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Abstract

Optimal GMM is known to dominate Gaussian QMLE in terms of asymptotic efficiency

(Chamberlain, 1984). I derive a new condition under which QMLE is as efficient as GMM

for a general class of covariance structure models. The condition trivially holds for normal

data but also identifies non-normal cases for which Gaussian QMLE is efficient.
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1 Introduction

Traditionally covariance structure models are estimated by maximum likelihood under the

assumption of multivariate normality (see, e.g., Jöreskog, 1970). If the data are not normal,

MLE is still consistent. However, the MLE standard errors are wrong and inference may be

incorrect. It is common to make inference robust to non-normality by using the “sandwich”

form of the variance matrix. The form of the variance matrix for normal quasi-MLE of

covariance structures can be found, e.g., in Chamberlain (1984, p. 1295).

However, the Gaussian QMLE is generally inefficient. The optimal generalized method

of moments estimator (GMM) makes efficient use of the restrictions on the second moments

whether or not the data are in fact normal. It is known to be no worse asymptotically than

QMLE (e,g., Chamberlain, 1984).

A trivial case when QMLE is efficient is when the data are in fact normal. The first order

conditions of QMLE and GMM are asymptotically identical in this case. But it turns out that

QMLE may retain the asymptotic optimality property more generally. The condition I derive

in this paper is necessary and sufficient for optimality of QMLE. Thus, this paper is related

to the work on asymptotic robustness of covariance structure estimators (e.g., Browne, 1987;

Anderson and Amemiya, 1988; Browne and Shapiro, 1988; Anderson, 1989; Mooijaart and

Bentler, 1991; Satorra and Neudecker, 1994). However, very few papers consider robustness of

the efficiency property. If this kind of robustness is considered, results are stated in terms of

the higher-order cumulants (e.g, Mooijaart and Bentler, 1991) or provide conditions that are

too weak due to some restriction of the model (Satorra and Neudecker, 1994). The robustness

condition derived here is new; it involves the fourth moments of data and applies to a general

class of models. With its help, one may easily identify situations in which using the normality

assumption does not result in an inefficient estimator. As an example, I show that this is

so in problems about the variance of two uncorrelated random variables with the Student-t

distribution.
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2 Preliminaries

Consider a family of distributions {Pθ,θ ∈ Θ ⊂ Rp,Θ compact} and a random vector Z ∈

Z ⊂ Rq from Pθo ,θo ∈ Θ, such that EZ = 0, E{||Z||4} < ∞ and

E
[
ZZ′] = Σ(θ), if and only if θ = θo. (1)

Expectation is with respect to Pθo . The matrix function Σ(θ) comes from a structural model,

e.g., LISREL, MIMIC, factor analysis, random effects or simultaneous equations model.

For a random sample (Z1, . . . ,ZN ), denote

Si ≡ ZiZ′
i

and

S ≡ 1
N

N∑
i=1

Si.

The problem is to estimate θo given (Z1, . . . ,ZN ).

Since we assumed existence of the fourth moments, S satisfies the central limit theorem:

√
N(vec(S)− vec(Σ(θo))) → N(0,∆(θo)),

where

∆(θ) = V(vec(Si)) = Evec(Si)vec(Si)′ − vec(Σ(θ))vec(Σ(θ))′ (2)

and vec denotes vertical vectorization. To save space we will omit the argument of matrix-

functions.

It is well known (see, e.g., Magnus and Neudecker, 1988, p. 253) that the multivariate

normal distribution satisfies

∆o = (Σo ⊗Σo)(I + K) = (I + K)(Σo ⊗Σo), (3)

where ⊗ is the Kronecker product, I is the identity matrix, K is the commutation matrix,

such that K vec(A) = vec(A′), for any square matrix A. Thus the fourth moments of the

multivariate normal distribution are expressed in terms of the second moments.
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The normal QML estimator is

θ̂QMLE = arg min
θ∈Θ

{log |Σ|+ tr(SΣ−1)}.

The optimal GMM estimator of θo is based on the moment conditions

E[m(Zi;θo)] = 0, (4)

where m(Zi;θ) = vech(Si) − vech(Σ) and vech denotes vertical vectorization of the lower

triangle of a matrix.

The optimal GMM estimator is

θ̂GMM = arg min
θ∈Θ

{mN (θ)′WmN (θ)},

where

mN (θ) =
1
N

N∑
i=1

m(zi;θ)

= vech(S)− vech(Σ),

and the asymptotically optimal weighting matrix is the inverse of the asymptotic variance

matrix of the moment functions:

Wo = {E[m(Zi;θo)m(Zi;θo)′]}−1. (5)

W in (5) and ∆ in (2) are connected through the duplication matrix (see, e.g., Magnus

and Neudecker, 1988, p. 49). The duplication matrix D is such that D vech(A) = vec(A). D

transforms vech into vec, while the Moore-Penrose inverse of D, D+ = (D′D)−1D′, transforms

vec into vech. We will use four properties of D and D+:

(i) D+ D = I;

(ii) KD = D, where K is the commutation matrix defined above;

(iii) DD+ = 1
2(I + K);

(iv) (I + K)D = 2D and D+ (I + K) = 2D+.
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Thus, ∆ = V[vec(Si)] = V[D vech(Si)] = DV[vech(Si)]D′. But V[vech(Si)] = E[m(Zi;θ)m(Zi;θ)′].

So

Wo = [D+∆oD+′]−1.

It is a standard result that, under certain regularity conditions, the normal QMLE and the

optimal GMM estimators of θo are consistent and asymptotically normal. See Chamberlain

(1984, p. 1289), Newey and McFadden (1994, Theorems 2.6 and 3.4).

3 Asymptotic Analysis

Let G(θ) denote the Jacobian matrix of the moment functions in (4). Then

G ≡ G(θ) =
∂m(zi,θ)

∂θ′
= −∂vech(Σ)

∂θ′
.

The following lemmas are used in derivation of the main result of the paper; they are well

known and thus given without proof (see, e.g., Chamberlain, 1984; Hansen, 1982).

Lemma 1 Under regularity conditions, the first order conditions for θ̂QMLE and θ̂GMM are,

respectively,

G′D′(Σ⊗Σ)−1D [vech(S)− vech(Σ)] = 0 (6)

G′W−1[vech(S)− vech(Σ)] = 0. (7)

It is clear from (6)-(7) that the only thing that distinguishes the two estimators is the way

in which the empirical moments mN (θ) are weighted. One way to compare the first order

variances of GMM and normal QMLE is to note that θ̂QMLE comes from the GMM problem

that employs a suboptimal weighting matrix G′D′(Σ ⊗ Σ)−1D and is therefore inferior to

θ̂GMM in terms of first-order relative efficiency unless the weighting matrices are the same.

However, this argument cannot be used to derive our equal efficiency condition.

Lemma 2 Let V denote the asymptotic variance matrix of the relevant estimator, i.e. V =
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Avar[N− 1
2 (θ̂ − θo)]. Then, under regularity conditions,

VQMLE = [G′
oD

′(Σo ⊗Σo)−1DGo]−1

×G′
oD

′(Σo ⊗Σo)−1∆o(Σo ⊗Σo)−1DGo (8)

×[G′
oD

′(Σo ⊗Σo)−1DGo]−1,

VGMM = [G′
o(D

+∆oD+′
)−1Go]−1. (9)

If the data are multivariate normal then the two variance matrices are the same. On using

properties of the duplication matrix and equation (3), the following simplifications apply:

D′(Σ⊗Σ)−1∆(Σ⊗Σ)−1D = D′(Σ⊗Σ)−1(I + K)D

= 2D′(Σ⊗Σ)−1D,

D+∆D+′
= D+(I + K)(Σ⊗Σ)D+′

= 2D+(Σ⊗Σ)D+′
.

But [D+′
(Σ⊗Σ)D+]−1 is equal to D′(Σ⊗Σ)−1D because

D′(Σ⊗Σ)−1DD+(Σ⊗Σ)D+′
=

1
2

D′(Σ⊗Σ)−1(I + K)(Σ⊗Σ)D+′

=
1
2

D′(I + K)D+′

= I.

It is not immediately clear from the form of (8)-(9) that QMLE is dominated by GMM

and under what condition they are equally efficient. The main result is stated in the next

theorem.

Theorem 1 Under the regularity conditions, θ̂GMM is no less asymptotically efficient than

θ̂QMLE. Equal efficiency occurs under the following equivalent conditions:

(i) Go is in the column space of D+∆o(Σo ⊗Σo)−1DGo;

(ii) There exists a q(q+1)
2 × q(q+1)

2 matrix D such that

Go = D+∆o(Σo ⊗Σo)−1DGoD.
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Proof. VQMLE − VGMM is positive semidefinite (PSD) if and only if V−1
GMM − V−1

QMLE is

PSD. Denote D+∆oD+′
by C and D′(Σo ⊗Σo)−1D by A. We have

V−1
GMM − V−1

QMLE = G′
oC−1Go −G′

oAGo[G′
oACAGo]−1G′

oAGo

= G′
oC− 1

2 [I− C
1
2 AGo[G′

oAC
1
2 C

1
2 AGo]−1G′

oAC
1
2 ]C− 1

2 Go.

This is PSD because the middle part is the idempotent projection matrix onto C1/2AGo. This

proves the first part of the theorem.

The difference is zero if and only if C−1/2Go is in the column space spanned by C1/2AGo,

or equivalently, Go is in the column space of CAGo. Note that

CAGo = D+∆oD+′
D′(Σo ⊗Σo)−1DGo

= D+∆o
1
2

(I + K)(Σo ⊗Σo)−1DGo

= D+∆o(Σo ⊗Σo)−1 1
2

(I + K)DGo

= D+∆o(Σo ⊗Σo)−1 1
2

2DGo

= D+∆o(Σo ⊗Σo)−1DGo.

This proves both (i) and (ii). �

Theorem 1 is novel in that it states the first order efficiency properties of QMLE and GMM

explicitly in terms of the fourth moments of Z in ∆.

Not surprisingly, the conditions of the theorem hold for the multivariate normal distribu-

tion. Using (3), we have

D+∆o(Σo ⊗Σo)−1DGo = D+(I−K)DGo = 2D+DGo = 2Go.

So condition (ii) trivially holds. However, there may exist other distributions that satisfy the

equal efficiency condition. The following example uses a Student-t distribution with ν degrees

of freedom (ν > 4) to show that the condition holds.
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Consider the problem of estimating the common variance θo = νo
νo−2 (0 < θo < 2) of two

uncorrelated random variables with zero mean:

Σ = θ

 1 0

0 1

 , G = −


1

0

1

 , D =



1 0 0

0 1 0

0 1 0

0 0 1


, D+ =


1 0 0 0

0 1
2

1
2 0

0 0 0 1

 ,

D+∆D+′
=

θ2

2− θ


1 + θ 0 1 + θ

0 1 0

1 + θ 0 1 + θ

 , D′(Σo ⊗Σo)−1D =
1
θ2


1 0 0

0 2 0

0 0 1



D+∆(Σ⊗Σ)−1DG = − 2θ

2− θ


1

0

1

 .

The condition of the theorem clearly holds with D = 2−θo
2θo

. Normal QMLE is efficient. In fact,

VQMLE = VGMM = θ3
o

2−θo
.

4 Concluding Remarks

The paper derives a new condition under which Gaussian QMLE of a general class of covari-

ance structure models preserves its asymptotic optimality property under deviations from the

normal distribution. The condition is problem specific so it is hard to say how easy it is to

violate it. But it is easy to use as illustrated by the Student-t example.

I compared Gaussian QMLE to optimal GMM but, of course, the same result holds for

asymptotic equivalents of optimal GMM such as the empirical likelihood and exponential

tilting estimators because their asymptotic variance is identical to GMM.
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