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Abstract

This paper analyzes the sampling properties of the widely documented large negative slope

estimates in regressions of future exchange returns on current forward premium. We argue

that the abnormal behavior of the slope estimators in these regressions arises from the simul-

taneous presence of high persistence, low signal-to-noise ratio, strong endogeneity and an

omitted variable problem. The paper develops the limiting theory for the slope parameter

estimators in the levels and di¤erenced forward premium regressions under some assump-

tions that match the empirical properties of the data. The asymptotic results derived in the

paper help to reconcile the �ndings from the levels and di¤erence speci�cations and provide

important insights about the time series properties of the implied risk premium.
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1 Introduction and Empirical Motivation

The anomalous results from regressing future exchange rate returns on the current forward

premium constitutes one of the major puzzles in modern international �nance. The voluminous

empirical literature provides ample empirical evidence not only for the strong rejection of the

hypothesis that the forward rate is an unbiased predictor of the future spot rate but also for the

negative sign and the large magnitude of the estimated slope parameters in this model. The

empirical evidence and possible explanations suggested in the literature are surveyed in Engel

(1996) and Lewis (1995).

In this paper, we argue that the forward premium puzzle (the �nding of large negative

and highly unstable slope parameter estimates in the di¤erenced forward premium regression)

appears to arise from the simultaneous presence of a risk premium and several empirical char-

acteristics of the spot and forward exchange rate data that render some standard estimators

highly misleading. It is important to point out up front, however, that the paper is not directly

concerned with testing the validity of the forward rate unbiasedness hypothesis and the uncov-

ered interest parity. In fact, by allowing for a latent risk premium, we already deviate from

the pure version of the expectations hypothesis. Instead, the main objective of the paper is to

analyze the sampling properties of the estimators in forward premium regressions and reconcile

the empirical �ndings in the literature with the predictions of economic theory.

To situate the discussion in its proper context, we �rst look at some of the empirical regular-

ities that characterize the behavior of the major foreign exchange currencies. The data used in

this paper are monthly observations for British pound (GBP), German mark (DM), Japanese

yen (JPY), Canadian dollar (CAD) and Swiss franc (CHF) and cover the period January 1975

- May 2006 except for the JPY for which the sample period starts in August 1978. The data

source and the construction of the series are described in Appendix A. Table 1 reports some

summary statistics of the data.

The main stylized facts about the variables that enter the forward premium regression for

exchange rates are the following: (i) the forward premium is a highly persistent process, (ii)

the variability of the forward premium is only a small fraction of the variability of exchange

rate returns, (iii) excess returns and spot returns exhibit very little persistence, (iv) spot and

2



forward rates appear to be unit root processes with very similar descriptive statistics and (v)

the errors that are driving the processes for next period spot and forward rates are almost

perfectly correlated.

Most of these stylized facts have already been documented and discussed in the empirical

literature. The implications of (i) on the forward premium puzzle has been studied and analyzed

by Baillie and Bollerslev (1994, 2000), Liu and Maynard (2005), Maynard and Phillips (2001)

and Sakoulis and Zivot (2002), among others. Maynard (2003) and Liu and Maynard (2005)

parameterize the persistence as a near-integrated (local-to-unity) process; Baillie and Bollerslev

(1994, 2000) and Maynard and Phillips (2001) model the forward premium as a long-memory

process and Sakoulis and Zivot (2002) explore the possibility that the persistence in the forward

premium arises from structural breaks. In this paper, we adopt the local-to-unity framework

as a convenient device to capture the high persistence of the forward premium even though

it may have been generated by some observationally equivalent but analytically less tractable

representations such as long memory, structural break or nonlinear processes. Furthermore, we

combine the local-to-unity parameterization of the forward premium with two other data char-

acteristics that have been less exploited in the literature; more speci�cally, the small variability

of the forward premium in (ii) and the almost perfectly correlated expectational errors in (v).

The paper highlights the interaction of persistence with low variance and strong endogeneity

and helps to resolve the seemingly con�icting results from the levels and di¤erenced regressions

reported in the literature.

A particular parameterization of the small variability of the regressor has been used recently

by Torous and Valkanov (2000) and Moon, Rubia and Valkanov (2004) in a predictive regression

of stock returns. We adopt a similar parameterization for the variability of the forward premium

and show analytically that this appears to be the source of the highly disperse and unstable

empirical estimates of the slope parameter in the di¤erenced forward premium regression. This

parameterization is also consistent with the results in Engel and West (2005) who argue that in

rational expectations present-value models, the importance of the current information variables

to the future exchange rate changes tends to zero as the discount factor approaches unity.

Regarding empirical regularity (v), Zivot (2000) discusses the high correlation between the
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spot and forward exchange rate errors but does not fully investigate its consequences for the

forward premium regression in di¤erences. The estimated error correlation in our sample is

0.997 for CAD and 0.998 for all other currencies implying an extreme endogeneity problem.

We argue that accounting for this endogeneity plays an important role in determining the time

series properties of the omitted risk premium.

Table 2 presents the regression results from the forward premium regression of (st+1 � st)

on (ft � st), where st and ft are logarithms of spot and one-period forward rates. Consistent

with the �ndings reported in the literature, the standard forward premium regression delivers

large negative (and statistically signi�cant) estimates of the slope parameter. As we show in the

paper, these results are driven by the high persistence and the low variability of the regressor

(forward premium), reported in Table 1, as well as some severe endogeneity that arises from

the presence of a latent risk premium.

The paper takes into account the salient features of the data and the forward premium

model and derives the limiting behavior of the estimators in forward premium regressions that

provides guidance to understanding some puzzling results reported in numerous empirical stud-

ies. The methodological contributions of the paper can be summarized as follows. Interestingly,

while a linear combination of the spot and forward rates (the forward premium) is not a sta-

tionary but a near-unit root process, this does not give rise to a spurious regression problem

because its innovation variance is orders of magnitude smaller and approaches zero with the

sample size. As a result, the estimator in the levels regression is consistent although its rate

of convergence is slower than the rate of convergence of the standard cointegrating estimator.

Second, the commonly used OLS slope estimator in the di¤erenced forward premium regression

is asymptotically biased and plausible values of the high persistence, low signal-to-noise ratio

and degree of endogeneity, that are attributed to di¤erent components of the bias term, can

easily produce the magnitude of the negative estimates of the slope parameter reported in the

literature. The limiting distribution of the slope estimator is inversely related to the localizing

constant in the signal-to-noise ratio which explains the extreme instability of the empirically

documented estimates when this constant is close to zero and provides warnings against the

practical relevance of the results obtained from this model. These theoretical results are in
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agreement with some empirical �ndings that the forward premium puzzle is not a pervasive

phenomenon (Bansal and Dahlquist, 2000) and can be linked to the variability of the forward

premium.

Importantly, incorporating a risk premium in the model is instrumental in matching the

magnitude of the bias in the empirical studies. While high persistence and low signal-to-noise

ratio can produce downward biased slope estimates, the large negative values of the slope

parameter cannot be replicated for realistic parameter con�gurations in the absence of a risk

premium term. At the same time, accounting for a risk premium is not su¢ cient to explain the

bias unless some speci�c time series properties are imposed on the risk premium process.

The contribution of the paper can be put more broadly in the context of unbalanced regres-

sions in which the dependent and the explanatory variables have di¤erent order of integration.

Maynard and Phillips (2001) and Maynard (2003) analyze the unbalanced nature of the for-

ward premium regression and conclude that the only possible value for the slope in this type

of regressions is zero which creates tension with the economic (no-arbitrage) theory that pre-

dicts a value of one. Another popular example of unbalanced regression is the predictability

of stock returns with near nonstationary regressors as valuation ratios and interest rates which

has been extensively studied in the �nancial economics literature. The inherently inconsistent

structure of unbalanced regressions poses theoretical problems on how to model statistically

the relationship between variables with di¤erent stationarity (or memory) properties. Marmer

(2008) proposes nonlinear transformations of the nonstationary predictor that change its mem-

ory properties and strength of the signal. We use an alternative way to dampen the signal from

the possibly nonstationary regressor by localizing its variance to zero. As a result, the depen-

dent and explanatory variables are of the same order of magnitude which helps to reconcile the

seemingly contradictory predictions from the statistical model and economic theory. Note that

this balancing transformation is invariant to the way we model the persistence and memory

properties of the regressor. As mentioned above, Torous and Valkanov (2000) and Moon, Rubia

and Valkanov (2004) employ a similar variance localization to balance the predictive regression

of stock returns.

The paper also sheds light on several sub-puzzles regarding the properties of the forward
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premium (ft�st) and excess returns (st+1�ft). While (st+1�ft) exhibit very little persistence

(see stylized fact (iii) above) which implies that st+1 and ft are cointegrated with cointegrating

vector (1;�1); (ft � st) is highly persistent and the empirical evidence for cointegration is

mixed despite the fact that two series trace each other very closely. Since the �rst cointegration

relationship implies the latter, our model resolves this sub-puzzle by explicitly modeling the

small variance of (ft � st) as local-to-zero which does not allow ft and st to drift apart in the

long run. This localization also helps to reconcile another puzzling feature of the data that both

spot and excess returns are not persistent but the forward premium, which is the di¤erence of

the two (ft � st) = (st+1 � st)� (st+1 � ft); is highly persistent.

The rest of the paper is structured as follows. Section 2 introduces the model structure and

the assumptions. Section 3 studies the limiting behavior of the slope estimators in the levels

and di¤erenced forward premium regressions. Section 4 investigates the numerical small-sample

properties of the estimators under various model parameterizations. Section 5 concludes.

2 Models and Assumptions

The forward rate unbiasedness hypothesis under rational expectations and risk neutrality pos-

tulates that E(st+1jFt) = ft or st+1 = ft + "t+1; where "t+1 are rational expectations fore-

cast errors that satisfy E("t+1jFt) = 0 and Ft denotes an increasing sequence of sigma-�elds

(:::Ft�3 � Ft�2 � Ft�1) generated by the history of the series to date t. The unbiasedness hy-

pothesis implies that the regression model st+1 = �+ �ft + "t+1 should satisfy the restrictions

� = 0, � = 1 and E("t+1jFt) = 0:

If the agents in the economy are risk averse, Fama (1984) argues that

st+1 = ft � rpt + "t+1; (1)

where rpt = ft � E(st+1jFt) is a time-varying rational expectations risk premium. The risk

premium rpt drives a wedge between E(st+1jFt) and ft and represents the conditional bias in

the forward rate forecast of the spot rate (Engel, 1996).1

1More generally, Bekaert and Hodrick (1993), Engel (1996) and Baillie and Bollerslev (2000) demonstrate that
the Euler equation for a risk averse investor implies that ft�E(st+1jFt) = 0:5V ar(st+1jFt)�Cov(st+1pt+1jFt)�
Cov(st+1qt+1jFt); where qt+1 is the logarithm of the intertemporal marginal rate of substitution, pt+1 is the
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Now we specify a model that captures the salient features of the data and study the e¤ect

of omitting the unobserved risk premium on the slope estimators in the levels and di¤erence

speci�cations of the forward premium regression. Since the empirical evidence indicates that

the spot and forward exchange rates follow a unit root process, then E(ft+1jFt) = ft and the

statistical model that describes the joint dynamics of spot and forward rates can be represented

conveniently in the triangular form

st+1 = �+ �ft � rpt + "1;t+1 (2)

ft+1 = ft + "2;t+1:

Assumption A. Assume that in model (2), � = 0; � = 1; f0 is op(T 1=2), "2;t = C(L)�t =P1
j=0Cj�t�j with

P1
j=0 jjCj j <1, E[("1;t+1; �t+1)0jFt] = 0; suptE("41;t+1) <1; suptE(�4t+1) <

1 and E[("1;t+1; �t+1)
0("1;t+1; �t+1)] =

�
�2" ��"��

��"�� �2�

�
with � = Corr("1;t+1; �t+1):

Throughout the paper, we assume that the true data generating process satisfy the re-

strictions imposed by the economic theory (� = 0; � = 1) and investigate analytically if the

limiting behavior of the estimators can mimic their sampling properties from the actual data

even when the restrictions hold. The conditions in Assumption A require that ("1;t+1; �t+1)
0 is

a two-dimensional martingale di¤erence sequence which can exhibit conditional heteroskedas-

ticity provided that ("1;t+1; �t+1)
0 is unconditionally homoskedastic with �nite fourth moments.

While model (2) is fairly general, it can be further extended to serially correlated forecast

errors "1;t+1 that might arise from �peso e¤ects� (Evans and Lewis, 1994) and more �exible

deterministic components.

It is interesting to note that subtracting the �rst from the second equation in (2) yields

ft+1� st+1 = ��+(1��)ft+ rpt+ "2;t+1� "1;t+1: If � = 0, � = 1; the variances of "1;t and "2;t

are of similar magnitude and their correlation is in the vicinity of one (as the data indicate),

the unobserved risk premium and the forward premium are characterized by similar dynamics.

The latter result is important because it implies that the highly persistent nature of the forward

logarithm of the domestic price level for the numeraire currency and rpt = �Cov(st+1qt+1jFt) is the risk
premium. The �rst two conditional second moment terms on the right-hand side (Jensen�s inequality terms) are
found to be empirically very small at monthly frequency and are typically omitted from the analysis (Bekaert and
Hodrick, 1993). Alternatively, one could de�ne ft �E(st+1jFt) as the �true�rational expectations risk premium
that includes the Jensen inequality terms (Engel, 1996).
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premium and the low signal-to-noise ratio in the di¤erenced forward premium regression are

most likely due to a small but highly persistent risk premium component.

The typical di¤erenced regression used in the literature is obtained by subtracting st from

both sides of (1). Let yt+1 = st+1 � st and xt = ft � st denote the spot returns and forward

premium, respectively. Then, the standard di¤erenced speci�cation is given by

yt+1 = �2 + �2xt + et+1; (3)

where et+1 = �rpt + "1;t+1 if � = 0 and � = 1: Equation (3) is a restricted error-correction

representation of model (2). It is worth pointing out that (3) constrains both the long-run

and the short-run behavior of the spot and forward rates (Zivot, 2000). More speci�cally, the

model restricts the cointegrating and speed of adjustment parameters to be the same so that

the adjustment to the long-run equilibrium takes place in one period.

The properties of the forward premium are speci�ed in the following assumption.

Assumption B. Assume that the forward premium is generated by

xt+1 = �Txt + �T vt+1; (4)

where x0 is op(T 1=2); vt = D(L)�t =
P1
j=0Dj�t�j with

P1
j=0 jjDj j < 1, E(�t+1jFt) = 0;

E(�2t+1) = �
2
� , suptE(�

4
t+1) < 1; � = Corr(�t+1; �t+1); �T = 1 + c=T for some �xed constant

c � 0 and �T = �=
p
T for some �xed constant � > 0 is the signal-to-noise ratio.

A few remarks regarding the assumed dynamic behavior of the forward premium are in order.

In Assumption B, we reparameterize �T and �T as local-to-unity and local-to-zero sequences

in order to mimic the high persistence of the forward premium xt and the substantially lower

variability of the errors driving the forward premium process compared to the variability of the

noise component in the forward premium regression. The normalization factors T and T 1=2

for the local-to-unity and local-to-zero parameterizations are chosen to match the asymptotics

of the estimators of �T and �T . The latter follows from the fact that xt+1 is observed so

that �T can be estimated directly from the residuals of model (4) and inherit the same rate

of convergence as the estimator of the standard deviation.2 The local-to-zero parameterization

2Alternatively, the local-to-unity and local-to-zero parameterizations can be used for the latent risk premium
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has been used recently in a predictive regression framework by Torous and Valkanov (2000)

and Moon, Rubia and Valkanov (2004). In a di¤erent context, Ng and Perron (1997) adopt a

similar parameterization to study the e¤ect of low signal-to-noise ratio of the regressor on the

sampling properties of cointegrating vector estimators.

The dual localization proves to be instrumental in producing a process that is stochastically

bounded and hence consistent with both statistical and economic theory. Unlike regular near-

unit root processes that are of order Op(T 1=2), the local-to-zero variance localization dampens

the stochastic trend behavior of xt+1 and keeps it stochastically bounded (Op(1)).3 The dual

localization removes the economically unappealing possibility that the forward premium can

wander o¤ and preserves the cointegration between spot and forward rates. Also, the regression

of future spot returns on forward premium is now balanced as both the dependent variable and

the regressor are stochastically bounded.

The local-to-unity parameterization of �T as 1 + c=T requires further clari�cation. The

near unit root speci�cation of the forward premium has been used previously by Maynard

(2003) and Liu and Maynard (2005). It should be emphasized that this parameterization is

chosen as a convenient device to approximate the high persistence in the forward premium

process. This high persistence can possibly arise from long memory (Baillie and Bollerslev,

1994, 2000; Maynard and Phillips, 2001), structural instability (Sakoulis and Zivot, 2002) or

regime-switching nonlinearity (Bansal, 1997; Baillie and Kiliç, 2006). It is well known that

the statistical di¤erentiation between some of these models could be quite challenging in �nite

samples. Consider, for example, an ARFIMA (1; d; 0) model (1� �L)(1� L)dxt = �t that can

be rewritten as xt = (�+d)xt�1+
h
d(1�d)
2 � �d

i
xt�2+ :::+�t: Then, it is straightforward to see

that the AR representations of the near-integrated model with � close to one and d close to 0

process. While this approach speci�es directly the dynamics of the more primitive structure of the model in
levels, it complicates the form of the asymptotic distributions derived in the paper although the nature of
the limiting results is qualitatively similar. Moreover, since the economic theory provides very little guidance
regarding the dynamics of the risk premium, the assumptions on the latent risk premium process may appear
somewhat arbitrary. Also, our speci�cation of the forward premium can accommodate a wide range of possible
parameterizations of the risk premium depending on how large the noise component (�t+1 � "t+1), that distorts
the relationship between xt+1 and rpt, is. Finally, our assumption on the forward premium can be consistent with
both a small random-walk risk premium component and �peso� e¤ects that could help to explain the forward
premium puzzle (Evans and Lewis, 1994). We present some simulation results and further discussion for the risk
premium speci�cation in Section 4.

3More speci�cally, xt converges weakly to an Ornstein-Uhlenbeck process without any normalization that
depends on the sample size (see Preliminary Lemma in Appendix B).
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and the long-memory model with d close to one and � close to 0 are observationally equivalent in

�nite samples. We use the local-to-unity framework as a suggestive analytical tool that delivers

better �nite-sample approximations of persistent processes without claiming whether it re�ects

an underlying data generating process that is more realistic than any of the other persistent

speci�cations. In fact, the main argument of this paper can be easily extended to fractionally

integrated or regime-switching processes but at the cost of increased complexity that arises from

the non-linear estimation of these models. In contrast, the local-to-unity framework provides a

very convenient framework for analysis based on OLS estimation and well developed limiting

theory.

To see if the data lend some support to the assumed speci�cation of the forward premium,

we estimated the largest AR root and the localizing constant c from the �ve exchange rate series.

The median unbiased estimates and the 90% con�dence intervals for these two parameters are

reported in Table 3. The results con�rm the near unit root behavior of the forward premium

with median unbiased estimates of c in the range of -1 to -15. The interval estimates also reveal

that, except for the British pound, the presence of a unit root (lack of cointegration between

forward and spot rates) cannot be rejected at 5% signi�cance level. Although this �nding may

be attributed to the small sample size and relatively low power of the test with the chosen

long lag length, it is in line with the mixed evidence on cointegration between st and ft (Baillie

and Bollerslev, 1994; Zivot, 2000). Note, however, that our local-to-zero parameterization of �T

suggests that this can only be a �nite sample problem since the variance of the forward premium

vanishes asymptotically and forward and spot rates are cointegrated as T ! 1. Unlike the

previous literature, the vanishing signal-to-noise ratio helps to reconcile the near unit root

speci�cation of the forward premium with the economic theory and common intuition.

Lastly, it is instructive to assess if the adopted statistical framework is in agreement with

certain conditions derived by Fama (1984) that render the OLS estimate of � negative. Fama

(1984) showed that a negative estimate of � requires that Cov[E(st+1jFt) � st; rpt] < 0 and

V ar(rpt) > V ar[E(st+1jFt)�st]. Note again that if � = 0 and � = 1, E(st+1jFt)�st = xt�rpt

and xt+1 = rpt+ "2;t+1� "1;t+1 or, after substituting for xt, E(st+1jFt)� st = �(rpt� rpt�1)+

("2;t � "1;t). Then, it is straightforward to demonstrate that if, as the empirical evidence
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from Table 1 suggests, xt (and hence rpt) is a near unit root process with an asymptotically

vanishing signal-to-noise ratio and "1;t and "2;t are highly correlated with similar variances

(so that V ar("2;t � "1;t) � 0), then V ar[E(st+1jFt) � st] is very close to zero and is easily

dominated by the variance of rpt. Also, Cov[E(st+1jFt)� st; rpt] = Cov[xt� rpt; rpt] < 0 since

Corr(xt; rpt) < 1:

Even though our model satis�es Fama�s conditions, they do not seem to generate large

negative values of the slope coe¢ cient in the di¤erenced speci�cation. The reason for this is that

the variability of the risk premium implied by (2) and (4) is very small. In Fama�s framework,

the empirically large negative estimates require a large risk premium that is typically generated

by excessive levels of risk aversion (Engel, 1996). Instead, we maintain our assumption of a

small slowly varying risk premium but augment the model by taking explicitly into account

the fact that the forward premium is only predetermined and not strictly exogenous (Tauchen,

2001). Fama�s analysis does not allow for possible feedback between the expectational errors

and the forward premium. For example, the expectational errors can be correlated with future

values of the forward premium (as in Assumption B) as the traders use the information in

"1;t+1 to update the forward premium at time t + 1 (Tauchen, 2001). Tauchen (2001) and

Liu and Maynard (2005) discuss the possible feedback between the expectational errors and the

forward premium and its implications on the distribution of the estimator and the test statistic.

We demonstrate below that positive (and possibly large) values of this correlation, combined

with the other properties mentioned above, can replicate the sampling properties of the slope

estimates, documented in the empirical literature, without the need of large risk premium and

excessive levels of risk aversion.

3 Theoretical Results and Discussion

3.1 Forward Premium Regression in Levels

A version of the triangular representation (2) has been considered previously by Phillips (1991)

and more recently by Campbell and Yogo (2006) in the context of a predictive regression for

stock returns. A convenient way to remove the endogeneity that arises from the correlation

between "1;t+1 and "2;t+1 is based on the control variable approach. Let "t = ("1;t; "1;t)0 denote
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the joint innovation process with covariance matrix 
 = [(!11; !12); (!21; !22)], !11 = �2";

!12 = !21 = C(1)��"�� and !22 = C(1)2�2� :

Now let "1;t+1 = "2;t+1 + �t+1; where  = ��"=[C(1)��]; so that the error term �t+1 is

orthogonal to "2;t+1 by construction. Substituting for "1;t+1 into the �rst equation of (2) yields

st+1 = �+ �ft +  4 ft+1 + ut+1; (5)

where ut+1 = �rpt + �t+1. If rpt is assumed constant, Phillips (1991) shows that the OLS

estimation of equation (5) is equivalent to the MLE of the joint system (2).

The next theorem characterizes the limiting behavior of the estimator of � in model (5)

under Assumptions A and B.

Theorem 1. Under Assumptions A and B, the limiting distribution of the estimator of � from

(5), denoted by b�, is
p
T
�b� � 1�) ��

R 1
0 Jc(s)B1(s)dsR 1
0 B1(s)

2ds
;

where ) denotes weak convergence, Jc(r) is an Ornstein-Uhlenbeck process generated by the

stochastic di¤erential equation dJc(r) = cJc(r)dr + dB2(r); fB1(r); B2(r) : r 2 [0; 1]g is a

bivariate Brownian motion with covariance matrix � and Jc(r) = Jc(r) �
R 1
0 Jc(s)ds and

B1(r) = B1(r)�
R 1
0 B1(s)ds denote the demeaned versions of Jc(r) and B1(r):

Proof. See Appendix B.

Theorem 1 shows that under Assumptions A and B, the estimator of � is consistent with a

rate of convergence
p
T . It is interesting to note that even though the error term in (5) contains

a near-unit root process, this does not give rise to a spurious regression problem because the

importance of this highly persistent component dissipates with the sample size. At the same

time, the variance of the near nonstationary component does not shrink fast enough in order to

achieve the super-consistency of the cointegration estimator. The estimator is unbiased if the

correlation between B1(r) and B2(r) is equal to zero. For non-zero correlation, the estimator is

biased but the magnitude of the bias is also controlled by � and is small when � is in the range

of values that are relevant for the forward premium example.

The limiting distribution in Theorem 1 also possesses some interesting features. Due to the

presence of a near-integrated component in the error term, the limiting distribution has a form
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typically found in spurious regressions. However, as pointed out above, the shrinking variance

of this near random walk term does not a¤ect the consistency of the estimator although it

slows down its rate of convergence. The comparison between the asymptotic behavior of this

estimator and the standard OLS estimator of st+1 on ft also deserves a few remarks. While the

OLS estimator is biased and ine¢ cient under Assumptions A and B, the omitted risk premium

has only a second-order e¤ect since its variance is dominated by the variance of the error term

"1;t+1. As a result, the super-consistency of the OLS estimator is una¤ected but its limiting

distribution is much more dispersed due to the larger variance of the error term. In contrast,

even though 4ft+1 has no direct asymptotic e¤ect on the estimator b�; it alters the error term
that is now dominated by the omitted risk premium whose implied properties (near unit root

and small variance) determine the form of the limiting representation in Theorem 1.

Despite the consistency of the estimator b�, the statistical inference on this parameter has
to be conducted with caution since the conventional t-statistic of H0 : � = 1 is diverging at

rate T 1=2: This can be easily seen using standard errors that do not account for the serial

correlation in the error term. In this case, from the limiting results in Appendix B it follows

that the standard error is Op(T�1) while the numerator in the t-statistic is Op(T�1=2): Similar

results emerge if the standard error is computed with the conventional HAC estimator with

a bandwidth of order o(T ). In order to get a well-behaved t-statistic that can be used for

inference, one needs to employ a HAC estimator with a bandwidth that is proportional to the

sample size (Sun, 2004). This HAC estimator would ensure that the strong dependence in

the regression errors is properly captured and the t-statistic is stochastically bounded with a

non-degenerate limiting distribution (for details, see Sun, 2004).

The results from estimating model (5) are presented in Table 4. The OLS estimates for �

are slightly downward biased4 with larger standard errors. The estimates from model (5) are

very close to 1 for all currencies and the increase in the precision of these estimates compared

to the OLS is 7-10 fold. Similar �ndings that indicate the gains of the estimator in (5) over

the OLS estimator and the empirical support for � = 1 from the levels regression have been

reported in Hai, Mark and Wu (1997) and Zivot (2000), among others.

4The bias of the OLS estimator in this context is analyzed by Zivot (2000).
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3.2 Asymptotic Analysis of the Forward Premium Bias in Di¤erenced Re-
gression

While the evidence from the levels regression of spot and forward rates typically favours the

hypothesis that � = 1, the results from the di¤erenced forward premium regression appear

anomalous not only in terms of rejecting overwhelmingly this hypothesis but also in terms of

the negative sign and the large magnitude of the slope coe¢ cient. The di¤erenced speci�cation

has been historically preferred over the levels regression for two reasons. First, the di¤erence

transformation is expected to render the variables stationary and standard statistical inference

can be performed. Second, given the strength of the signal coming from the nonstationary

variables, the orthogonality of the errors to Ft and the presence of a risk premium cannot be

properly studied in the levels regression.

In what follows, we use the statistical model (equations (3) and (4) in Section 2)

yt+1 = �2 + �2xt + et+1 (6)

xt+1 = �Txt + �T vt+1

to study analytically the sampling behavior of the estimators in the di¤erenced regression.5

The properties of the forward premium are speci�ed in Assumption B.

In order to visualize the nature of the problem in the di¤erenced regression, Figures 1 and 2

plot the rolling sampling estimates (with rolling window of 50 observations) of �2, the correlation

between et+1 and vt+1 and the corresponding signal-to-noise ratio, multiplied by T 1=2, for GBP

and DM.6 Figures 1 and 2 reveal that the estimates of the slope coe¢ cient is varying widely

ranging from -15 to 15 for the GBP and -18 to 12 for the DM.7 The correlation coe¢ cient is

also time-varying and there is a pronounced negative comovement between the slope estimates

and the correlation between the residuals from the forward premium regression and the model

5Model (6) can also be rewritten in a predictive regression framework as st+1 � ft = � + (� � 1)xt + et+1:
The predictability of excess returns st+1 � ft and its implications for asset pricing models have been analyzed
by Bekaert and Hodrick (1992), Bauer (2001), among others.

6The results for the other currencies are similar and are omitted to preserve space.
7The instability of the parameter estimates may be due to omitted nonlinearities in the expected returns-

forward premium relationship that can be modeled using a regime-switching framework (Bansal, 1997; Baillie
and Kiliç, 2006; among others). We do not pursue this possibility in this paper. Instead, it can be shown that
some alternative speci�cations tend to remove almost completely any instability in the parameter estimates (for
more details, see Gospodinov, 2008).
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for xt+1. The signal-to-noise ratio is initially small and stabilizes at even lower values from the

middle of the sample onwards. These graphs suggest that the highly unstable estimates of the

slope parameter may be caused by the simultaneous presence of low signal-to-noise ratio, near

nonstationarity and endogeneity of the regressor.

The next theorem provides some theoretical guidance towards understanding the extremely

volatile and economically unintuitive OLS estimates of the slope parameter from the di¤erenced

forward premium regression model.

Theorem 2. Under Assumptions A and B, the limiting distribution of the OLS estimator of

�2 from model (6), denoted by b�2, is given by
p
T
�b�2 � 1 + �T�) 1

�

R 1
0 Jc(s)dB1(s) + �21R 1

0 Jc(s)
2ds

; (7)

where � = E(UtU 0t) +
P1
k=0E(UkU

0
0) and Ut = ("2;t; vt)

0:

Proof. See Appendix B.

Several remarks regarding the limiting distribution in Theorem 2 are in order. First, the

OLS estimator of �2 from model (6) is inconsistent for any � 6= 0 and converges in probability to

zero. Interestingly, this is the same result obtained by Maynard and Phillips (2001) but it arises

for a completely di¤erent reason. While the bias towards zero in Maynard and Phillips (2001)

is driven by the unbalanced nature of the regression, the asymptotic bias in Theorem 2 is due

to the omitted risk premium. Furthermore, if the errors are serially and mutually uncorrelated,
p
T
�b�2 � 1 + �T�) N

�
0; ��2

�R 1
0 Jc(s)

2ds
��1�

and the estimator b�2 is normally distributed
with mean zero and variance that depends inversely on the signal-to-noise ratio. In the more

general case when the errors are correlated, the OLS estimator b�2 has an additional bias term
that vanishes at rate T 1=2.

It is instructive to analyze the bias of b�2 in the absence of a risk premium and serial

correlation. In this case,
p
T
�b�2 � 1� ) 1

�

�
�

2

Jc(1)2�2c
R 1
0 Jc(s)

2ds�1R 1
0 Jc(s)

2ds
+ (1� �2)1=2z

�
; where z

is a standard normal random variable distributed independently of (B1; Jc) (Stock, 1991) and

� = Corr(�t+1; �t+1). Since E
�
Jc(1)2�2c

R 1
0 Jc(s)

2ds�1R 1
0 Jc(s)

2ds

�
< 0, the bias is negative if � > 0 and

positive if � < 0. While Liu and Maynard (2005) and Tauchen (2001) report small positive or

even negative estimates of � that further robustify the forward premium puzzle, these estimates
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are obtained from the composite error term that contains a risk premium. In the simulation

section, we present evidence that the presence of a risk premium severely distorts the estimation

of � and large positive values of � are empirically plausible. Furthermore, the fact that the

limiting distribution is premultiplied by ��1 and � is small (in the range 0.05-0.4) has two

important implications: (i) it ampli�es the bias of b�2 and (ii) it increases the variability of b�2
which helps explain the highly volatile nature of the rolling estimates plotted in Figures 1 and 2.

Despite this, the high persistence and low signal-to-noise ratio alone cannot generate the large

negative slope coe¢ cients from the empirical studies. The inclusion of a risk premium, however,

further shifts the distribution of the slope parameter to the left and can help to reproduce

numerically the forward premium anomaly. For example, our numerical results in Section 4

indicate that if � = 0:1, � = 0:8, c = �5 and T = 400, the mean of the (simulated) exact

distribution of b�2 is -1.92 which is in the range of values reported in the empirical literature.
Moon, Rubia and Valkanov (2004) adopt a di¤erent parameterization of the signal-to-noise

ratio that explicitly links the persistence of the regressor and its local-to-zero variance. In

our case, this parameterization can be written as �T = �
p
�c=

p
T for c < 0 and � in the

limiting representations in Theorems 1 and 2 needs to be replaced by �
p
�c. While the rate of

convergence and the form of the asymptotic distributions in Theorems 1 and 2 do not change,

there is an extra parameter that a¤ects the dispersion of the estimator through the persistence

of the regressor. We do not use this parameterization in our paper for the following reasons.

First, the parameterization in Moon, Rubia and Valkanov (2004) rules out the case c = 0 and

does not allow for the possibility of a small random walk risk premium component as in Evans

and Lewis (1994). Also, we intentionally choose to separate the signal-to-noise and persistence

parameters because we do not observe empirically that the reduction in the signal-to-noise

ratios, plotted in Figures 1 and 2, is accompanied by an increase in the persistence of the

forward premium.

Our results are also consistent with the evidence in Bansal and Dahlquist (2000) that the

forward premium puzzle is not a pervasive phenomenon and does not seem to be present in

some low-income countries with high in�ation and in�ation volatility. High in�ation volatility,

for example, is expected to lead to a more volatile froward premium, higher signal-to-noise ratio
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and, hence, less biased slope estimates. In the context of oil prices, Alquist and Kilian (2008)

also report estimates from similar regressions that are close to the theoretically predicted values

which appears to be due to the large time variation of the di¤erence between futures and spot

prices.

Finally, while the form of the limiting representation (7) in Theorem 2 is similar to that

of a regression with near integrated regressors (Cavanagh et al., 1995, for example), it has a

slower (root-T ) rate of convergence. Similarly to the limiting result in Theorem 1, the rate of

convergence is a¤ected by the presence of a near-integrated component in the error term whose

variance vanishes at rate
p
T :

Even though this theoretical framework helps us to understand better the statistical be-

havior of the OLS estimates in the forward premium regression, the asymptotic results are of

limited practical importance for conducting inference on the parameters of interest. First, the

limiting distribution (7) depends on nuisance parameters which complicates the inference on

the parameter �2 especially because the localizing constant c is not consistently estimable. In

this case, one could resort to asymptotically conservative procedures (Cavanagh, Elliott and

Stock, 1995; Liu and Maynard, 2005) or subsampling (Politis, Romano and Wolf, 1999). More

importantly, the results from Figures 1 and 2 show that the correlation coe¢ cient � is time-

varying and highly unstable. This feature further limits the applicability of these asymptotic

and subsampling techniques for inference.

An alternative di¤erenced speci�cation can be obtained by subtracting st from both sides

of (5) and not from (1) as the standard forward premium regression does. This gives rise to

a singe equation, conditional error-correction model of yt+1 on xt and 4ft+1 which removes a

signi�cant source of the sampling bias and variability of the slope estimator in (6). In particular,

the improved sampling properties of the estimator in this conditional model arise primarily from

its independence of � which is due to the fact that the signal and the noise component are of

similar magnitude. For more details and asymptotic results, see Gospodinov (2008).
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4 Simulation Experiment

The data generating process in this Monte Carlo experiment is intended to replicate the main

stylized facts in the exchange rate data. In particular, we generate sample paths from an

empirical version of model (2), where the parameters are calibrated to match the empirical

estimates and properties of the forward premium.

More speci�cally, the data generating process is

st+1 = ft � rpt + "1;t+1 (8)

ft+1 = ft + "2;t+1

xt+1 = (1 + c=T )xt + (�=
p
T )vt+1; (9)

where xt+1 = ft+1 � st+1 and ("1;t+1; "2;t+1; vt+1)0 � iidN(0;	) with 	 =

24 1 � �
� 1 �
� � 1

35 : The
risk premium is determined implicitly using that xt+1 = rpt + "2;t+1 � "1;t+1:

We consider sample sizes T = 50 and 400 that correspond to the rolling sample and the

whole sample in our empirical example. The correlation coe¢ cient � is set to 0.9999. Since in

practice, the estimation of this coe¢ cient is distorted by the presence of a latent risk premium,

the average estimated values of � in our simulation exercise are around 0.998-0.999 which are

the values that are estimated from the actual data. We should note that the value of � does

not a¤ect our regression results and is useful only for backing out the properties of the risk

premium. The values for the other correlation coe¢ cient � are set to 0, 0:4 and 0:8. Negative

values of this correlation coe¢ cient have a symmetric e¤ect and are not reported to preserve

space. Finally, the localizing constants c and � are set to (-20, -5, 0) and (0.1, 0.3), respectively.

We present estimates from three regression speci�cations (M1, M2 and M3) obtained from

50,000 Monte Carlo replications. Model M1 regresses st+1 on ft; model M2 is a regression of

st+1 on ft and 4ft+1 and model M3 is the standard di¤erenced regression of 4st+1 on (ft�st).

All estimated models include an intercept.

Tables 5 and 6 report some summary statistics (mean, median, 10th and 90th percentiles)

of the Monte Carlo estimators of the slope parameter from models M1, M2 and M3. The results

show that our theoretical framework can approximate well the bias and the dispersion of the
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empirical estimates from the forward premium regressions and lend support to the theoretical

predictions from Theorems 1 and 2. For example, for � = 0:1; c = 0 and � = 0:8; the mean

estimate for the OLS estimator from the usual di¤erenced forward premium regression is -

5.75 and -2.12 for T = 50 and 400, respectively. Our results are also qualitatively similar

to the simulation �ndings in Baillie and Bollerslev (2000) obtained by allowing for a very

persistent (long-memory) volatility and varying the importance of the permanent and transitory

components in the daily spot rates.

Since the forward discount anomaly is not only that the slope parameters in the di¤erenced

forward premium regression are negative but also that they are statistically di¤erent than one

(based, typically, on the asymptotic normal approximation), we also report the �nite-sample

behavior of the t-test of H0 : �2 = 1 from model (6). Table 7 presents the 0.025 and 0.05

quantiles of the Monte Carlo distribution of the t-statistic along with the empirical size of the

two-sided and one sided t-tests at 5 % signi�cance level using the asymptotically normal critical

values. As our analytical results suggest, the distribution of the t-statistic is shifted to the left

with critical values that well exceed the standard normal critical values. As a result, the t-test

based on the standard normal approximation signi�cantly overrejects especially for large values

of � and small values of c. The critical values and overrejections for � = 0:3 are bigger than

those for � = 0:1 because the omitted term �T =s:e:(
b�2) is larger for � = 0:3 due to the smaller

standard error of b�2 in this case. When the t-statistic is recentered with this term, the critical
values and the rejection rates for � = 0:3 and � = 0:1 are practically identical.

Next, we modify our simulation experiment by replacing the speci�cation for the forward

premium (9) with the following process for the risk premium

rpt+1 = (1 + ec=T )rpt + (e�=pT )&t+1; (10)

where ("1;t+1; "2;t+1; &t+1)0 � iidN(0;�) with � =

264 1 � e�
� 1 e�e� e� 1

375 and � = 0:9999:8 Although this
case is not explicitly analyzed in the paper, it is still interesting to investigate numerically the

e¤ect of parameterizing the risk premium as a small, near unit root process on the parameters

8Another possibility is to parameterize the signal-to-noise ratio as e�=T; where the normalization factor T is
chosen to match the asymptotics of this parameter in an unobserved component model. More speci�cally, note
that under Assumption A and assuming for simplicity that c = 0, model (8)-(10) has a time-varying parameter
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of the forward premium regressions. Another reason to consider this model is the fact that our

theoretical framework in Section 3 requires a relatively large, constant parameter value of �

in order to explain the large negative bias of the OLS estimator in the di¤erenced regression.

In practice, this parameter is highly time-varying (see Figures 1 and 2) with an average value

for the whole sample around zero. As we will see below, this may be due to the fact that

� captures the correlation between the risk premium and the expectational errors but this

correlation is contaminated by the noise component "2;t+1 � "1;t+1 whose magnitude depends

on the correlation coe¢ cient �:

The Monte Carlo results from parameterization (10) with e� = 0:05 are presented in Table
8. Overall, these results are numerically very similar to the results in Table 5. One interesting

�nding that emerges from this parameterization is that the parameters ec, e� and e� cannot be
estimated directly from the observable dynamics of the forward premium due to the component

"2;t+1 � "1;t+1 that distorts the relationship between the risk and forward premia. Table 9

reports that with � = 0:9999, � is overestimated and is around 0:135 for T = 50 and 0:360 for

T = 400 when the data are generated with e� = 0:05 and ec = 0: Similarly, for e� = 0:8; e� = 0:05
and ec = 0, the estimates for � from the forward premium are 0:220 and 0:076 for T = 50 and

400, respectively. These simulation results provide evidence that may help to reconcile the low

estimates of the error correlation and the large bias of the estimates from the usual di¤erenced

regression whose magnitude can be supported only by the presence of strong feedback between

the expectational errors and the forward premium.

form

st+1 � ft = rpt + "t+1

rpt = rpt�1 + �&t:

Taking di¤erences, we obtain �(st+1 � ft) = �&t + �"t+1. It is straightforward to show that this model
possesses the same autocorrelation structure as the MA(1) model �(st+1 � ft) = et+1 � �et with the constraint
that 0 � � � 1. In fact, there exists a one-to-one mapping between the parameters of the two representations �
and �; namely � =

q
(1��)2

�
and � = 1+ �2�

p
�4+4�2

2
which are monotonic in � and � , respectively. It can be seen

that reparameterizing �T = �=T with � � 0 is equivalent to reparameterizing the MA root � as local-to-unity
�T = 1+�=T +Op(T

�2) for � � 0. Therefore, this speci�cation gives rise to the standardization factor T in the
signal-to-noise ratio and was used by Gospodinov (2002) for estimating the risk premium from interest rate data.
Some numerical and analytical results for this parameterization are available from the author upon request.
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5 Concluding Remarks

This paper studies the sampling properties of the slope parameters in levels and di¤erenced

forward premium exchange rate regressions. The novelty of the paper is to highlight the in-

teraction of the high persistence with the low variability and endogeneity of the regressor and

reconcile some seemingly contradictory results in the forward premium literature. The analysis

suggests that the large negative values and highly unstable behavior of the slope estimates in

the usual di¤erenced speci�cation, reported in many empirical studies, appear to be due to the

simultaneous presence of a risk premium and a number of data characteristics that have not

been fully incorporated into the inference procedure.

Our methodological framework also helps to resolve several �sub-puzzles�pertaining to some

properties of the exchange rate data. First, the adopted local-to-zero variance parameterization

dampens the near unit root behavior of the forward premium and �balances� the forward

premium regression as the variables that enter the regression share the same stochastic order

of magnitude. Furthermore, the variance localization reconciles some seemingly contradictory

evidence regarding the cointegration properties of spot and forward exchange rates.

Finally, while the main focus of the paper is to study the behavior of the estimators in

forward premium regressions, the paper delivers other interesting �ndings that deserve closer

attention. For example, our parameterizations and estimation results point to some evidence

that the latent risk premium follows a near-integrated process with small variability. Slowly

moving habit persistence (Verdelhan, 2008) and cross-country heterogeneity (Sarkissian, 2003)

can provide important insights for understanding and mimicking the time series properties of

the risk premium. Another important dimension for future research is to relate the �ndings in

this paper to the growing literature on exchange rate predictability and returns from currency

speculation (Bacchetta and van Wincoop, 2007; Burnside et al., 2006; among others).
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A Appendix A: Data Source and Description

Following Bauer (2001), we construct our data series from daily mid-market observations of

spot exchange rates for GBP, DM, JPY, CAD and CHF and one-month Eurocurrency rates

for US, UK, Germany, Japan, Canada and Switzerland obtained from Datastream. The spot

exchange rates are recorded in British pounds and converted into US dollars using the GBP/US

rate. The monthly spot rates are constructed by taking the observation on the last business day

of each month. The variable st in the paper is a logarithmic transformation of these monthly

series.

The monthly interest rate data is also end-of-the month and the annual rates are converted

into monthly rates using continuous compounding based on the exact number of days between

two consecutive end-of-the-month observations divided by 365 for the British pound and by 360

for all the other currencies (Bauer, 2001). The forward premium is calculated as the di¤erence

between the US and the corresponding Eurocurrency monthly rates. Finally, the logarithm of

one-month forward rate is obtained from the covered interest parity.

B Appendix B: Mathematical Proofs

B.1 Preliminary Lemma

Let "2;t = C(L)�t; vt = D(L)�t; Ut = ("2;t; vt)
0 and B(r) � BM(�) denote a bivariate

Brownian motion with a covariance matrix �: Let also � = � + �0 with � = �0 + �; �0 =

E(UtU
0
t); � =

P1
k=0E(UkU

0
0); ft = ft�1 + "2;t =

Pt
j=1 "2;j + f0 and xt = (1 + c=T )xt�1 +

�T�1=2vt = �T�1=2
Pt
i=1(1 + c=T )

t�ivi + x0: Then, under Assumptions A and B,

(i) T�1=2
P[Tr]
i=1 Ui ) B(r)

(ii) T�1
PT
t=1 ft"2;t+1 )

R 1
0 B1(s)dB1 + �11

(iii) T�2
PT
t=1 f

2
t )

R 1
0 B1(s)

2ds

(iv) xt ) �Jc(r)

(v) T�1
PT
t=1 xtvt+1 )

R 1
0 Jc(s)dB1(s) + �22

(vi) T�2
PT
t=1 x

2
t )

R 1
0 Jc(s)

2ds

(vii) T�1
PT
t=1 xt"2;t+1 )

R 1
0 Jc(s)dB1(s) + �21

(viii) T�2
PT
t=1 xt+1ft )

R 1
0 Jc(s)B1(s)ds;
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where Jc(r) = exp(cr)
R r
0 exp(�cs)dB2(s).

B.2 Proof of Theorem 1

Let bars denote the demeaned variables, eft = f t�hPT�1
j=1 f j 4 f j+1

i hPT�1
j=1 (4f j+1)2

i�1
4f t+1

and note that �rpt + �t+1 = (1� )"2;t+1 � xt+1: Then, under � = 0 and � = 1; the estimatorb� has the form
p
T
�b� � 1� = T�3=2(1� )

PT�1
t=1

eft"2;t+1
T�2

PT�1
t=1

ef2t � T
�3=2PT�1

t=1
eftxt+1

T�2
PT�1
t=1

ef2t :

From results (ii), (iii) and (viii) in Preliminary Lemma, T�2
PT�1
t=1

ef2t = T�2
PT�1
t=1 f

2
t +

op(1); T
�1PT�1

t=1
eft"2;t+1 = T�1PT�1

t=1 f t"2;t+1+op(1) and T
�3=2PT�1

t=1
eftxt+1 = T�3=2PT�1

t=1 f txt+1+

op(1). Thus,
p
T
�b� � 1� = ��T�2PT�1

t=1 f txt+1

T�2
PT�1
t=1 f

2
t

+ op(1):

Substituting for xt+1 = �T�1=2
Pt+1
i=1(1+ c=T )

t�ivi+x0 and using the limiting results (iii) and

(viii) in Preliminary Lemma, we obtain

p
T
�b� � 1�) ��

R 1
0 Jc(s)B1(s)dsR 1
0 B1(s)

2ds
;

where Jc(r) = Jc(r)�
R 1
0 Jc(s)ds and B1(r) = B1(r)�

R 1
0 B1(s)ds denote the demeaned versions

of Jc(r) and B1(r).

B.3 Proof of Theorem 2

Using that xt+1 = rpt + "2;t+1 � "1;t+1, the OLS estimator of �2 in (6) is given by

b�2 � 1 = PT�1
t=2 xt (�xt+1 + "2;t+1)PT

t=2 x
2
t

:

or equivalently

b�2 � 1 + �T = � �p
T

PT�1
t=1 xtvt+1PT
t=2 x

2
t

+

PT�1
t=1 xt"2;t+1PT

t=2 x
2
t

+ op(1): (11)

Substituting for xt+1 = �T�1=2
Pt+1
i=1(1 + c=T )

t�ivi + x0 and applying results (v), (vi) and

(vii) from Preliminary Lemma, we get
�
T

PT�1
t=1 xtvt+1

1
T

PT
t=2 x

2
t

= op(1) and

p
T
�b�2 � 1 + �T�) 1

�

R 1
0 Jc(s)dB1(s) + �21R 1

0 Jc(s)
2ds

: (12)
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Table 1. Summary statistics of exchange rate data.

st ft ft � st st+1 � ft st+1 � st
GBP
mean 0.5229 0.5211 -0.0017 0.0011 -0.0006
std. dev. 0.1408 0.1407 0.0021 0.0307 0.0304
AC(1) 0.968 0.968 0.917 0.087 0.071
DM
mean -0.6570 -0.6558 0.0012 0.0000 0.0011
std. dev. 0.1968 0.1959 0.0023 0.0321 0.0318
AC(1) 0.984 0.984 0.958 0.034 0.019
JPY
mean -4.9681 -4.9654 0.0027 -0.0011 0.0016
std. dev. 0.3111 0.3108 0.0022 0.0355 0.0350
AC(1) 0.991 0.991 0.937 0.029 0.004
CAD
mean -0.2418 -0.2425 -0.0007 0.0004 -0.0003
std. dev. 0.1171 0.1166 0.0013 0.0155 0.0153
AC(1) 0.984 0.983 0.884 0.014 -0.003
CHF
mean -0.4962 -0.4935 0.0026 -0.0007 0.0019
std. dev. 0.2284 0.2275 0.0027 0.0357 0.0353
AC(1) 0.981 0.981 0.963 0.055 0.038

Notes: AC(1) denotes the �rst-order autocorrelation coe¢ cient and st and ft are logarithms of
spot and one-period forward rates.
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Table 2. Estimation results from the regression of (st+1 � st) on (ft � st).

GBP DM JPY CAD CHF
(st+1 � st) = �+ �(ft � st) + error
estimate of � �0:004

(0:002)
0:002
(0:002)

0:009
(0:003)

�0:001
(0:001)

0:006
(0:003)

estimate of � �1:736
(0:967)

�0:984
(0:837)

�2:935
(0:792)

�1:135
(0:503)

�1:431
(0:767)

Notes: Newey-West standard errors with automatic bandwidth.
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Table 3. Median unbiased and interval estimates of the largest AR root and the localizing
constant c.

largest AR root c

MUE 90% CI MUE 90% CI
GBP 0.960 [0.931, 0.993] -15.03 [-25.87, -2.72]
DM 0.996 [0.973, 1.008] -1.48 [-10.22, 2.98]
JPY 0.986 [0.960, 1.007] -4.69 [-13.32, 2.49]
CAD 0.978 [0.954, 1.005] -8.15 [-17.43, 1.73]
CHF 0.996 [0.973, 1.008] -1.36 [-10.11, 2.99]

Notes: MUE denotes median unbiased estimate. The median unbiased and interval estimates
are obtained by inverting the DF-GLS test for a unit root (Elliott, Rothenberg and Stock, 1996)
from a model with 12 lags and a constant (for details, see Stock, 1991).
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Table 4. Estimation results from model (2).

GBP DM JPY CAD CHF
OLS ML OLS ML OLS ML OLS ML OLS ML

� 0:017
(0:008)

0:001
(0:001)

�0:005
(0:007)

0:002
(0:001)

�0:030
(0:037)

0:001
(0:006)

�0:002
(0:002)

0:002
(0:001)

�0:006
(0:005)

�0:001
(0:001)

� 0:970
(0:015)

1:001
(0:002)

0:992
(0:010)

1:005
(0:002)

0:994
(0:007)

1:001
(0:001)

0:991
(0:007)

1:004
(0:002)

0:990
(0:009)

1:004
(0:002)

�= 0:998 1:008
(0:006)

0:998 1:009
(0:003)

0:998 1:012
(0:005)

0:997 1:009
(0:005)

0:998 1:010
(0:004)

Notes: Newey-West standard errors in parentheses with a bandwidth equal to 0:2T . OLS
denotes the estimates from a regression of st+1 on ft and ML denotes the estimates from a
regression of st+1 on ft and 4ft+1: The last row for each currency reports the estimates of �
(correlation between the errors) and , respectively.

29



Table 5. Monte Carlo simulation results for model (8)-(9) with � = 0:1:

c = �20 c = �5 c = 0

mean med Q10 Q90 mean med Q10 Q90 mean med Q10 Q90
T=50
� = 0
M1 0.90 0.92 0.79 0.98 0.90 0.92 0.79 0.98 0.90 0.92 0.79 0.99
M2 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.01 1.00 1.00 0.99 1.01
M3 0.57 0.56 -10.6 11.8 0.20 0.18 -7.54 7.97 0.09 0.05 -5.51 5.75
� = 0:4
M1 0.90 0.92 0.79 0.98 0.90 0.91 0.79 0.98 0.89 0.91 0.78 0.98
M2 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.98 1.00
M3 -1.21 -0.87 -12.5 9.66 -2.30 -1.77 -10.6 5.21 -2.84 -2.21 -9.13 2.54
� = 0:8
M1 0.90 0.92 0.79 0.98 0.89 0.91 0.78 0.98 0.89 0.91 0.78 0.97
M2 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.98 1.00
M3 -2.82 -2.22 -14.3 7.77 -4.83 -3.80 -13.6 2.60 -5.75 -4.68 -12.9 -0.04
T=400
� = 0
M1 0.99 0.99 0.97 1.00 0.99 0.99 0.97 1.00 0.99 0.99 0.97 1.00
M2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M3 0.05 0.02 -4.27 4.39 0.04 0.03 -2.77 2.82 0.02 0.02 -1.94 1.95
� = 0:4
M1 0.99 0.99 0.97 1.00 0.99 0.99 0.97 1.00 0.98 0.99 0.97 1.00
M2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
M3 -0.77 -0.56 -5.31 3.50 -0.93 -0.69 -3.95 1.81 -1.06 -0.81 -3.27 0.82
� = 0:8
M1 0.99 0.99 0.97 1.00 0.98 0.99 0.97 1.00 0.98 0.99 0.97 0.99
M2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
M3 -1.57 -1.19 -6.34 2.68 -1.92 -1.48 -5.26 0.85 -2.13 -1.71 -4.71 -0.07

Notes: The table presents the mean, median, 10th and 90th percentiles of the Monte Carlo
distributions of the di¤erent estimators.
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Table 6. Monte Carlo simulation results for model (8)-(9) with � = 0:3:

c = �20 c = �5 c = 0

mean med Q10 Q90 mean med Q10 Q90 mean med Q10 Q90
T=50
� = 0
M1 0.90 0.92 0.79 0.99 0.90 0.92 0.79 0.99 0.90 0.92 0.78 0.99
M2 1.00 1.00 0.99 1.01 1.00 1.00 0.98 1.02 1.00 1.00 0.97 1.03
M3 0.47 0.45 -3.25 4.19 0.20 0.18 -2.39 2.81 0.11 0.09 -1.73 2.00
� = 0:4
M1 0.90 0.92 0.79 0.98 0.89 0.91 0.78 0.98 0.88 0.90 0.77 0.97
M2 1.00 1.00 0.99 1.00 0.99 0.99 0.97 1.01 0.98 0.98 0.95 1.01
M3 -0.06 0.03 -3.80 3.53 -0.63 -0.46 -3.30 1.82 -0.88 -0.68 -2.93 0.89
� = 0:8
M1 0.90 0.92 0.79 0.98 0.89 0.90 0.78 0.97 0.87 0.88 0.76 0.95
M2 1.00 1.00 0.99 1.00 0.98 0.98 0.97 1.00 0.97 0.97 0.95 0.99
M3 -0.65 -0.43 -4.36 2.76 -1.47 -1.14 -4.32 0.93 -1.84 -1.49 -4.17 0.01
T=400
� = 0
M1 0.99 0.99 0.97 1.00 0.99 0.99 0.97 1.00 0.99 0.99 0.97 1.00
M2 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.01 1.00 1.00 0.99 1.01
M3 0.07 0.06 -1.40 1.54 0.03 0.02 -0.91 0.97 0.01 0.01 -0.63 0.66
� = 0:4
M1 0.99 0.99 0.97 1.00 0.98 0.99 0.97 1.00 0.98 0.98 0.96 1.00
M2 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.98 1.00
M3 -0.22 -0.16 -1.73 1.20 -0.30 -0.23 -1.31 0.60 -0.34 -0.26 -1.07 0.28
� = 0:8
M1 0.98 0.99 0.97 1.00 0.98 0.98 0.96 0.99 0.97 0.98 0.96 0.99
M2 1.00 1.00 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.98 0.99
M3 -0.49 -0.36 -2.09 0.93 -0.63 -0.48 -1.74 0.29 -0.70 -0.56 -1.57 -0.01

Notes: The table presents the mean, median, 10th and 90th percentiles of the Monte Carlo
distributions of the di¤erent estimators.
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Table 7. Monte Carlo critical values and rejection probabilities of t-test of H0 : �2 = 1.

c = �20 c = �5 c = 0

CV1 CV2 size1 size2 CV1 CV2 size1 size2 CV1 CV2 size1 size2
� = 0:1
T = 50
� = 0 -2.13 -1.79 0.06 0.07 -2.24 -1.89 0.07 0.08 -2.35 -2.01 0.07 0.09
� = 0:4 -2.29 -1.94 0.07 0.09 -2.54 -2.21 0.09 0.13 -2.93 -2.58 0.15 0.22
� = 0:8 -2.41 -2.09 0.08 0.11 -2.83 -2.49 0.13 0.21 -3.36 -3.05 0.31 0.44
T = 400
� = 0 -2.26 -1.93 0.06 0.09 -2.45 -2.14 0.08 0.12 -2.85 -2.51 0.13 0.20
� = 0:4 -2.40 -2.08 0.07 0.12 -2.69 -2.39 0.12 0.20 -3.28 -2.97 0.27 0.38
� = 0:8 -2.54 -2.23 0.09 0.15 -2.92 -2.63 0.19 0.30 -3.60 -3.33 0.51 0.67
� = 0:3
T = 50
� = 0 -2.30 -1.97 0.07 0.09 -2.56 -2.21 0.09 0.13 -3.00 -2.61 0.14 0.21
� = 0:4 -2.41 -2.08 0.08 0.11 -2.86 -2.52 0.13 0.21 -3.50 -3.14 0.29 0.40
� = 0:8 -2.54 -2.21 0.09 0.14 -3.07 -2.75 0.20 0.31 -3.92 -3.59 0.55 0.69
T = 400
� = 0 -2.87 -2.53 0.14 0.22 -3.58 -3.21 0.31 0.41 -5.18 -4.63 0.56 0.66
� = 0:4 -2.93 -2.63 0.17 0.27 -3.67 -3.37 0.43 0.56 -5.53 -5.01 0.78 0.85
� = 0:8 -3.00 -2.72 0.21 0.32 -3.64 -3.39 0.61 0.76 -5.74 -5.23 0.97 0.99

Notes: CV1 and CV2 denote the 0.025 and 0.05 Monte Carlo quantiles (critical values) of the
t-test of �2 = 1; size1 and size2 denote the empirical rejection probabilities of the two-sided
and one-sided t-tests of �2 = 1 based on the standard normal critical values at 5% signi�cance
level.
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Table 8. Monte Carlo simulation results for model (8)-(10) with e� = 0:05:
ec = �20 ec = �5 ec = 0

mean med Q10 Q90 mean med Q10 Q90 mean med Q10 Q90
T=50e� = 0
M1 0.90 0.92 0.79 0.98 0.90 0.92 0.79 0.98 0.90 0.92 0.79 0.98
M2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.01
M3 0.86 0.91 -10.6 12.2 0.66 0.65 -9.24 10.5 0.44 0.35 -7.72 8.67e� = 0:4
M1 0.90 0.92 0.79 0.98 0.90 0.91 0.79 0.98 0.90 0.91 0.79 0.98
M2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
M3 0.30 0.33 -11.0 11.6 -0.91 -0.79 -10.8 8.72 -2.36 -2.16 -10.6 5.47e� = 0:8
M1 0.90 0.92 0.79 0.98 0.90 0.91 0.79 0.98 0.89 0.91 0.78 0.98
M2 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99 1.00
M3 -0.36 -0.29 -11.6 10.8 -2.56 -2.23 -12.2 6.59 -5.21 -4.81 -13.2 2.19
T=400e� = 0
M1 0.99 0.99 0.97 1.00 0.99 0.99 0.97 1.00 0.99 0.99 0.97 1.00
M2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M3 0.80 0.78 -3.24 4.83 0.60 0.58 -2.82 4.07 0.41 0.38 -2.38 3.25e� = 0:4
M1 0.99 0.99 0.97 1.00 0.99 0.99 0.97 1.00 0.99 0.99 0.97 1.00
M2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M3 0.57 0.59 -3.44 4.56 0.03 0.08 -3.42 3.38 -0.60 -0.55 -3.41 2.11e� = 0:8
M1 0.99 0.99 0.97 1.00 0.99 0.99 0.97 1.00 0.98 0.99 0.97 1.00
M2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M3 0.35 0.39 -3.61 4.27 -0.57 -0.44 -3.94 2.63 -1.60 -1.47 -4.34 0.91

Notes: The table presents the mean, median, 10th and 90th percentiles of the Monte Carlo
distributions of the di¤erent estimators.
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Table 9. Estimates of � and � when the data are generated from model (8)-(10) with e� = 0:05:
ec = �5 ec = 0e� = 0 e� = 0:4 e� = 0:8 e� = 0 e� = 0:4 e� = 0:8

T = 50
estimate of � 0.126 0.127 0.126 0.134 0.135 0.136
estimate of � -0.011 0.129 0.273 -0.013 0.103 0.220
T = 400
estimate of � 0.338 0.338 0.339 0.359 0.360 0.360
estimate of � -0.011 0.041 0.094 -0.013 0.032 0.076
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Figure 1. Rolling sample estimates of �, � and � from the standard di¤erenced regression
(6) for British pound. The size of the rolling window is 50 observations. The estimates of �
and � are obtained from the long-run covariance matrix computed using a Quadratic spectral
kernel with an automatic bandwidth (Andrews, 1991).
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Figure 2. Rolling sample estimates of �, � and � from the standard di¤erenced regression
(6) for German mark. The size of the rolling window is 50 observations. The estimates of �
and � are obtained from the long-run covariance matrix computed using a Quadratic spectral
kernel with an automatic bandwidth (Andrews, 1991).
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