, t = 1, . . . , T . Let the true joint density be

T -variate normal

h(x;µ,Σ) =
1

(2π)T/2|Σ|1/2
e−

1
2

(x−µ)′Σ−1(x−µ),
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where x = (x1, . . . , xT )′ and Σ is the correlation matrix of x. Then, the implied copula is

Normal:

c(F1(x1;µ), . . . , FT (xT ;µ); Σ) = h(x;µ,Σ)∏T
t=1 ft(xt;µ)

= 1
|Σ|1/2 e

− 1
2

(x−µ)′(Σ−1−I)(x−µ),

where I is the identity matrix of dimension T .

The first T + 1 moment conditions are

E {x− µ} = 0

E {1′T (Σ−1 − I) (x− µ)} = 0,

where 1T denotes a T × 1 vector of ones.

Here again, the copula score for µ is a linear combination of the marginal scores. Even

without writing out the copula score for Σ we can conclude that the IQMLE based on the first

T moment conditions is efficient for µ.

Example 3 Bivariate Normal regression. Let y = xβ + ε, where y = (y1, y2)′ is 2× 1

and x = (x1, x2)′ is 2× k. Suppose x is non-random. Let ε = (ε1, ε2)′ ∼ N(0,Σ), where

Σ =

[
σ2

1 ρ

ρ σ2
2

]
.

For simplicity we consider the case that σ2
1 and σ2

2 are known. Then,

f1(y1;x1, β) =
1√

2πσ2
1

e
− (y1−x1β)2

2σ2
1 ,

f2(y2;x2, β) =
1√

2πσ2
2

e
− (y2−x2β)2

2σ2
2 ,

h(y; x, β, ρ) =
1

2π
√
|Σ|

e−
1
2

(y−xβ)′Σ−1(y−xβ).

Then, the implied copula is Normal,

c(F1(y1;x1, β), F2(y2;x2, β); ρ) =

√
σ2

1σ
2
2

σ2
1σ

2
2 − ρ2

e
− ε1

2

(
ε1σ

2
2−ε2ρ

σ2
1σ

2
2−ρ

2

)
− ε2

2

(
ε2σ

2
1−ε1ρ

σ2
1σ

2
2−ρ

2

)

×e
1
2

(
ε21

2σ2
1

+
ε22

2σ2
2

)
,
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where εi = yi − xiβ, i = 1, 2.

The relevant moment conditions are

E
{
x1ε1
σ2
1

}
= 0 (A)

E
{
x2ε2
σ2
2

}
= 0 (B)

E
{
−ρ(σ2

1σ
2
2x1ε2+σ2

1σ
2
2x2ε1−σ2

1ρx2ε2−σ2
2ρx1ε1)

σ2
1σ

2
2(σ2

1σ
2
2−ρ2)

}
= 0 (C)

E
{
σ2
1σ

2
2ε1ε2+ρ2ε1ε2−σ2

2ρε
2
1−σ2

1ρε
2
2+ρσ2

1σ
2
2−ρ3

(σ2
1σ

2
2−ρ2)2

}
= 0 (D)

Now (C) is not a linear combination of (A), (B) and (D), because it contains terms x1ε2

and x2ε1 that are not in (A), (B) or (D). So the copula scores are non-redundant and the

MLE is strictly more efficient than the IQMLE. There are two exceptions. The first is the

case that ρ = 0, in which case these terms disappear from the copula. The second is the

“common regressors” case that x1 = x2, in which case these terms are equal to terms that do

appear in (A) and (B). In either of these two cases the IQMLE is efficient.

Example 4 Bivariate Normal with common variance. Assume Normal marginal den-

sities with σ2
1 = σ2

2 = σ2 and µ1 = µ2 = 0. We want to estimate σ2.

f1(x1;σ) =
1√

2πσ2
e−

x21
2σ2 ,

f2(x2;σ) =
1√

2πσ2
e−

x22
2σ2 .

Again, let the true joint distribution be Bivariate Normal, i.e.,

h(x1, x2;σ, ρ) =
1

2π
√
σ4 − ρ2

e
−x

2
1σ

2−2x1x2ρ+x
2
2σ

2

2(σ4−ρ2) .

Then, the implied copula is Normal,

c(F1(x1;σ), F2(x2;σ); ρ) =
σ2√
σ4 − ρ2

e
−
ρ(x21ρ+x22ρ−2σ2x1x2)

2(σ4−ρ2)σ2 .

The relevant moment conditions are

E
{
x1

2−σ2

2σ4

}
= 0 (A)

E
{
x2

2−σ2

2σ4

}
= 0 (B)

E
{
−((3ρσ4−ρ3)(x2

1+x2
2)−4σ6x1x2−2σ2ρ(σ4−ρ2))ρ

2(σ2−ρ)2(σ2+ρ)2σ2

}
= 0 (C)

E
{
−ρσ2(x2

1+x2
2)−(ρ2+σ4)x1x2−ρ(σ4−ρ2)

(σ2+ρ)2(σ2−ρ)2

}
= 0 (D)
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In this example (C) is not a linear combination of (A) and (B), so we cannot claim that

the IQMLE is efficient with ρ known. However, if ρ is unknown, (C) is a linear combination

of (A), (B), and (D), so the variance matrix V is singular, and the IQMLE is efficient.

Example 5 Farlie-Gumbel-Morgenstern copula with general marginals. For i =

1, 2 denote the marginal pdf ’s and cdf’s by

fi ≡ fi(xi; θ)

and

Fi ≡ Fi(xi; θ) =

∫ xi

−∞
fi(z; θ)dz,

respectively.

Assume the FGM copula. Then

c(u, v; ρ) = 1 + ρ− 2ρu− 2ρv + 4ρuv.

Our moment conditions are now

E
{

1
f1

∂f1
∂θ

}
= 0, (A)

E
{

1
f2

∂f2
∂θ

}
= 0, (B)

E
{

2ρf1+2ρf2−4ρf1F2−4ρF2F1

1+ρ−2ρF1−2ρF2+4ρF1F2

}
= 0, (C)

E
{

1−F1−F2+4F1F2

1+ρ−2ρF1−2ρF2+4ρF1F2

}
= 0. (D)

In general, (C) is not a linear combination of (A), (B) or (A), (B) and (D). So the copula

scores are not redundant in general and IQMLE is generally inefficient.

5 Validity and Robustness of Copulas

5.1 Introduction

In this section, as previously, we assume that the marginal likelihoods are correctly specified

and that the parameters of interest are the parameters (θ) that appear in the marginal like-

lihoods. However, we now consider the possibility that the copula is specified incorrectly, so

that the joint likelihood is specified incorrectly.

We will say that a copula is valid if the expectation of the copula scores [(C) and (D) in

equation (14)] is zero, when evaluated at θo and some value of ρ. The true copula is always
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valid. But an incorrect copula may also be valid. If an incorrect copula is valid, then we will

say that it is robust.

We will use the terminology “pseudo MLE” (PMLE) to refer to the estimator obtained

by maximizing the (incorrect) likelihood based on the incorrect copula.4 In general we would

expect the PMLE to be inconsistent, because the model is misspecified. However, there

are exceptions. A trivial example is the QMLE based on the independence copula, which

is consistent given correct specification of the marginal likelihoods even when there is non-

independence. So the QMLE based on independence is robust against all possible forms of

dependence. Cases that the PMLE is robust correspond to cases where the assumed copula

is robust, as defined in the previous paragraph.

Whether an incorrect copula is robust depends on the nature of the marginal likelihoods

and of the true copula. Specifically, the validity of a copula depends on the nature of the

model, since that determines the marginal likelihoods, and a copula that is robust in the

context of one model may not be robust in the context of a different model.

We can note a few simple results.

(i) The independence copula is always valid, and therefore it is robust against all true

copulas. It is also always redundant. (The copula score is identically zero.)

(ii) If a copula is redundant when it is true, then it is also robust against all true copulas.

The reason is that the copula score with respect to θ must be a linear combination of the

remaining scores; the marginal scores evaluated at θo have mean zero by assumption, and the

copula score with respect to ρ has zero mean when evaluated at any value of θ, including θo,

for some value of ρ.

(iii) If the true copula is redundant, then any other valid copula is also redundant. This

is true because if the true copula is redundant, the IQMLE is efficient.

(iv) If the copula is valid, the (P)MLE will be consistent.

In subsection 5.2, we show that a non-redundant robust copula is possible. In subsection

5.3, we discuss the fact that the PMLE is dominated by the optimal GMM estimator.

5.2 An Example of a Non-Redundant Robust Copula

In this subsection we give an example of a non-redundant robust copula.

We consider scalar random variables Y1 and Y2, with means µ1 and µ2, which we wish to

4Another possible terminology is quasi MLE (QMLE) but that is usually reserved for cases where the

estimator is consistent.
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estimate. Suppose that (Y1, Y2) have joint cdf H, marginal cdfs F1 and F2, and copula C.

The corresponding joint density, marginal densities and copula densities will be h, f1 and f2,

and c.

Definition 1 (Y1, Y2) is radially symmetric (RS) about (µ1, µ2) if

H(µ1 + y1, µ2 + y2) = 1− F1(µ1 − y1)− F2(µ2 − y2) +H(µ1 − y1, µ2 − y2),

or, equivalently,

h(µ1 + y1, µ2 + y2) = h(µ1 − y1, µ2 − y2), (24)

for all (y1, y2).

Definition 2 Y1 is marginally symmetric about µ1 if

F1(µ1 + y1) = 1− F1(µ1 − y1),

or, equivalently,

f1(µ1 + y1) = f1(µ1 − y1). (25)

Definition 3 C is radially symmetric if

C(1− u, 1− v) = 1− u− v + C(u, v),

or, equivalently,

c(1− v, 1− u) = c(v, u), (26)

for all (u, v) in [0, 1]× [0, 1].

It is well known (e.g., Nelsen, 1999, p.33) that the joint distribution is radially symmetric

if and only if the marginal distributions are symmetric and the copula is radially symmetric.

Many commonly used distributions are RS. For example, bivariate Normal, bivariate Student-

t, bivariate Cauchy and other elliptically contoured distributions are RS. For a discussion of

the elliptically contoured family of distributions, see Mardia et al. (1979, Section 2.7.2). With

reference to the other commonly-considered families of copulas, the independence, FGM,

Normal, Plackett, and Frank families are RS, while the Logistic, Ali-Mikhail-Haq (AMH),

Joe, Clayton and Gumbel families are not. Interestingly, Frank (1979) shows that the only

Archimedean copula family that satisfies Definition 3 is the Frank family. Joe, AMH, Clayton

and Gumbel are all Archimedean copulas that are not RS.

We now have the following result.
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Theorem 5 Suppose that the distribution of (Y1, Y2) is RS about θ = (µ1, µ2). Then any RS

copula is robust for estimation of θ.

To state the result a bit more explicitly, let k be any RS copula density (we use the

notation “k” to distinguish it from the true copula “c”.) Then, with θ = (µ1, µ2),

E∇θ ln k(F1(µ1 + Y1), F2(µ2 + Y2), ρ) = 0.

This is true for any value of ρ (the nuisance parameters in the assumed copula k).

Therefore, so long as the marginal distributions are correctly chosen and the true joint

distribution is RS, the misspecified copula k can be used to consistently estimate θ.

The robustness result given in Theorem 5 does not address the issue of whether a non-

redundant robust copula can exist. We now give an example that shows that it can. The

example consists of logistic marginals, each of which contains a common location parameter

µ which is the parameter of interest, and the FGM copula. Because the FGM copula is RS it

satisfies the conditions of the theorem above. We will show that the FGM copula, if correct,

is not redundant for this problem.

Example 6 Farlie-Gumbel-Morgenstern copula and logistic marginals with com-

mon mean. Consider logistic marginals with the common location parameter µ. Let the true

value of µ be zero. For i = 1, 2 the marginal pdf ’s and cdf’s are, respectively,

fi(yi;µ) =
e−yi+µ

(1 + e−yi+µ)2

and

Fi(yi;µ) =
1

(1 + e−yi+µ)
.

Suppose the true copula is the FGM copula. The copula pdf is

c(u, v; ρ) = 1 + ρ− 2ρu− 2ρv + 4ρuv.

Note that the logistic distribution is symmetric about zero and that the FGM copula is RS.

Our moment conditions are now

E1−e−y1+µ

1+e−y1+µ = 0 (A)

E1−e−y2+µ

1+e−y2+µ = 0 (B)

E
{

2ρ[(−1+2F1)f2+(−1+2F2)f1]
1+ρ−2ρF1−2ρF2+4ρF1F2

}
= 0 (C)

E
{

1−F1−F2+4F1F2

1+ρ−2ρF1−2ρF2+4ρF1F2

}
= 0 (D)
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Let a, b, c and d denote the moment functions in (A), (B), (C) and (D), respectively.

Then, simple algebra shows that

c =
ρd

2ab
[b(1− a2) + a(1− b2)]

and

d =
ab

1 + ρab
.

Clearly, (C) is not a linear combination of (A), (B) or of (A), (B) and (D).

We conclude that in this problem the FGM copula is non-redundant.

In the above example, the FGM copula is non-redundant when it is true. By Theorem

5, it is robust against any radially symmetric true copula. So, while redundancy of a copula

implies robustness, the converse is not true.

5.3 Efficiency and Redundancy with a Misspecified but Robust

Copula

We now consider the question of efficient estimation when the assumed copula is misspecified

but robust. The main thing we wish to point out is that the PMLE is dominated by the

efficient GMM estimator. The reason is that summation is no longer the appropriate weighting

of the scores with respect to θ. This is the same logical point as was made in Section 2, and

indeed Section 2 is therefore a special case of this Section.

We go back to the set of moment conditions (A) - (D) as in equation (14). However, the

copula scores (C) and (D) are based on an incorrect but robust copula.

Lemma 2 Denote the covariance matrix of the moment functions in (14) by C, and their

expected derivative matrix by D. Then,

V =


A G −K −P

G′ B −L′ −Q′

−K′ −L N Z

−P′ −Q Z′ W


and

D =


−A 0

−B 0

K′ + L−M −S

−S′ −T

 ,
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where A,B,G are as in Lemma 1, and K,L,M,N,P,Q,S,T,W,Z are matrix-functions of

(θ, ρ) defined in the Appendix.

These expressions are not nearly as simple as the corresponding expressions in (15) and

(16). Less information equalities apply in the present case than in the case that the copula is

correctly specified.

Lemma 2 can be used to make the following important observation. The optimal GMM

estimator using the moment conditions (14), where the assumed copula is robust but not

correct, is not the same as the PML estimator. This is in contrast to the case that the

copula is correctly specified, in which case the optimal GMM estimator and the PMLE were

asymptotically equivalent. The simple form of the optimal set of linear combinations, D′V−1,

as given in (17) does not hold in the present case. In other words, the optimal weighting now

does not correspond to summation of (A), (B) and (C), which is what PMLE does.

We will call the optimal GMM estimator based on (14) the Improved PML Estimator

(IPMLE). The following Theorem formally states its dominance of the PMLE in terms of

efficiency.

Theorem 6 Let VIPMLE and VPMLE denote the asymptotic variance matrices of the IPMLE

and PMLE of (θo, ρo), respectively. Then, VPMLE − VIPMLE is positive semi-definite.

Proof. Define

A =

[
I I I 0

0 0 0 I

]
.

Then, the moment conditions used by PMLE are those given in (14), pre-multiplied by A.

Correspondingly, the variance matrix of these moment functions can be expressed as AVA′,
and their expected derivative matrix can be expressed as AD. Then,

VPMLE = [(AD)′(AVA′)−1(AD)]−1, (27)

while

VIPMLE = [D′(V)−1D]−1. (28)

VPMLE − VIPMLE is PSD if and only if V−1
IPMLE − V−1

PMLE = D′V−1D−D′A′(AVA′)−1AD

is PSD. Rewrite the last expression as

D′(V)−1/2[I− (V)1/2A′(A(V)1/2(V)1/2A′)−1A(V)1/2](V)−1/2D.
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This is PSD because the matrix in brackets is the PSD projection matrix orthogonal to

(V)1/2A′. �

We now revisit the redundancy question that was addressed in Section 4 for correctly

specified copulas. The IPMLE estimator must dominate the IQMLE estimator in terms of

efficiency, but the question is when the efficiency difference is zero. Since VIPMLE is only

defined when V is nonsingular, thus we can apply the redundancy toolbox of Breusch et al.

(1999).

In stating the next result, we must distinguish the covariance matrix of the moment

conditions based on the incorrect but robust copula (which we will call Vk) from the covariance

matrix of the moment conditions based on the true copula (which we will call V). The true

copula is not involved in estimation, but it is involved in evaluating expectations because it

is part of the true joint distribution.

Theorem 7 VIPMLE for θ and VIQMLE are equal if and only if

M−Vθk
21V−1

11 Vθ
12 − ST−1(R−Vρk

21V−1
11 Vθ

12) = 0, (29)

where Vθk
21 = [−K′ − L], Vρk

21 = [−P′ −Q], and Vθ
12 =

[
−G

−G′

]
.

In (29), M−Vθk
21V−1

11 Vθ
12 and R−Vρk

21V−1
11 Vθ

12 can be viewed as covariance matrices

between copula moments based on the incorrect but robust copula and the error in the linear

projection of the true copula moment on the marginal moments (A-B). More explicitly,

M−Vθk
21V−1

11 Vθ
12 = E

∇θ ln k

(
∇θ ln c−V21V−1

11

[
∇θ ln f1

∇θ ln f2

])′ , (30)

R−Vρk
21V−1

11 Vθ
12 = E

∇ρ ln k

(
∇θ ln c−V21V−1

11

[
∇θ ln f1

∇θ ln f2

])′ ,

where k is the incorrect copula pdf. Clearly, when both of these matrices are zero, (29) holds

for any S. Also, if only (30) is zero and S = 0, (29) holds for any R and Vρk
21.

Corollary 2 If the true copula score with respect to θ is a linear combination of (A) and (B)

with ρ known then

1. M−Vθk
21V−1

11 Vθ
12 = 0;
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2. R−Vρk
21V−1

11 Vθ
12 = 0;

3. IQMLE and IPMLE for θ are equally efficient.

Basically, Corollary 2 repeats fact (iii) noted in subsection 5.1. If the true copula is

redundant, then any other valid copula must also be redundant. What is important to note

is that this does not imply that the copula score based on the incorrect but robust copula

must be a linear combination of the other scores. In other words, with a correctly specified

copula, the only way redundancy can occur is when there is linear dependency among the

scores. This is not the case when the copula is incorrect but robust.

6 Testing the Validity of the Copula

Suppose that we are willing to assert the correctness of the marginal distributions but we

are doubtful about the correctness of the joint distribution. More precisely, we are willing to

assert that the marginal moment conditions (A) and (B) in (14) hold, but we are doubtful

about the validity of the copula moment conditions (C) and (D). We wish to test the validity of

the copula by testing the validity of the copula moment conditions. We will discuss two ways

of doing this. It is worth noting that in either case we are testing the validity of the copula as

opposed to the correctness of the copula. The tests we discuss would not distinguish the case

of a true copula from the case of an incorrect but robust copula. This should be possible in

principle because the truth of the copula imposes a number of “information equalities” that

imply restrictions on the matrices D and V discussed above, and those restrictions should be

testable. We do not pursue that detail here, however.

One test that can be used is the usual test of overidentifying restrictions. The GMM

problem (14) is overidentified since we have 3p+q moment conditions (where p is the dimension

of θ and q is the dimension of ρ) and p+ q parameters. Therefore we can test the validity of

the full set of moment conditions by the test of overidentifying restrictions (see, e.g., Hansen,

1982; Newey and West, 1987). If we assert that the marginal moment conditions are correct,

then this is a test of the validity of the copula moment conditions.

To be explicit, we will need more notation. For m = 1, 2 and i = 1, . . . , N , denote
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fmi(θ) = fm(ymi; θ), ci(θ, ρ) = c(F1(y1i; θ), F2(y2i; θ); ρ),

ψi(θ, ρ) =


∇θ ln f1i(θ)

∇θ ln f2i(θ)

∇θ ln ci(θ, ρ)

∇ρ ln ci(θ, ρ)

 , gi(θ) =

[
∇θ ln f1i(θ)

∇θ ln f2i(θ)

]
,

ri(θ, ρ) =

[
∇θ ln ci(θ, ρ)

∇ρ ln ci(θ, ρ)

]
.

Note that ψi is a (3p+q)-vector. Let

ψ̄(θ, ρ) ≡ 1

N

N∑
i=1

ψi(θ, ρ), ḡ(θ) ≡ 1

N

N∑
i=1

gi(θ), r̄(θ, ρ) ≡ 1

N

N∑
i=1

ri(θ, ρ).

Following our previous notation, let

Vo ≡ Eψ(θo, ρo)ψ(θo, ρo)
′,

Vo
11 ≡ Eg(θo)g(θo)

′,

Vo
22 ≡ Er(θo, ρo)r(θo, ρo)′,

Vo
12 = Vo

21
′ ≡ Eg(θo)r(θo, ρo)

′,

Do ≡ E∇(θ′,ρ′)′ψ(θo, ρo),

Do
11 ≡ E∇θg(θo),

Do
21 ≡ E∇θr(θo, ρo),

Do
22 ≡ E∇ρr(θo, ρo),

where expectations are with respect to the true joint density h(x1, x2).

Theorem 8 Let (θ̆, ρ̆) denote the optimal GMM estimate of (θ, ρ) based on (14). Then

Nψ̄(θ̆, ρ̆)′V−1
o ψ̄(θ̆, ρ̆)

a∼ χ2
2p. (31)

This test is a specification test which, given that the marginal distributions are correct,

should capture copula misspecification (or, more precisely, invalidity of the copula). A con-

sistent estimator of Vo such as

V̆o =
1

N

N∑
i=1

ψi(θ̆, ρ̆)ψi(θ̆, ρ̆)′
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is usually used in (31). It is however important to note that the statistic in (31) can be used

only if V is non-singular, i.e. if copula terms are not redundant.

At an intuitive level, this test is unappealing because it does not focus strongly on the

moment conditions we are doubtful about. Also one could object that the number of degrees of

freedom does not seem right. We maintain the correctness of the marginal moment conditions.

Then the copula scores add p+ q moment conditions, but also add q nuisance parameters. So

the number of restrictions to test, and therefore the “right” number of degrees of freedom,

should be p, not 2p. We achieve this with the following two-step procedure.

Theorem 9 Let θ̂ be the optimal GMM estimate based on the marginal moment conditions

Eg(θ) = 0. Let ρ̂ be obtained by minimizing r̄(θ̂, ρ)′B−1
o r̄(θ̂, ρ), where

Bo = Vo
22 −Do

21(Do
11Vo

11
−1Do

11)−1Do
11
′Vo

11
−1Vo

12

−Vo
21Vo

11
−1Do

11(Do
11Vo

11
−1Do

11)−1Do
21
′

+Do
21(Do

11Vo
11
−1Do

11)−1Do
21
′.

Then,

Nr̄(θ̂, ρ̂)′B−1
o r̄(θ̂, ρ̂)

a∼ χ2
p. (32)

Similarly to Theorem 8, consistent estimates of the elements of Vo and Do will be used

in practice for calculating the test statistic in (32).

Essentially the above test is a conditional moment test of the type discussed by Tauchen

(1985) and Wooldridge (1991). Formally it is an extension of those tests because it needs to

accommodate the presence of nuisance parameters that appear in the moments that are being

tested and not in the moments that are maintained. That extension may be useful in other

contexts.

7 Concluding remarks

This paper has discussed likelihood based estimation in a panel setting. The point of view is

that we have a likelihood based model, like a logit model, that is correctly specified, but we

want to account for non-independence over time.

The existing procedure in the literature is the QMLE. We show how this can be improved

and provide conditions under which the improved QMLE (IQMLE) does or does not have
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a positive efficiency gain. An interesting unanswered question, which we hope to address in

future work, is whether this is the best we can do using only the assumption that the marginal

distributions are correct. In other words, what is the semiparametric efficiency bound for

estimation of θ when the true copula is unknown? This is the converse of the question

addressed by Chen and Fan (2006), who consider efficiency bounds when the copula has a

known parametric form but the marginals are unknown. Given that we have correctly specified

parametric marginals, we can certainly estimate the copula non-parametrically, and then the

question is whether using this estimated copula improves efficiency relative to IQMLE. We

hope to address this question in future work.

Next we consider MLE based on a joint distribution. Often the joint distribution will be

constructed by choosing a copula. The further assumption (copula) that converts the marginal

distributions into a joint distribution raises standard questions of efficiency and robustness.

We address these questions in a GMM framework. The GMM approach is potentially useful

in some practical ways. It leads directly to a way of testing the validity of the copula, and

it leads to an improvement over the pseudo-MLE (PMLE) in the case that the copula is

misspecified but robust. However, we hope that we have demonstrated also that the GMM

approach is useful because it allows us to study questions of efficiency and robustness in a

structured way. The MLE offers a positive efficiency gain over the IQMLE if the copula scores

are not redundant, and the PMLE or GMM-based IPMLE are consistent if the copula score

moment conditions are valid.

Our paper was motivated by a panel data model in which the marginal distributions are

the same, and the same parameters appear in all of them. In fact, the mathematics of the

paper allows the marginals to be different, but all of our results are established under the

assumption that these marginals all depend on the same parameters. How many of our results

can be generalized to the case that different marginals have different parameters remains to

be seen.

In our view, the most important remaining question is to characterize circumstances in

which a copula is robust. We provide a non-trivial example in which an incorrect copula can

be robust, but this depends on the nature of the marginal models, the assumed copula and

the true copula. Any more general results would be very useful. The Holy Grail would be to

find a magic copula that is always robust and sometimes non-redundant, or to prove that a

magic copula cannot exist.
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Embrechts, P., A. Höing, and A. Juri (2003): “Using copulae to bound the Value-at-Risk for functions

of dependent risks,” Finance and Stochastics, 7, 145–167.

Embrechts, P., A. McNeil, and D. Straumann (2002): “Correlation and dependence in risk manage-

ment: properties and pitfalls,” in Risk Management: Value at Risk and Beyond, ed. by M. Dempster,

Cambridge: Cambridge University Press, 176–223.

Frank, M. (1979): “On the simultaneous associativity of F (x, y) and x+ y − F (x, y),” Aequationes Mathe-

maticae, 19, 194–226.

Godambe, V. P. (1960): “An optimum property of regular maximum likelihood estimation,” The Annals of

Mathematical Statistics, 31, 1208–1211.

——— (1976): “Conditional likelihood and unconditional optimum estimating equations,” Biometrika, 63,

277–284.

Hansen, L. (1982): “Large sample properties of generalized method of moments estimators,” Econometrica,

50, 1029–1054.

Hayashi, F. (2000): Econometrics, Princeton University Press.

Lee, L.-F. (1983): “Generalized econometric models with selectivity,” Econometrica, 51, 507–512.

27

http://gro.creditlyonnais.fr/content/wp/copula-survey.pdf
http://www.iop.org/EJ/abstract/1469-7688/3/1/301/
http://www.iop.org/EJ/abstract/1469-7688/3/1/301/


Mardia, K., J. Kent, and J. Bibby (1979): Multivariate Analysis, Probability and Mathematical Statistics,

London: Academic Press.

Nelsen, R. B. (1999): An Introduction to Copulas, vol. 139 of Lecture Notes in Statistics, Springer.

——— (2006): An Introduction to Copulas, vol. 139 of Springer Series in Statistics, Springer, 2 ed.

Newey, W. and K. West (1987): “Hypothesis testing with efficient method of moments estimation,”

International Economic Review, 28, 777–787.

Patton, A. (2006): “Modelling Asymmetric Exchange Rate Dependence,” International Economic Review,

47, 527–556.
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8 Appendix: Proofs

Proof of Theorem 1: Let VQMLE and VIQMLE denote the asymptotic variance matrix of QMLE and

IQMLE respectively. Then,

VQMLE = [(AH∗)′(AV∗A′)−1(AH∗)]−1, (33)

while

VIQMLE = [H′∗V−1
∗ H∗]−1. (34)

But VQMLE−VIQMLE is positive semi-definite (PSD) if and only if V−1
IQMLE−V−1

QMLE = H′∗V−1
∗ H∗−H′∗A′(AV∗A′)−1AH∗

is PSD. The last expression can be rewritten as H′∗V
−1/2
∗ [I − V1/2

∗ A′(AV1/2
∗ V1/2

∗ A′)−1AV1/2
∗ ]V−1/2

∗ H∗. This
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is PSD because the matrix in brackets is the PSD projection matrix orthogonal to V1/2
∗ A′. The expression is

zero (the two estimators are equally efficient) if and only if V−1/2
∗ H∗ is in the space spanned by V1/2

∗ A′, or,

equivalently, H∗ is in the space spanned by V∗A′. �

Proof of Theorem 2: (a) If yit is independent over i and t then V∗ = IT ⊗ Vo, where Vo =

Esit(θo)sit(θo)′, and H∗ = 1T ⊗Ho, where Ho = E∇′θsit(θo). We have V∗A′ = (IT ⊗ Vo)(1T ⊗ Ip) = 1T ⊗ Vo.
Now, Ho is in the space spanned by Vo since Vo is nonsingular, and so H∗ is in the space spanned by V∗A′.
Note that we did not need the “correct distribution” assumption that Ho = −Vo.

(b) If scores are equicorrelated, H∗ = 1T ⊗Ho and V∗A′ = (1 + ρ(T − 1))1T ⊗ Vo. So H∗ is in the space

spanned by V∗A′ so long as Vo is nonsingular. Of course, ρ should be greater than− 1
T−1 for VQMLE (asymptotic

variance of the QMLE estimator) to be positive definite. Again, note that no “correct distribution” assumption

is used. �

Proof of Theorem 3: See Sklar (1959, p.229-230). �

Proof of Lemma 1: By the information matrix equality (IME),

A ≡ E {∇θ ln f1(Y1; θ)∇′θ ln f1(Y1; θ)} = −E∇2
θ ln f1(Y1; θ). (35)

Similar for B,F.

By the generalized IME (GIME - see, e.g., Tauchen, 1985),

E ≡ E
{
∇θ ln c(F1(Y1; θ), F2(Y2; θ); ρ)∇′ρ ln c(F1(Y1; θ), F2(Y2; θ); ρ)

}
= −E∇2

θρ ln c(F1(Y1; θ), F2(Y2; θ); ρ) (36)

and, for i = 1, 2,

E
{
∇θ ln fi(Yi; θ)∇′ρ ln c(F1(Y1; θ), F1(Y2; θ); ρ)

}
= −E∇2

θρ ln fi(Yi; θ) = 0.

Also by GIME and (13),

E {∇θ ln fi(Yi; θ)∇′θ [ln f1(Y1; θ) + ln f2(Y2; θ) + ln c(., .; ρ)]} =

= −E∇2
θ ln fi(Yi; θ)

for i = 1, 2, which, along with (35), implies that

G ≡ E {∇θ ln f1(Y1; θ)∇′θ ln f2(Y2; θ)}

= −E {∇θ ln f1(Y1; θ)∇′θ ln c(F1(Y1; θ), F1(Y2; θ); ρ)}

and

E {∇θ ln f2(Y2; θ)∇′θ ln f1(Y1; θ)} =

= −E {∇θ ln f2(Y2; θ)∇′θ ln c(F1(Y1; θ), F1(Y2; θ); ρ)} = G′. (37)

29



Finally, by GIME and (13),

E {∇θ ln c(F1(Y1; θ), F1(Y2; θ); ρ) ×
×∇′θ [ln f1(Y1; θ) + ln f2(Y2; θ) + ln c(F1(Y1; θ), F1(Y2; θ); ρ)]} =

= −E∇2
θ ln c(F1(Y1; θ), F1(Y2; θ); ρ).

With G as defined above and

J ≡ E {∇θ ln c(F1(Y1; θ), F1(Y2; θ); ρ)∇′θ ln c(F1(Y1; θ), F1(Y2; θ); ρ)}

this implies that

E∇2
θ ln c(F1(Y1; θ), F1(Y2; θ); ρ) = G + G′ − J.

�

Proof of Theorem 4: From the discussion in the main text,

VMLE =

[
A + B + J−G−G′ E

E′ F

]−1

,

VIQMLE =

[ −A −B
] [ A G

G′ B

]−1 [
−A

−B

]−1

. (38)

Using partitioned inverse formulas, the upper left p × p block of VMLE can be written as Σ−1, where Σ =

A + B + J−G−G′ −EF−1E′.

Also,

V−1
IQMLE =

(
[−G′ −G] + [I I]

[
A G

G′ B

])[
A G

G′ B

]−1

×

×

([
A G

G′ B

][
I
I

]
+

[
−G

−G′

])
(39)

= [−G′ −G]

[
A G

G′ B

]−1 [
−G

−G′

]
−G′ −G + A + B. (40)

Thus, V−1
IQMLE = Σ if and only if

J−EF−1E′ = [−G′ −G]

[
A G

G′ B

]−1 [
−G

−G′

]
.

�

Proof of Corollary 1:
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1. If (C) is a linear combination of (A) and (B) then covariances between moment functions in (D) and

(C) are linear combinations of covariances between (D) and (A-B), which are all zero by Lemma 1.

2. Rewrite J−Vθ
21V

−1
11 Vθ

12 as

E

{(
∇θ ln c−Vθ

21V
−1
11

[
∇θ ln f1
∇θ ln f2

])
∇′θ ln c

}
.

This is identically zero because, due to linearity of (C) in (A-B),

∇θ ln c−Vθ
21V

−1
11

[
∇θ ln f1
∇θ ln f2

]
= 0.

3. By Theorem 4.

�

Proof of Theorem 5: We show that E∇θ ln k(F1(µ1 + Y1), F2(µ2 + Y2); ρ) = 0, where θ = (µ1, µ2)′,

holds for any RS copula density k.

By the chain rule, ∇θ ln k(F1(µ1 + Y1), F2(µ2 + Y2); ρ) contains terms of the form

1
k(F1(µ1 + Y1), F2(µ2 + Y2); ρ)

× ∂k(F1(µ1 + Y1), F2(µ2 + Y2); ρ)
∂Fi(µi + Yi)

× fi(µi + Yi), (41)

i = 1, 2.

Due to MS of (Y1, Y2) and RS of K, fi(µi + Yi) = fi(µi − Yi) and k(F1(µ1 + Y1), F2(µ2 + Y2)) =

k(1−F1(µ1 +Y1), 1−F2(µ2 +Y2)) = k(F1(µ1−Y1), F2(µ2−Y2)). So the first term in (41) is the same whether

evaluated at (Y1, Y2) or (−Y1,−Y2). Similarly, the last term is the same whether evaluated at Yi or −Yi.
Furthermore,

∂k(F1(µ1+Y1),F2(µ2+Y2);ρ)
∂Fi(µi+Yi)

= ∂k(1−F1(µ1+Y1),1−F2(µ2+Y2);ρ)
∂(1−Fi(µi−Yi))

= −∂k(F1(µ1−Y1),F2(µ2−Y2);ρ)
∂Fi(µi−Yi)

.

Thus, ∇θ ln k(F1(µ1 + Y1), F2(µ2 + Y2); ρ) = −∇θ ln k(F1(µ1 − Y1), F2(µ2 − Y2); ρ).

Denote g(Y1, Y2) ≡ ∇θ ln k(F1(µ1 + Y1), F2(µ2 + Y2); ρ) · h(µ1 + Y1, µ2 + Y2). From the above, it follows

with RS of (Y1, Y2) that g(−Y1,−Y2) = −g(Y1, Y2).

We thus have

E∇θ ln k(F1(µ1 + Y1), F2(µ2 + Y2); ρ) =
∫∞
−∞

∫∞
−∞ g(Y1, Y2)dY1dY2

= 0.

�

Proof of Lemma 2: By construction, blocks A,B,G of matrices V and D are the same as in Lemma

1. However, GIME does not apply now. Denote the misspecified copula density by k.

Z ≡ E
{
∇θ ln k(F1(Y1; θ), F2(Y2; θ); ρ)∇′ρ ln k(F1(Y1; θ), F2(Y2; θ); ρ)

}
6=

6= −E
{
∇2
θρ ln k(F1(Y1; θ), F2(Y2; θ); ρ)

}
≡ S.
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−P ≡ E
{
∇θ ln f1(Y1; θ)∇′ρ ln k(F1(Y1; θ), F1(Y2; θ); ρ)

}
6= −E∇2

θρ ln f1(Y1; θ) = 0

and

−Q′ ≡ E
{
∇θ ln f2(Y2; θ)∇′ρ ln k(F1(Y1; θ), F1(Y2; θ); ρ)

}
6= −E∇2

θρ ln f2(Y2; θ) = 0.

G ≡ E {∇θ ln f1(Y1; θ)∇′θ ln f2(Y2; θ)} 6=

6= −E {∇θ ln f1(Y1; θ)∇′θ ln k(F1(Y1; θ), F1(Y2; θ); ρ)} ≡ K

and

E {∇θ ln f2(Y2; θ)∇′θ ln f1(Y1; θ)} 6=

6= −E {∇θ ln f2(Y2; θ)∇′θ ln k(F1(Y1; θ), F1(Y2; θ); ρ)} ≡ L′.

However, by GIME and (13),

E∇2
θ ln k(F1(Y1; θ), F1(Y2; θ); ρ) = −E {∇θ ln k(F1(Y1; θ), F1(Y2; θ); ρ)×

× [∇′θ ln f1(Y1; θ)+

+∇′θ ln f2(Y2; θ) +

+∇′θ ln c(F1(Y1; θ), F1(Y2; θ); ρ)]}

≡ K′ + L−M, (42)

and

E∇2
ρθ ln k(F1(Y1; θ), F1(Y2; θ); ρ) = −E {∇ρ ln k(F1(Y1; θ), F1(Y2; θ); ρ)

× [∇′θ ln f1(Y1; θ)+

+∇′θ ln f2(Y2; θ) +

+∇′θ ln c(F1(Y1; θ), F1(Y2; θ); ρ)]}

≡ P′ + Q−R, (43)

−T ≡ E∇2
ρ ln k(F1(Y1; θ), F1(Y2; θ); ρ)

= −E
{
∇ρ ln k(F1(Y1; θ), F1(Y2; θ); ρ)∇′ρ ln c(F1(Y1; θ), F1(Y2; θ); ρ)

}
,

and

−S ≡ E∇2
θρ ln k(F1(Y1; θ), F1(Y2; θ); ρ)

= −E
{
∇θ ln k(F1(Y1; θ), F1(Y2; θ); ρ)∇′ρ ln c(F1(Y1; θ), F1(Y2; θ); ρ)

}
.

Also,

N ≡ E {∇θ ln k(F1(Y1; θ), F1(Y2; θ); ρ)∇′θ ln k(F1(Y1; θ), F1(Y2; θ); ρ)} 6= M
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and

W ≡ E
{
∇ρ ln k(F1(Y1; θ), F1(Y2; θ); ρ)∇′ρ ln k(F1(Y1; θ), F1(Y2; θ); ρ)

}
6= T.

Finally, by the well known algebraic property of cross-partial derivatives,

S = −P−Q′ + R′.

�

Proof of Theorem 7: By Theorem 8(C) of Breusch et al. (1999), the copula scores are redundant for

θ given the marginal scores if and only if[
K′ + L−M

P′ + Q−R

]
−

[
−K′ −L

−P′ −Q

]
V−1

11

[
−A

−B

]
=

[
−S

−T

]
B,

for some matrix B : q × p.
This is equivalent to

−M− [−K′ − L]V−1
11

[
G

G′

]
= −SB,

−R− [−P′ −Q]V−1
11

[
G

G′

]
= −TB.

T is symmetric and invertible, so we can substitute B from the latter equation into the former to obtain

M− [−K′ − L]V−1
11 Vθ

12 = ST−1(R− [−P′ −Q]V−1
11 Vθ

12),

which completes the proof. �

Proof of Corollary 2:

1. By (30), M−Vθk
21V−1

11 Vθ
12 is identically zero under linearity of (C) in (A-B).

2. As in 1.

3. By Theorem 7.

�

Proof of Theorem 8: See proof of Lemma 4.2 of Hansen (1982). �

Proof of Theorem 9: First note that, by standard optimal GMM results, θ̂ satisfies

√
N(θ̂ − θo) = −(Do

11
′Vo

11
−1Do

11)−1Do
11
′Vo

11
−1
√
Nḡ(θo) + op(1). (44)
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The first order condition for ρ̂ can equivalently be written as

[∇′ρr̄(θ̂, ρ̂)]′Bo
−1r̄(θ̂, ρ̂) = 0,

Do
22
′Bo

−1
√
Nr̄(θ̂, ρ̂) = op(1). (45)

Now, by the mean-value theorem, we have

√
Nr̄(θ̂, ρ̂) =

√
Nr̄(θo, ρo) + Do

21

√
N(θ̂ − θo) + Do

22

√
N(ρ̂− ρo) + op(1). (46)

Substituting (44) into (46), pre-multiplying by Do
22
′Bo

−1, and solving for
√
N(ρ̂− ρo) using (45) yields

√
N(ρ̂− ρo) = −(Do

22
′B−1

o Do
22)−1Do

22
′B−1

o

√
Nr̄(θo, ρo)

+(Do
22
′B−1

o Do
22)−1Do

22
′B−1

o Do
21 ×

×(Do
11
′Vo

11
−1Do

11)−1Do
11
′Vo

11
−1
√
Nḡ(θo)

+op(1). (47)

Substituting (47) and (44) into (46) and simplifying results in

√
Nr̄(θ̂, ρ̂) = Ro

√
Nφ̄(θo, ρo) + op(1), (48)

where

Ro = I−Do
22(Do

22
′B−1

o Do
22)−1Do

22
′B−1

o ,

φ̄(θo, ρo) = r̄(θo, ρo)−Do
21(Do

11
′Vo

11
−1Do

11)−1Do
11
′Vo

11
−1ḡ(θo).

Note that
√
Nφ̄(θo, ρo) ∼ N(0,Bo), and thus B−1/2

o

√
Nφ̄(θo, ρo) ∼ N(0, I). Also, note that R′oB−1

o Ro =

B−
1
2

o [I−B−
1
2

o Do
22(Do

22
′B−1

o Do
22)−1Do

22
′B−

1
2

o ]B−
1
2

o .

Thus, the test statistic in (32) can be written as

Nh̄(θ̂, ρ̂)′B−1
o h̄(θ̂, ρ̂), (49)

i.e. as a quadratic form in standard normals with the coefficient matrix

P = Ip+q −B−1/2
o Do

22(Do
22
′B−1

o Do
22)−1Do

22
′B−1/2

o . (50)

This matrix is idempotent: it is the projection matrix orthogonal to B−
1
2

o Do
22. The χ2-test in (32) follows

immediately because tr(P) = p+ q − rank(Do
22) = p. �
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