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Abstract

We consider questions of efficiency and redundancy in the GMM estimation problem
in which we have two sets of moment conditions, where two sets of parameters enter
into one set of moment conditions, while only one set of parameters enters into the
other. We then apply these results to a selectivity problem in which the first set of
moment conditions is for the model of interest, and the second set of moment conditions
is for the selection process. We use these results to explain the counterintuitive result in
the literature that, under an ignorability assumption that justifies GMM with weighted
moment conditions, weighting using estimated probabilities of selection is better than
weighting using the true probabilities. We also consider estimation under an exogeneity
of selection assumption such that both the unweighted and the weighted moment con-
ditions are valid, and we show that when weighting is not needed for consistency, it is
also not useful for efficiency.
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1 Introduction

This paper is motivated by a puzzle in the missing data (selectivity) literature. Consider the

setting of a GMM problem is which we have a set of moment conditions, with some parameters

θ1 (the “parameters of interest”), and these moment conditions hold in the unselected sample.

However, we also have a selection mechanism such that the moment conditions do not hold

in the selected sample. Under certain assumptions given below (typically referred to as

“ignorability” or “selection on observables”), weighting the original moment conditions by the

inverse of the probability of selection yields a modified set of moment conditions that do hold

in the selected sample. We will follow Wooldridge (2002b, 2007) in calling the estimator based

on these weighted moment conditions the “inverse probability weighting” (IPW) estimator.

Unless the probability of selection is known for each selected observation, implementation

of the IPW estimator will require a model that permits the estimation of the probability of

selection. Let θ2 be the parameters (the “selection parameters”) in the moment conditions

derived from this model. Typically these moment conditions will be based on the score

function from the likelihood function for the selection process. A two-step IPW procedure

can be considered, in which the first step is the estimation of θ2 from the selection model, and

the second step is the estimation of θ1 by GMM on the weighted moment conditions, where

the weighting is done using the estimated probabilities of selection.

In this setting, the puzzle is that it is better to estimate the selection probabilities than

to use the true selection probabilities, even if the latter are known. In other words, in terms

of the augmented model described above, we get a better estimator of θ1 when we use the

estimated θ2 in the second step than if we used the true θ2. This phenomenon has been

discussed by Wooldridge (1999, 2001, 2002b, 2007), and it has also been noted in a number

of previous works, including Pierce (1982); Rosenbaum (1987); Imbens (1992); Robins et al.

(1992); Robins and Rotnitzky (1995); Hirano et al. (2003); Henmi and Eguchi (2004) and

Hitomi et al. (2006). This is puzzling because knowledge of θ2, if properly exploited, cannot
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be harmful.

To resolve this puzzle, we follow Newey and McFadden (1994) in setting up an augmented

set of moment conditions, where the first subset are the weighted original moment conditions,

which now contain both θ1 and θ2, and the second subset are the moment conditions from the

selection model, which contain only θ2. We show that the second set of moment conditions

is useful (non-redundant), even when θ2 is known. This is true because the second set of

moment conditions is correlated with the first set in the selected sample (even though it is

not in the full sample). So the inefficiency of the estimator based on known θ2 and the first

set of moment conditions only is due to its failure to exploit the information in the second

set of moment conditions; whereas, when θ2 is not known, there is no choice but to include

the second set of moment conditions.

This raises the question of whether, when θ2 is known, we can improve on the two-step

estimator (which uses estimated θ2 in the second step) by using a GMM estimator based

on both sets of moment conditions, but where only θ1 is estimated. After all, this GMM

estimator cannot be worse than the two-step estimator of θ1. The answer to this question is

a bit complicated. In the case that the original GMM problem (the one that contains the

parameter of interest) is overidentified, the two-step estimator is dominated by a one-step

estimator that estimates θ1 and θ2 jointly in the augmented GMM model. However, we show

that, in the augmented GMM model, knowledge of θ2 is redundant (does not improve the

precision of estimation of θ1). So, while it can never hurt to know more, if that knowledge is

used properly, in this case it does not help either.

The result just quoted is given in Section 3 of the paper. In Section 2, we set the stage

by giving a number of results on efficiency and redundancy of estimation in a general GMM

setting, when one set of moment conditions depends on θ1 and θ2, while a second set of

moment conditions depends only on θ2. Some of these results are original and interesting in

their own right. We consider “m-redundancy”, which is redundancy of moment conditions in
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the sense of Breusch et al. (1999), and we also consider “p-redundancy”, which is a term we

propose to refer to redundancy of the knowledge of some of the parameters for estimation of

the other parameters. One of our results gives an interesting connection between these two

concepts: the first set of moment conditions with θ1 known is m-redundant for estimation of

θ2 if and only if knowledge of θ2 is p-redundant for estimation of θ1.

In Section 4 of the paper we reconsider the selectivity model under a stronger “exogene-

ity of selection” assumption under which both the unweighted moment conditions and the

weighted moment conditions hold in the selected population. Wooldridge (2001) has shown

that in this circumstance it is better to use the unweighted moment conditions than the

weighted moment conditions. However, this does not rule out the possibility that it would be

better to use both. We show that in this circumstance the weighted moment conditions are

m-redundant for estimation of θ1, so that using both sets is no better than using just the un-

weighted moment conditions. Thus when we do not have to weight for reasons of consistency,

we also do not have to weight for reasons of efficiency.

GMM is sufficiently general to accommodate most of the extremum and minimum distance

estimators in econometrics (see, e.g., Newey and McFadden, 1994, p.2118). The arguments

we present can be applied, for example, to (Q)MLE, M-estimation, WLS, and NLS. They also

extend to the asymptotic equivalents of GMM such as empirical likelihood and exponential

tilting estimators. Hence, our results apply quite generally. Specifically, they relate to the

treatment effect estimation literature (e.g., Rosenbaum and Rubin, 1983; Heckman et al.,

1998), to the stratified-sampling literature (e.g., Manski and Lerman, 1977; Manski and Mc-

Fadden, 1981; Cosslett, 1981a,b; Imbens, 1992; Tripathi, 2003) and other similarly-structured

problems (e.g., Hellerstein and Imbens, 1999; Nevo, 2002, 2003; Crepon et al., 1997). Also, our

results of Section 2 apply to a number of other settings in which two-step estimators arise,

including the generated regressors of Pagan (1984), the latent variables models of Zellner

(1970) and Goldberger (1972), and many others. However, we do not consider semiparamet-
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ric estimation of the selection model (“propensity score”), as in Hahn (1998) or Hirano et al.

(2003).

2 Efficiency and redundancy results for the general

estimation problem

2.1 Preliminaries

Consider a random vector w∗ ∈ W∗ ⊂ Rdim(w∗), the compact set Θ = Θ1 × Θ2 ⊂ Rp1 × Rp2 ,

and the population condition

E[h(w∗, θ)] = 0, (1)

where h :W∗×Θ→ Rm is a vector of known real-valued moment functions. Under regularity

conditions, Hansen (1982) established consistency and asymptotic normality of the generalized

method of moments (GMM) estimator that minimizes a squared Euclidean distance of the

random sample analogues of the population moments, h̄(θ) = 1
N

∑N
i=1 h(w∗i , θ), from their

population counterparts equal to zero. Thus, the GMM estimator θ̂ minimizes the objective

function

h̄(θ)′Ŵ h̄(θ), (2)

where Ŵ converges in probability to W , the appropriate (optimal) positive semidefinite

weighting matrix.

For simplicity, we assume here that w∗i , i = 1, . . . , N , are i.i.d.

The following regularity assumptions on the moment functions are sufficiently strong to

ensure both consistency and asymptotic normality of the GMM estimator.
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Assumption 2.1 Let || · || denote the Euclidean norm, N(θ, δ) ⊂ Θ denote an open p1 + p2-

ball of radius δ with center at θ, ∇θh(·, θ) denote the m × (p1 + p2) Jacobian of h(·, θ) with

respect to θ, and “w.p.1” stand for “with probability one”. Assume that the moment function

in (1) satisfies the following conditions:

(i) ∃ unique θo ∈ int(Θ) that solves (1);

(ii) h(w∗, θ) is continuous at each θ ∈ Θ w.p.1;

(iii) h(w∗, θ) is (once) continuously differentiable on N(θo, δ) for some δ > 0 w.p.1;

(iv) E{supθ∈Θ ||h(w∗, θ)||2} <∞;

(v) E{supθ∈N(θo,δ) ||∇θh(w∗, θ)||} <∞ for some δ > 0;

(vi) E[∇θh(w∗, θo)] is of full column rank.

Then it is a standard result (see, e.g., Newey and McFadden, 1994, Theorems 2.6 and

3.4) that, under Assumption 2.1, the GMM estimator of θ is consistent and asymptotically

normal.

2.2 The general estimation problem

Suppose that we can partition θ into subsets of parameters (θ′1, θ
′
2)′ and h(·) into subsets of

functions (h1(·)′, h2(·)′)′ such that

E[h1(θ1, θ2)] = 0, (A)

E[h2(θ2)] = 0, (B)
(3)

where θ1 ∈ Θ1, θ2 ∈ Θ2, h1(·) and h2(·) are m1- and m2-vectors of known functions, respec-

tively (m = m1 +m2), and we have suppressed w∗ for notational convenience. We consider the

general case of overidentification, i.e., m1 ≥ p1 and m2 ≥ p2. These identification conditions

(plus the corresponding rank conditions assumed below) ensure that θ2 is identified by (B)

alone, and that, given θ2, θ1 is idenified by (A) alone, so that two-step estimation is possible.

The optimal weighting matrix for GMM will be the inverse of the following covariance
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matrix or its components:

C = V[h(θ)] =

 C11 C12

C21 C22

 , (4)

where we assume that C is finite and nonsingular so its inverse exists: C−1 =

 C11 C12

C21 C22

.

Define the (m1 +m2)× (p1 + p2) matrix of expected derivatives

D = E∇θh(w∗, θ) =

 D11 D12

0 D22

 . (5)

We assume that D11 and D22 are of full column rank so that h2 alone identifies θ2, and h1

alone identifies θ1 given θ2.

We now define four different GMM estimators that differ in which moment conditions

are used and/or whether θ2 is treated as known. For each of these estimators we treat C as

known. We will comment on this point in the next subsection.

Definition 2.1 Call the estimator of θ that minimizes (2) with the optimal weighting matrix

W = C−1 the one-step estimator.

This is the usual GMM estimator that uses both orthogonality conditions (A) and (B) jointly

to estimate θ1 and θ2.

Definition 2.2 Call the estimator of θ obtained in the following two step procedure the two-

step estimator: (i) the estimator θ̂2 is obtained by minimizing (2), where h(·) contains only

h2(·) and W = C−1
22 ; (ii) the estimator of θ1 is obtained by minimizing (2), where h(·) contains

only h1(·), W = C−1
11 , and θ2 = θ̂2 is treated as given.

This is the sequential estimator that uses the orthogonality condition (B) first to obtain

a consistent estimator of the unknown parameter subvector θ2 and then uses the moment
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condition (A) to obtain the estimator of θ1. Estimators considered in Wooldridge (2007),

Newey (1984), Newey and McFadden (1994, pp. 2176-2184) and many others are two-step

estimators with m1 = p1, m2 = p2.

Definition 2.3 Call the estimator of θ1 obtained by minimizing (2), where h(·) contains only

h1(·), W = C−1
11 , and θ2 is treated as known, the know-θ2 estimator.

Here, the orthogonality condition (B) is ignored. However, the results of Section 3 of the

paper all derive from understanding that (B) is potentially informative even though θ2 is

known because it imposes additional restrictions on the population.

Definition 2.4 Call the estimator of θ1 obtained by minimizing (2), where h(·) contains both

h1(·) and h2(·), W = C−1, and θ2 is treated as known the know-θ2-joint estimator.

This is the augmented GMM estimator of θ1 of the form considered in Qian and Schmidt

(1999). Here, the information in (B) is kept even though θ2 is assumed known.

Theorem 2.1 Let Vone-step, Vtwo-step, Vknow-θ2, and Vknow-θ2-joint denote the asymptotic

variance of the one-step, two-step, know-θ2, and know-θ2-joint estimators, respec-

tively. Then,

Vone-step = (D′C−1D)−1 (6)

Vtwo-step = BCB′ (7)

Vknow-θ2 = (D′11C
−1
11 D11)−1 (8)

Vknow-θ2-joint = (D′11C
11D11)−1 (9)

where B is defined in equation (39) of the Appendix.

The proofs of all Theorems are given in the Appendix.

In the above expressions, we use the standard notation that “the asymptotic variance of

θ̂ is V” means “
√
N(θ̂ − θo) converges in distribution to N(0,V).”
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2.3 Efficiency and redundancy results

We can now state several relative efficiency results (noting that a known parameter is always

more efficient than its estimator).

Theorem 2.2 For the estimators defined in Definitions 2.1-2.4 with asymptotic variances

given in equations (6)-(9), respectively, the following statements hold:

1. know-θ2-joint is no less efficient than one-step, two-step, and know-θ2.

2. If C12 = 0 then know-θ2-joint and know-θ2 are equally efficient [M-redundancy].

3. If D12 = 0 then two-step and know-θ2 are equally efficient for θ1.

4. If C12 = 0 and D12 = 0 then one-step, two-step, know-θ2-joint and know-θ2

are all equally efficient for θ1, and one-step and two-step are equally efficient for

θ2 [M/P-redundancy].

5. one-step is no less efficient than two-step (for both θ1 and θ2).

6. If m1 = p1 then the one-step and two-step estimates of θ2 are equal.

7. If m1 = p1 and m2 = p2 then the one-step and two-step estimates are equal (for

both θ1 and θ2).

8. If m1 = p1 and C12 = 0 then the one-step and two-step estimates are equally

efficient (for both θ1 and θ2).

9. If D12 = C12C
−1
22 D22 then know-θ2-joint and one-step are equally efficient for θ1

[P-redundancy], and one-step and two-step are equally efficient for θ2.

10. If D12 = C12C
−1
22 D22 then one-step, two-step and know-θ2-joint are no less effi-

cient for θ1 than know-θ2.

9



As noted above, we have defined our estimators as depending on known C. In practice,

C is replaced by an initial consistent estimate. This has no effect on the asymptotic variance

of the estimates and so it does not affect our efficiency comparisons. For Statements 6 and 7,

which do not involve asymptotic arguments, we would need to require that the same initial

consistent estimate is used.

Statement 1 is just the obvious fact that know-θ2-joint dominates the other estimators.

The known value of θ2 is at least as efficient as any estimate of θ2, and the know-θ2-joint

estimate of θ1 is the efficient GMM estimate of θ1 based on the full set of available moment

conditions.

Statement 2 is essentially the result of Qian and Schmidt (1999). With θ2 known, the

second set of moment conditions contains no unknown parameters, and Qian and Schmidt

show that using these conditions in addition to the first set of moment conditions improves

efficiency except in the special case that C12 = 0. Also, if we combine Statements 1 and

2, we have the corollary that if C12 = 0, know-θ2 is at least as efficient as one-step and

two-step.

Statement 3 is essentially the result of Newey and McFadden (1994) for the condition

under which first stage estimation of a nuisance parameter (θ2) does not affect the asymptotic

variance of the second stage estimate of the parameter of interest (θ1). See also Wooldridge

(2002a, pp. 353-356).

Statement 4 combines the conditions of Statements 2 and 3. Therefore the equal efficiency

of two-step, know-θ2 and know-θ2-joint follows from those statements. The fact that

one-step is also equally efficient is an additional result. This statement provides conditions

for redundancy of both the knowledge of θ2 and of the extra moment conditions in (B) for

estimating θ1 (M/P-redundancy). One case when the conditions hold is when θ2 does not enter

(A) and the two moment conditions are uncorrelated. This statement can also be viewed as

a special case of Theorem 7 of Breusch et al. (1999) that deals with partial redundancy of
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moment conditions.

Statement 5 says that sequencial procedures are in generally less efficient than one step

estimation.

Statement 6 is the GMM separability result of Ahn and Schmidt (1995) that says that

the GMM estimate of θ2 is unaffected if equal numbers of parameters and moment conditions

are added, because the additional conditions only determine θ1 in terms of θ2. Further, it can

be shown (see the Appendix of Ahn and Schmidt, 1995) that if D11 is nonsingular (which is

true since D11 is of full column rank) the one-step estimator of θ1 is expressed in terms of

the one-step estimator of θ2 using the equation h̄1(θ̂1, θ̂2) = C12C
−1
22 h̄2(θ̂2). Thus, one-step

for θ1 is derived from the same equation as two-step for θ1 as long as h̄2(θ̂2) = 0 (which

holds under exact identification of θ2) or C12 is zero asymptotically. The former condition

implies equivalence of the estimators (Statement 7); the latter implies their equal efficiency

asymptotically (Statement 8).

Statements 9 and 10 are novel and interesting. They discuss implications of the condition

that D12 = C12C
−1
22 D22. This is the condition for redundancy of h1 given h2, for estimation of

θ2 when θ1 is known (see Breusch et al., 1999, p.94), which is an m-redundancy result. Under

this condition, Statement 9 says that know-θ2-joint and one-step are equally efficient for

θ1. This means that knowledge of θ2 does not help efficiency of estimation of θ1 (from the

set of all moment conditions) under this condition, which is a p-redundancy result. This link

between m-redundancy and p-redundancy (the first set of moment conditions with θ1 known

is m-redundant for estimation of θ2 if and only if knowledge of θ2 is p-redundant for estimation

of θ1) is quite interesting and (so far as we know) original. The last part of Statement 9 says

that under the same condition the first set of moment conditions fails to increase efficiency

of estimation of θ2 also in the case when θ1 is not known and needs to be estimated. This is

a partial redundancy result which can be viewed as a special case of Theorem 8 of Breusch

et al. (1999).
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Under the same condition, Statement 10 says that know-θ2 is dominated by the other

three estimators. This is because knowledge of θ2 is not useful, and the know-θ2 estimator

fails to use the second set of moment conditions, which is useful unless C12 = 0. Note,

however, that although the two-step estimator θ1 dominates the know-θ2 estimator under

this condition, the two-step estimator of θ1 is still not as efficient as the one-step or

know-θ2-joint estimators of θ1 unless m1 = p1 (the first equation is exactly identified for

θ1, given θ2).

The condition of Statements 9 and 10 will often hold when h2(θ2) is the score of a log-

likelihood function that depends on θ2 but not θ1. In this case the estimate of θ2 based on h2

will be efficient, and another moment condition based on h1(θ1, θ2) with θ1 known should be

m-redundant. More precisely, the generalized information equality (GIME) implies that the

expectation of the derivative of h1 (with respect to θ2) equals minus its covariance with the

score, so that D12 = −C12, and the usual information equality implies that D22 = −C22, so

that D12 = C12C
−1
22 D22 holds. Indeed this is exactly what occurs in the selectivity model of

the next section.

Earlier papers that have “explained” the paradox that the two-step estimator dominates

the know-θ2 estimator include Pierce (1982), Henmi and Eguchi (2004) and Hirano et al.

(2003). Basically their explanation is that two-step dominates know-θ2 when θ̂1,two-step

and θ̂2,two-step are asymptotically independent. Our Statement 10 is a generalization of their

results because it includes more estimators in its comparisons, but also because our condition

(D12 = C12C
−1
22 D22) does not imply that θ̂1,two-step and θ̂2,two-step are asymptotically inde-

pendent. However, the information equalities that arise in the selectivity model (D12 = −C12

and D22 = −C22) do imply that θ̂1,two-step and θ̂2,two-step are asymptotically independent, so

that the explanation of Pierce (1982) and Henmi and Eguchi (2004) does apply in this model.
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2.4 Examples

We now give three examples where our efficiency results either substantially simplify derivation

of known results or provide new insights into asymptotic efficiency of estimators.

Imbens (1992) proposes a GMM estimator for stratified-sampling models. This is a case

when the parameter of the selection model, which may be known (θ2), contains the probabil-

ities of drawing from strata. Imbens’ estimator is based on three sets of moment conditions

(his equations (29)-(31)) but they can be grouped to form our moment conditions in (3) if

h2 corresponds to the first moment condition (his equation (29)) and h1 corresponds to the

other two (his equations (30)-(31)). Imbens’ estimator of (θ1, θ2) which is a one-step esti-

mator is asymptotically efficient but the estimator based on h1 with known θ2 (know-θ2) is

less efficient relative to the estimator based on h1 with estimated θ2 (two-step).1 Imbens

discusses the “puzzle” and suggests the intuition for why h2 needs to be included into the

moment vector even if θ2 is known (his footnote 3): h2 contains no parameters in this case but

is correlated with h1, so know-θ2-joint dominates know-θ2. There is however the question

of why one-step is no less efficient than know-θ2-joint.

Using our Statement 9, it is easy to give an answer to this question. From the form of

the sampling density (equation (3) on p.1189), the moment function h2 is the score function

for θ2 and so, by the generalized version of information equality, we have C22 = −D22 and

C12 = −D12 for any other valid moment function h1. Then, D12 = C12C
−1
22 D22 and the p-

redundancy condition holds. We therefore “automatically” have the result that one-step

and know-θ2-joint are equally efficient.

Nevo (2002, 2003) also considers the case when the population of interest and the sampled

population are different due to selection. But he proposes using weighted moment conditions

to correct for the selection bias. The weights, which are proportional to the inverse of the

1Because of the way Imbens arrives at his moment conditions (from an initial likelihood based estimator for
the case of discrete exogenous variables), he uses the nonparametric efficiency bound in the efficiency proof.
Ramalho and Ramalho (2006) show that Imbens’ estimator can be obtained as a GMM estimator directly, by
deriving the bias corrected moment conditions.
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selection probability, may be estimated using information from a different data set about

the population moments for certain variables in the original sample. For example, moments

from the distribution of education obtained from the US Census may be used in weighted

estimation of returns to education using the National Longitudinal Survey (see Hellerstein

and Imbens, 1999). Nevo (2003)’s moment conditions can be written as follows:

E[h1(θ1, θ2)] = E [ω(z, θ2) · g(z; θ1)] = 0 (10)

E[h2(θ2)] = E [ω(z, θ2) ·H(z)] = 0, (11)

where ω(z, θ2) denotes the weights and H(z) represents the known population moments from

the other data set.

Nevo (2003) assumes that the dimensions of g and θ1 are equal and matches the number of

parameters θ2 to the number of auxiliary data moments H so his problem is exactly identified.

The proposed estimation method is basically two-step: the selection probabilities and hence

the weights are estimated first using (11), and then θ1 is estimated based on (10) treating

the weights as known. Clearly in this setting the two-step estimator of θ is equivalent to

one-step.

In general the selection probabilities may be known along with the auxiliary data moments.

Moreover, it is unclear why the dimensions of θ2 and H must match if variables that do

not affect selection are available in the auxiliary data set. Our results suggest that using

the auxiliary information together with the known selection probabilities (know-θ2-joint

estimator) dominates estimating weights in one step estimation when the number of known

moments H is larger than the number of selection parameters θ2, unless the p-redundancy

condition of Statement 9 holds. Furthermore, we now know that this condition is equivalent

to the m-redundancy condition that (10) is redundant in estimation of θ2 given (11) if θ1

is known. This is important because efficient estimation of selection models using auxiliary

data moments may be of independent interest. Finally, unless the two moment conditions are
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uncorrelated, including the auxiliary data moments is better than omitting them even if the

weights do not need to be estimated.

Inoue and Solon (2005) consider the two-sample IV estimation of Angrist and Krueger

(1992, 1995) in which one sample contains instruments and the dependent variable and the

other sample contains instruments and independent variables. They point out that even in

exactly identified problems, the two-sample IV (TSIV) and the two-sample 2SLS (TS2SLS)

estimators are numerically different and the latter is asymptotically more efficient than the

former. The improved efficiency comes from the fact that TS2SLS allows for two different

sample covariance matrices of exogenous variables. They show this under the assumptions of

zero conditional mean in the reduced form, conditional homoskedasticity in the reduced form

and in the structural equation, and zero conditional third moments. Such strong assumptions

allow them to compare the two estimators to the limited information MLE but they rule out

many interesting cases.2 Using our results, we may show relative efficiency of TS2SLS without

making these assumptions.

For simplicity we consider the case with one endogenous variable and one instrument.

Let {(y1i, z1i), i = 1, . . . , n1} and {(z2i, x2i), i = 1, . . . , n2} denote the two available samples.

Then, the TSIV estimator is based on the moment condition

Ez1iy1i − Ez2ix2iβ = 0. (12)

The TS2SLS estimator is based on the moment conditions

Ez1iy1i − Ez2
1iπβ = 0 (13)

Ez2ix2i − Ez2
2iπ = 0 (14)

If we let δ and γ denote Ez2ix2i and Ez2
1iπ, respectively, then, by Statement 6, the estimator

2We thank Jeffrey Wooldridge for suggesting this example to us.
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of β based on (12) is identical to the estimator based on

Ez1iy1i − δβ = 0 (15)

Ez2ix2i − δ = 0 (16)

and the estimator based on (13)-(14) is identical to the estimator based on

Ez1iy1i − γβ = 0 (17)

Ez2ix2i − δ = 0 (18)

Ez2
1iπ − γ = 0 (19)

Ez2
2iπ − δ = 0 (20)

Under the assumption that Ez2
1i = Ez2

2i, which underlies consistency of the TS2SLS estimator,

the two parameters γ and δ are equal and moment conditions (17)-(18) are identical to (15)-

(16). By Statement 5, the improved efficiency of TS2SLS comes from including two new

moment conditions (19)-(20) that contain only one additional parameter π.

3 Missing data under an ignorability condition

3.1 The population problem

Consider now a random vector w ∈ W ⊂ Rdim(w) with density f(w) and a compact set

Θ1 ⊂ Rp1 . Suppose there is the population moment equation

E[g(w, θ1)] = 0, (21)

where g : W × Θ1 → Rm1 is a vector of known real-valued moment functions with m1 ≥ p1

(i.e., overidentification of θ1 is allowed) and the expectation is with respect to f(w).
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Denote by θo1 the unique solution to the population problem in (21). We are interested

in estimating θo1. Often w is partitioned into (x, y) ∈ X × Y and E(y|x) is the feature

of interest. As an example consider the M-estimation of the parameter θ1 in a general

nonlinear least squares model for E(y|x) = m(x, θ1). This is one of the examples consid-

ered in Wooldridge (2007). The identifying moment restrictions are the first order condi-

tions for optimization of q(x, y; θ1) = (y − m(x, θ1))2. Then, w = (x, y), m1 = p1, and

g(w, θ1) = −(y −m(x, θ1))∇′θ1m(x, θ1). In this example, and many others, a stronger condi-

tion than (21) holds, namely E[g(w, θ1)|x] = 0.

It is worth repeating that our moment condition (21) allows for the possibility of over-

identification, whereas Wooldridge’s (2002b; 2007) M-estimation framework corresponds to

exact identification. Of course, an overidentified GMM problem can always be converted

into an equivalent exactly identified problem by taking the optimal linear combinations that

depend on the expected derivative matrix and the variance matrix of the moment conditions.

However, the optimal linear combination of the moment conditions for the augmented GMM

problem need not contain the optimal linear combinations of the moment conditions for the

original problem, and furthermore it is possible that the expected derivative matrix and/or

the variance matrix of the moment conditions after selection may not be the same as before

selection. Therefore there is a good reason to consider the general overidentified case.

The above model (21) holds in the entire (unselected) population. Now we consider the

selected population defined by a random variable s ∈ {0, 1} such that w is observed if and only

if s = 1. We assume that the probability of selection depends on some additional variables z,

where z ∈ Z ⊂ Rdim(z) is always observed. Some or all of z may be in w; that is, some of w

may always be observed, but all of w is observed only when s = 1. Define

P(z, θ2) = P(s = 1|z), (22)

where P(z, θ2) is a correctly specified parametric model for the probability of selection and is
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known up to the parameter vector θ2 ∈ Θ2 ⊂ Rp2 .

The GMM estimator based on (21), but with missing data, in effect makes the empirical

moments 1
N

∑N
i=1 sig(wi, θ1) close to zero. These empirical moments are the random sample

analogues of the population moments of the form

E[sg(w, θ1)] = 0, (23)

where expectation is now with respect to the joint distribution of s, w and z. We call these

moment conditions the unweighted selected population moments to emphasize that they hold

in the selected rather than the target population and to distinguish them from the weighted

selected population moments that we will define shortly. The selectivity problem is that the

unweighted selected population moment conditions (23) may not hold; more precisely, the

value θo1 that solves (21) may not solve (23).

We also consider the weighted selected population moments that weight the moment

function in (23) by the inverse of the selection probability (see, e.g., Horvitz and Thompson,

1952):

E
[

s

P(z, θ2)
g(w, θ1)

]
= 0. (24)

The weighted selected population moments also may not hold. Indeed, it is intuitively clear

that whether (23) or (24) hold must depend on what is assumed about the relationship of the

selection mechanism and w.

3.2 Ignorability of selection

We follow Wooldridge (2002b, 2007) in making the following “ignorability” (or “selection on

observables”) assumption. See Rubin (1976) for an early discussion of ignorability.

Assumption 3.1 (ignorability of selection) P(s = 1|w, z) = P(s = 1|z) = P(z, θ2).
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Assumption 3.1 says that, conditional on z, s and w are independent. This is commonly

written as s ⊥ w | z. In some cases, ignorability is true by construction. An example would

be the case that z is an indicator of stratum, and selection is random within stratum. In

other cases it is a substantial behavioral assumption.

We follow Wooldridge (2007) and assume that the moment condition (21) holds in the unse-

lected population, and that the ignorability condition of Assumption 3.1 holds. As Wooldridge

notes, these assumptions do not imply that the unweighted selected population moment con-

ditions (23) hold. This can be seen as follows:

Es · g(w, θ1) = EE[s · g(w, θ1)|z], using LIE

= EE(s|z)E[g(w, θ1)|z], using ignorability

= EP(z, θ2)E[g(w, θ1)|z],

(25)

(where LIE means law of iterated expectations), and our assumptions do not imply that

E[g(w, θ1)|z] = 0. However, the weighted selected moment conditions (24) do hold, since

E s
P(z,θ2)

g(w, θ1) = EE[ s
P(z,θ2)

g(w, θ1)|z]

= E 1
P(z,θ2)

E(s|z)E[g(w, θ1)|z]

= EE[g(w, θ1)|z]

= Eg(w, θ1) = 0.

(26)

3.3 Efficiency comparisons

In what follows, θ1 is the parameter of interest, and following the notation of Section 2 we

write (26) as Eh1(w∗, θ1, θ2) = 0, where w∗ contains w, s and z, and where

h1(w∗, θ1, θ2) =
s

P(z, θ2)
g(w, θ1) (27)
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Wooldridge (2007) discusses estimation based on (27), for the exactly identified case. He

compares the estimator of θ1 when θ2 is known to the estimator of θ1 when θ2 is replaced by

some consistent estimate θ̂2. In order to analyze this or other related issues, we have to say

something about how θ2 is estimated. In general terms, it is estimated by GMM based on

a moment condition Eh2(s, z, θ2) = 0, which puts the analysis into the framework of Section

2. However, following Wooldridge, we make the specific assumption that θ2 is estimated by

MLE based on the model P(s = 1|z) = P(z, θ2). That is, h2(s, z, θ2) is the score function

corresponding to the likelihood for this model. Specifically,

h2(s, z, θ2) = ∇′θ2P(z, θ2)
s− P(z, θ2)

P(z, θ2)[1− P(z, θ2)]
. (28)

Under these assumptions, we have the puzzle referred to in the Introduction; namely, the

two-step estimator of θ1 that uses θ̂2 in (27) is better than the know-θ2 estimator that uses

the true value of θ2 in (27). We will verify that this result holds also in the case that (27) is

overidentified, and also provide our explanation of the puzzle, using the results of Section 2.

To apply these results we need to do some calculations involving the following:

C12 = Eh1(w∗, θ1, θ2)h2(s, z, θ2)′

C22 = Eh2(s, z, θ2)h2(s, z, θ2)′

D12 = E∇θ2h1(w∗, θ1, θ2)

D22 = E∇θ2h2(s, z, θ2)

(29)

Theorem 3.1 (a) C12 = Eg(w,θ1)
P(z,θ2)

∇θ2P(z, θ2), which is (in general) not equal to zero;

(b) D12 = −C12, D22 = −C22, and so D12 = C12C
−1
22 D22.

To understand Theorem 3.1, note first that in the unselected population, C∗12 ≡ Eg(w, θ1) ·

h2(s, z, θ2)′ = 0. That is, the original moment condition g(w, θ1) is uncorrelated with the

score function h2(s, z, θ2) by the generalized information equality. However, in the selected
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sample, C12 6= 0. That is, h1(w∗, θ1, θ2) and h2(s, z, θ2) are correlated. This correlation makes

h2(s, z, θ2) relevant for estimation of θ1 even if θ2 is known, and the inefficiency of the know-

θ2 estimator is due to its failure to capture the information in the moment condition based

on h2(s, z, θ2).

Although we do not pursue this point, it would appear that the inefficiency of the know-

θ2 estimator (at least relative to the know-θ2-joint estimator) would hold even if h2(s, z, θ2)

were not a score function. It depends only on C12 6= 0, not on the particular form of C12.

Part (b) of Theorem 3.1 gives a number of information equalities which do depend on

h2(s, z, θ2) being a score function. They establish that D12 = C12C
−1
22 D22, which is the

condition for Statements 9 and 10 of Theorem 2.2. Statement 10 of Theorem 2.2 says that

the know-θ2 estimator is inefficient relative to the one-step, two-step and know-θ2-

joint estimators. This extends the previously-cited result, namely that know-θ2 is inefficient

relative to two-step, to a larger set of other estimators, and also to the case that the GMM

problem for the parameters of interest is overidentified.

Statement 9 of Theorem 2.2 says further that θ2 is p-redundant, so that the one-step and

know-θ2-joint estimators are equally efficient. So long as one includes the score function

h2(s, z, θ2) in the estimation problem, it does not matter (in terms of efficiency of estimation

of θ1) whether θ2 is known or not. This appears to be a novel result.

In the treatment effect estimation setting, Hirano et al. (2003) note the intuition that

the efficiency losses of the “true-weights” estimator (know-θ2) are a consequence of ignoring

moment conditions that do not contain additional parameters but are correlated with the

other moment conditions (part (a) of Theorem 3.1). But this intuition does not help explain

the equal efficiency of the “estimated-weights” (two-step), one-step and know-θ2-joint

estimators (part (b) of Theorem 3.1).

A final note is that, although the two-step estimator is better than the know-θ2 esti-

mator, it is not necessarily efficient. In the exactly identified case, it is efficient because it
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equals the one-step estimator (Statement 6 of Theorem 2.2), but in the overidentified case

it is generally less efficient than the know-θ2-joint and one-step estimators.

4 Missing data under an exogeneity condition

4.1 Motivation and definitions

We have seen that under the ignorability assumption 3.1, the weighted moment condition

(24) holds in the selected population, while the unweighted moment condition (23) does not.

We now ask about circumstances under which the unweighted moment condition would hold,

or both conditions would hold.

The simplest assumption under which the unweighted moment condition holds in the

selected sample is the following.

Assumption 4.1 P(s = 1|w) = P(s = 1). That is, s is independent of w.

This assumption is easy to understand and clearly implies that (23) holds, since s is

independent of g(w, θ1). It should be noted that this assumption is neither stronger nor

weaker than the assumption of ignorability (Assumption 3.1). That is, “s independent of w”

does not imply, and is not implied by, “s independent of w conditional on z”.

The simplest assumption under which both the unweighted and the weighted moment

conditions hold is the following.

Assumption 4.2 (s, z) is independent of w.

This assumption is also easy to understand, but it would appear to be too strong to apply

in practical cases.

We now consider an exogeneity condition that is weaker than 4.2 and which does imply

that both the weighted and unweighted moment conditions hold (as we will show in the next

section).

22



Assumption 4.3 (exogeneity of selection)

(i) Assumption 3.1 (ignorability of selection) holds.

(ii) Eg(w, θ1)|z = 0.

This is essentially the same definition of exogeneity as in Wooldridge (2007).

4.2 Results under exogeneity

We first state without proof the following basic result.

Lemma 4.1 Suppose Assumption 3.1 holds. Then f(w|z, s) = f(w|z).

(Here f(·) is generic notation for probability density.) Then it is easy to see that the following

result is true.

Theorem 4.1 Suppose Assumption 4.3 (exogeneity) holds. Then

Eg(w, θ1)|z, s = 0 (30)

This is a much simpler and stronger result than Wooldridge (2007) obtained. It immedi-

ately implies that any function of z and s is uncorrelated with g(w, θ1), and therefore that the

unweighted moment condition (23) and the weighted moment condition (24) both hold in the

selected sample. In fact, this is true whether or not the weights are correct (in the sense that

they do in fact represent P (s = 1|z)). All that is required is that the weights be a function

of z and s.

Wooldridge (2007, Theorem 4.3) shows, under exogeneity and the further assumption that

the original moment conditions satisfy the conditional information matrix equality, that the

estimator based on the unweighted moment conditions is more efficient than the estimator

based on the weighted moment conditions. This is fine as far as it goes, but it does not rule
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out the possibility that using both could be more efficient than using either. Our next result

does rule out this possibility.

Theorem 4.2 Suppose Assumption 4.3 holds. Then the optimal moment conditions in the

selected population are the same as in the unselected population.

To see why this result is true, first note the following. By ignorability, w is independent

of s, conditional on z. Therefore the information in the moment condition (30) is the same

as the information in the following moment condition:

Eg(w, θ1)|z = 0 (31)

Then, following Chamberlain (1987), the optimal moment conditions in the unselected pop-

ulation are the following:

ED(z)′C(z)−1g(w, θ1) = 0, (32)

where D(z) = E∇θ1g(w, θ1)|z and C(z) = Eg(w, θ1)g(w, θ1)′|z.

In the selected population, we have the information that

Esg(w, θ1)|z = 0, (33)

or equivalently that E [g(w, θ1)|z, s = 1] = 0. Thus the optimal moment conditions in the

selected population are:

ED(z, s = 1)′C(z, s = 1)−1sg(w, θ1) = 0, (34)

where D(z, s = 1) = E {∇θ1g(w, θ1)|z, s = 1} and C(z, s = 1) = E {g(w, θ1)g(w, θ1)′|z, s = 1}.

But D(z, s = 1) = D(z) by the ignorability assumption, and similarly C(z, s = 1) = C(z).
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An implication of this result is that the weighted moment conditions are m-redundant

for the estimation of θ1. This is an improvement on the Wooldridge result because it shows

more than just that it is better to use the unweighted moment conditions than the weighted

ones; it is better to use the unweighted moment conditions than any linear combination of

the weighted and unweighted moment conditions. That is, assuming that weighting was not

part of the efficient estimation problem in the unselected sample, it also plays no role in the

efficient problem in the selected population.

The GMM estimator based on the unconditional moment conditions (34) is the efficient

GMM estimator based on the conditional moment conditions in (33). It follows from Cham-

berlain (1987) that this estimator achieves the semiparametric efficiency bound for estimators

that use the information given in (33). We are analyzing this problem at a high level of

generality - the moment conditions we started with could be more or less anything - and so

that is all that can be said about efficiency, without additional information.

However, there is more information here, because we have a model for selection and we

have (given ignorability) the fact that the probability of selection depends on z but not on w.

Specifically, under ignorability, we have the condition that E [s− P (z, θ2)] |z, w = 0. Not all

of this is useful information because at least some of w is not observed when s = 0. Suppose

that w = {w1, w2}, where w1 is always observed, whereas w2 is observed only when s = 1.

Then we have the following usable moment conditions that apply to all observations:

E[s− P (z, θ2)]|z, w1 = 0. (35)

Let θ =

 θ1

θ2

. The information available for estimation of θ is given in the conditional

moment restrictions (33) and (35). These are “sequential moment conditions” in the sense

of Chamberlain (1992) and Hahn (1997), because the smaller conditioning set in equation

(33) is nested in the larger conditioning set in equation (35). The form of the optimal GMM
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estimator is given by Chamberlain (1992, p. 22). We derive the optimal moment conditions

for the current problem in the Appendix.

It follows from the results of Chamberlain (1992) and Hahn (1997) that the GMM es-

timator based on the optimal moment conditions, as given in the Appendix, achieves the

semiparametric efficiency bound for estimators that use the information in equations (33)

and (35). Therefore it achieves the semiparametric efficiency bound for estimators that rely

on the information in the original conditional moment restriction and the exogeneity assump-

tion.

5 Concluding remarks

The motivation for the paper was to explain a puzzle in the selectivity literature, namely, that

weighting using known probabilities of selection leads to a less efficient estimate than weighting

using estimated probabilities of selection. To do this, we considered a GMM problem with two

sets of moment conditions and two sets of parameters, where one set of moment conditions

contains both sets of parameters, while the other set of moment conditions contains only one

of the two sets of parameters. We derived a number of redundancy and efficiency results for

this problem, and these are potentially useful in other settings besides the selectivity model.

In the selectivity model, the first set of moment conditions contains the parameters of in-

terest plus nuisance parameters that determine the probability of selection, while the second

set of moment conditions contains only the nuisance parameters. We then used our results to

explain the puzzle as follows. First, if both sets of moment conditions are used, knowledge of

the nuisance parameters is redundant for estimation of the parameters of interest. Second, the

moment conditions corresponding to the probability of selection are not redundant. Weight-

ing using known probabilities of selection is inefficient because it ignores the information in

the second set of moment conditions. We also considered estimation under an exogeneity

assumption such that weighting is not necessary for consistency. We prove a general result
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that says that the moment conditions that were optimal in the unselected population (i.e.

without selection) are still optimal in the selected population. That is, if weighting was not

needed for efficiency before selection, it cannot increase efficiency after selection. We derived

the optimal GMM estimator that makes use of the information in the original conditional mo-

ment restrictions and the exogeneity assumption. This estimator achieves the semiparametric

efficiency bound for estimators that use that information.
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6 Appendix

Proof of Theorem 2.1:
Equations (6), (8), and (9) follow from the standard asymptotic variance derivation for

the GMM estimation using the optimal weighting matrix (see, e.g., p. 2148 of Newey and
McFadden, 1994; Hansen, 1982, Theorems 3.1 and 3.2). Equation (7) is obtained similarly
but we separately expand the first order conditions corresponding to (A) and (B).

The two-step estimator of θ2 minimizes h̄2(θ2)′C−1
22 h̄2(θ2). The first order conditions

that the estimator solves are D′22C
−1
22 h̄2(θ̂2) = 0. Expanding around θ2 gives

θ̂2 − θ2 = −(D′22C
−1
22 D22)−1D′22C

−1
22 h̄2(θ2) + op(N

−1/2). (36)

The two-step estimator of θ1 minimizes h̄1(θ1, θ̂2)′C−1
22 h̄1(θ1, θ̂2). The first order condi-

tions that the estimator solves are D′11C
−1
11 h̄1(θ̂1, θ̂2) = 0. Expanding around θ1 and using

(36) gives

θ̂1 − θ1 = −(D′11C
−1
11 D11)−1D′11C

−1
11 h̄1(θ1, θ2) +

+ (D′11C
−1
11 D11)−1D′11C

−1
11 D12(D′22C

−1
22 D22)−1D′22C

−1
22 h̄2(θ2) + op(N

−1/2). (37)

On multiplying by
√
N and combining (36)-(37), we get

Vtwo-step = BCB′, (38)

where C is defined in (4) and

B =

(
B11 B12

0 B22

)
(39)

with

B11 = −(D′11C
−1
11 D11)−1D′11C

−1
11 ,

B12 = (D′11C
−1
11 D11)−1D′11C

−1
11 D12(D′22C

−1
22 D22)−1D′22C

−1
22 ,

B22 = −(D′22C
−1
22 D22)−1D′22C

−1
22 .

(40)

�
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Proof of Theorem 2.2:
Statement 1, 2 and 3. See the text.
Statement 4. Follows from Statements 2 and 3 and a straightforward comparison of

variances in (7) and (6) for θ2.
Statement 5. In general, Vtwo-step is no smaller than Vone-step. First note that BD = −I,

where I is the identity matrix. Then,

Vtwo-step − Vone-step = BCB′ − (D′C−1D)−1 (41)

= BCB′ −BD(D′C−1D)−1D′B′

= BC
1
2 [I − C−

1
2D(D′C−

1
2C−

1
2D)−1D′C−

1
2 ]C

1
2B.

The matrix is brackets is the positive semidefinite projection matrix orthogonal to C−1/2D.
Statements 6-8. Follow from Theorem 1 of Ahn and Schmidt (1995) and subsequent

discussion (pp. 21-22). See also the discussion in the text (Section 2.3).
Statement 9. In general, Vone-step of θ1 is no smaller than Vknow-θ2-joint. We have

Vknow-θ2-joint = (D′11C
11D11)−1, and we can write Vone-step for θ1 as (D′11C

11D11−M12M
−1
22 M21)−1,

where M12 = M ′
21 = D′11C

11D12 +D′11C
12D22 and M22 is the lower right p2-block of D′C−1D,

which is positive semidefinite. Hence, V−1
one-step for θ1 minus V−1

know-θ2-joint is negative semidef-
inite. Therefore Vknow-θ2-joint minus the upper left submatrix of Vone-step is positive semidef-
inite. The condition for equality of variances (p-redundancy) is that M12 = 0. But M12 =
D′11[C11D12 + C12D22] . This along with the fact that C12C

−1
22 = −(C11)−1C12 implies that if

D12 = C12C
−1
22 D22 then M12 = 0.

Statement 10. First, since M12 = 0 the inverse of Vone-step for θ1 is simply D′11C
11D11

which is generally bigger than V−1
know-θ2

= D′11C
−1
11 D11 since C11−C−1

11 is positive semidefinite.
This along with Statement 9 implies that one-step and know-θ2-joint are no less efficient
for θ1 than know-θ2. Second, to prove that two-step is no less efficient for θ1 than know-
θ2 note that, by equations (38)-(40), Vtwo-step for θ1 is equal to B11C11B

′
11 + B12C21B

′
11 +

B11C12B
′
12 +B12C22B

′
12. Also note that B11C11B

′
11 = (D′11C

−1
11 D11)−1 and that, under D12 =

C12C
−1
22 D22, the symmetric positive semidefinite matrices −B12C21B

′
11 and −B11C12B

′
12 are

equal to B12C22B
′
12. Vtwo-step for θ1 reduces therefore to Vknow-θ2 minus a positive semidefinite

matrix, which completes the second part of the proof. �

Proof of Theorem 3.1:
(a) First, note that, by ignorability and (28), E[s · h2(s, z; θ2)′|z] can be written as E[s ·

(s−P(z,θ2))
P(z,θ2)(1−P(z,θ2))

·∇θ2P (z, θ2)|z] = [E(s2|z)−E(s|z)·P(z,θ2)]
P(z,θ2)(1−P(z,θ2))

·∇θ2P (z, θ2) = ∇θ2P (z, θ2), since E(s2|z) =

E(s|z) and E(s|z) = P(z, θ2). This is nonzero in general. Second, E[g(w; θ1)|z] 6= 0 in general.
Finally,

C12 = Eh1(w∗, θ1, θ2)h2(s, z, θ2)′

= E{ 1
P (z,θ2)

E[g(w, θ1)|z]E[sh2(s, z; θ2)′|z]}, by ignorability

= E[g(w,θ1)
P(z,θ2)

· ∇θ2P (z, θ2)], by LIE

(42)
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which is generally non-zero.
(b) Follows by (generalized) information equality, where h2(·) is the score, D22 is the

expected Hessian, C22 is the expected outer product of the score, D12 is the expected derivative
of h1 with respect to θ2 and C12 is the covariance of h1 with the score. One may also write

D12 = E{∇θ2 [
s

P (z,θ2)
g(w; θ1)]}, by (27)

= −E[ s
P (z,θ2)2

· g(w; θ1) · ∇θ2P (z, θ2)]

= −E[E(s|z)E(g(w;θ1)|z)
P (z,θ2)2

∇θ2P (z, θ2)], by LIE

= −E[ g(w;θ1)
P (z,θ2)

∇θ2P (z, θ2)], as E(s|z) = P(z, θ2)

= −C12 by (42)

(43)

�

Proof of Theorem 4.1:
Follows trivially from Lemma 4.1 and part (ii) of Assumption 4.3. �

Derivation of the Optimal Moment Conditions Based on (33) and (35):
Let w∗ = (w, z, s), and define h1 = h1(w∗, θ) = s g(w, θ1) and h2 = h2(w∗, θ) = s−P (z, θ2).

So we have the sequential moment conditions:

Eh1(w∗, θ)|z = 0 (44)

Eh2(w∗, θ)|z, w1 = 0.

Define C11(z) = Eh1h
′
1|z, C12(z, w1) = Eh1h

′
2|z, w1 and C22(z, w1) = Eh2h

′
2|z, w1. We note

that C22(z, w1) = C22(z) = Eh2h
′
2|z – it does not depend on w1 because of the ignorability

assumption.
Now, following Chamberlain (1992), define Γ = Γ(z, w1) = C12(z, w1)C22(z)−1. Then de-

fine h̃1(w∗, θ) = h1(w∗, θ)−Γh2(w∗, θ). Now Eh̃1(w∗, θ)|z = 0 and Eh̃1(w∗, θ)h2(w∗, θ)′|z, w1 =
0; that is, we have orthogonalized the two moment conditions.

Define D1 = D1(z) = E∇θh1|z, D̃1 = D̃1(z) = E∇θh̃1|z, D2 = D2(z, w1) = E∇θh2|z, w1.
However, in fact D2 = −∇θP (z, θ2) does not depend on w1, so we can write it as D2(z). Also,
define C̃11 = C̃11(z) = Eh̃1h̃

′
1|z, and recall that C22 = C22(z) was defined above.

Finally, define M1 = M1(z) = D̃1(z)C̃11(z)−1 and M2 = M2(z) = D̃2(z)C̃22(z)−1. (In
general, M2 should depend on both z and w1, but in our case it does not.) Then, according
to Chamberlain (1992, p. 21-22) the optimal unconditional moment conditions are:

E[M1(z)h̃1(w∗, θ) +M2(z)h2(w∗, θ)] = 0. (45)

And, according to Chamberlain (1992) and Hahn (1997), the estimator based on this exactly-
identified set of moment conditions achieves the semi-parametric efficiency bound. The prac-
tical difficulty in implementing this estimator is that M1(z) and M2(z) contain conditional
expectations that would need to be estimated by non-parametric methods. �
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