Available of

www MATHEMATICSWEB.ORG Sournal of

MATHEMATICAL
ANALYSIS AND

ACADEMIC APPLICATIONS
PRESS J. Math. Anal. Appl. 285 (2003) 619-628

POWERED BY SCIENCE @DIHEET‘

www.elsevier.com/locate/jmaa

Approximate fixed point theorems 1n Banach spaces
with applications in game theory ™

Rodica Branzei,* Jacqueline Morgan,”* Vincenzo Scalzo,”’
and Stef Tys ¢

Y Faculty of Computer Science, “All. Cuza™ University, 11, Carol | Bd., 6600 lasi, Romania
0 Dipartimento di Matematica e Statistica, Universita di Napoli Federico 11, via Cinthia, 80126 Napoli, Italy
“ CentER and Department of Econometrics and Operations Research, Tilburg University, P.O. Box 90153,
5000 LE Tilburg, The Netherlands
Received 28 March 2002

Submitted by J.A. Filar

Abstract

In this paper some new approximate fixed point theorems for multifunctions in Banach spaces
are presented and a method 1s developed indicating how to use approximate fixed point theorems in
proving the existence of approximate Nash equilibria for non-cooperative games.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we are interested in multifunctions F: X —— X which possess (fixed
points or) approximate fixed points. Fixed point theorems deal with sufficient conditions
on X and F guaranteeing that there exists a fixed point, that is, an x € X with x € F(x).
There are many fixed point theorems known on topological spaces (Brouwer [5], Kaku-
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tani [8], Banach [3]. etc.) which have proved to be useful in many applied fields such as
game theory, mathematical economics and the theory of quasi-variational inequalities (cf.
Baiocchi and Capelo [2]). If X i1s a metric space, approximate fixed point theorems are
interesting. Such theorems deal with sufficient conditions on X and F/° guaranteeing that,
for each ¢ > 0, there 1s an e-fixed point, 1.e., an x* € X with d(x™, F(x™)) < &, where
d(x*, F(x*)) =1inf{ld(x*,z2) | z € F(x*)}. In Tijs et al. [22], approximate fixed point theo-
rems in the spirit of Brouwer, Kakutani and Banach were derived. In the first two theorems,
in finite dimensional spaces, the compactness conditions used 1n the above quoted theorems
have been replaced by boundedness conditions. In the third one, the completeness of the
metric space (used in Banach’s contraction theorem) has been dropped.

In this paper we will present some new approximate fixed point theorems for multi-
functions defined on Banach spaces. Weak and strong topologies play here a role and both
bounded and unbounded regions are considered.

The outline of the paper is as follows. In Section 2, we present some approximate fixed
point theorems for closed or upper semicontinuous (with respect to the weak or strong
topologies) multifunctions on bounded, totally bounded convex regions or on unbounded
convex regions, respectively. Here the notion of tame multifunction plays a crucial role.
Section 3 gives an outline of how to use approximate fixed point theorems to guarantee
that non-cooperative games have approximate Nash equilibria, and Section 4 concludes
with some remarks.

2. New approximate fixed point theorems

In this section, V will be a real Banach space and for F: X —— X with X C V| the
set {x € V |d(x, F(x))=inf,cr () |ly — x| < &} of the e-fixed points of the multifunction
F on X 1s denoted by FIX" (F).

The assumptions of closedness and boundedness for a set of a reflexive real Banach
space 1s an usual and classical assumption in many theoretical and applied problems. In
light of the Alaoglu theorem, a closed and bounded set i1s sequentially compact and in
these cases we have to deal with weak convergence.

Thus, first, we present two theorems where the weak topology plays a role.

Theorem 2.1. Let V be a reflexive real Banach space and let X be a bounded and convex
subset of V with non-empty interior. Assume that F: X —— X is a weakly closed multi-
function (that is, a multifunction closed with respect to the weak topology) such that F(x)
is a non-empty and convex subset of X for each x € X. Then FIX* (F) # Y for each ¢ > 0.

Proof. Suppose without loss of generality that 0 € int X. Let « = sup{||x|| | x € X}. Take
e>0and0 < § < | suchthat da < ¢. Let Y be the weakly compact and convex subset of X
defined by ¥ = (1 —§)X. where X is the closure of X. Define the multifunction G : Y — —
Y by G(x) = (1 —38)F(x) forall x € Y. Then G 1s a weakly closed multifunction with non-
empty, convex and weakly compact values. But, with respect to the weak topology, V' 1s an
Hausdorff locally convex topological vector space, so, in view of Glicksberg’s theorem [ 7],
G has at least one fixed pointon Y. So thereis an x™ € Y such thatx™ € G(x™) = (1 —9) X
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F (x*). Then there is a z € F(x*) such that x* = (1 — §)z, so ||z — x*|| =4
Hence x™ 1s an e-fixed point of F.

7|l <00 < 8.

Theorem 2.2. Let V be a reflexive and separable real Banach space and let X be a bounded
and convex subset of V. with non-empty interior. Assume that F: X —— X is a weakly
upper semicontinuous multifunction (that is, a multifunction upper semicontinuous with

respect to the weak topology) such that F(x) is a non-empty and convex subset of X for
each x € X. Then FIX (F) # W for each € > 0.

Proof. As in the proof of Theorem 2.1. we assume that 0 € int X and o = sup{||x|| |
x € X). Take £ > 0, 0 < 8 < 1 such that o < ¢/2 and Y = (1 — §)X. Define the mul-
tifunction G : Y —— Y by G(x) = (1 —4) F(x) forall x € Y. G 1s weakly upper semicon-
tinuous. In fact, since V is a separable real Banach space and X 1s bounded, there exists
a metric d,, on V such that the weak topology on X 1s induced by the metric d,, (see, for
example, [6. Proposition 8.7]). Let x € Y and assume that A is a weakly open neighbour-
hood of G(x). For o0 > 0, we denote with A, the open set {y e Y | d,,(y,G(x)) < o}.
Since G(x) i1s weakly compact, we have that d,,(Y \ A, G(x)) = 1nt{d,(v,z) |y e Y \ A,
ze Gx)] =0, where Y\ A={ye¥Y |y¢ A4} So,if 0 <" <g €dyu(¥ \ A, G(X)),
we have G(x) C A,  C{veY |du(y,G(x)) <o’} C A, C A. In view of the weakly
upper semicontinuity of the multifunction (I — §) F'. there exists an open neighbourhood
I of x such that (1 — §)F(z) C A,/ for all ze€l. Theretore G(z) = (1 — d)F(z) C
(yveY |d,(v.G(x)) <o’} C A forall zel. So G is a weakly upper semicontinu-
ous multifunction at x. In the light of [I, Proposition 4, p. 72], G 1s also a weakly
closed multifunction at x. Therefore, in view of Glicksberg’s theorem, there exists a point
x* € Y such that x* € G(x*). Hence, there exists z € F(x*) such that x* = (1 — )z, so
1z — x*|| = 8||z|| € da < €/2. Moreover, there is 2 € F(x*) such that ||z’ — z|| < €/2.
Hence ||z’ — x*|| < ¢, that is, x* € FIX*(F).

Remark 2.1. Even if the assumption of “weakly closed graph on X looks very strong,
it can be obtained for multifunctions whose fixed points are interesting. For example, a
solution of a quasi-variational inequality i1s a fixed point of a suitable set-valued function
which is weakly closed under classical assumptions. In fact, following Baiocchi and Capelo
(2, p. 240], one can “‘reconduce the study of the quasi-variational inequality to the study

of a family of variational inequalities and to the finding of a fixed point for an appropriate
transformation.” To obtain weak closedness of the graph of this appropriate transformation
it 1s then sufficient to apply two results of Mosco [19, Theorems A and B] or following
slight improvement by Lignola and Morgan [ 12, Corollary 2.2] for K = X,

In the next theorem the strong topology is involved.

Theorem 2.3. Let V be a real Banach space and let X be a convex and totally bounded
subset of V with non-empty interior. Assume that I : X —— X 1s a closed or upper semi-
continuous multifunction such that F(x) is a non-empty and convex subset of X for each
x € X. Then FIX®(F) # W for each € > 0.
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Proof. Assume without loss of generality that O € int X. Take € > 0 and n > 0. Since X is
totally bounded there exists m € N and x...... v,, € X such that X C | J_, B(x;.n) (see.
for example, [4]). where é(,r,-. n)={y € V||y—xill <n}. Moreover, let h = max{||x;|| |
ie{l,...om}}.1If 0 <8 < 1 the set Y = (1 —§)X is a non-empty, convex and totally
bounded subset of V. Since Y is also closed, Y is complete and therefore compact.

First, we assume that F 1s a closed multifunction and we take 0 < § < | such that
o(n—+h) < . Then the multifunction G : Y —— Y, defined by G(x) = (1 —§) F(x) for all
v € Y, 1s closed. This implies by Glicksberg’s theorem that G possesses a fixed point x*.
Then there is a point z € F(x™) such that x* = (I — §)z. Since X C | J/_, B(x;.n). there
existsanr € {1, ..., m |} such that z € [;’(-1',-. 7). So ||x*—=z|| =4dllzll L S(lz=x,||+||lx-|]) <
d(n+h) <e. Hencex™ € FIX*(F).

Assume now that F 1s an upper semicontinuous multifunction. We take 0 < § < |
such that 6(n + h) < e/2. Let G:Y —-— Y, defined by G(x) = (1 — §)F(x) for all
x €Y. We claim that G 1s upper semicontinuous. Let x € Y and assume that A is an
open neighbourhood of G (x). For each o > 0, we denote with A, the open set {y € YV |
nf-c; ) |2 — vyl <o}. Asin the proof of Theorem 2.2, we obtain that G is an upper semi-
continuous multifunction at x and 1s also a closed multifunction at x. In view of Glicks-
berg’s theorem, there exists a point x* € Y such that x* € G(x*) and z € F(x*) such that
x* = (1—8)z.Since X € |J", B(x;.n). thereexists s € {1, ..., m} such that z € B(x,, n).
So(l[z —=xsll +llxgll) <d(n+h) < e/2. Moreover, there exists a point
' — x*|| < &, thatis, x* € FIX¢(F).

e
B s

SO ||z —x7|| =4z
2" € F(x*) such that

12/ —z|| < &/2, so |

The next theorems deal with the existence of approximate fixed points for multifunc-
tions on convex regions which are not necessarily bounded. Useful here is the notion of a
tame multifunction, which we introduce in

Definition 2.1. Let U be a normed space and X € U with 0 € X. A multifunction F
X —— X 1s called a tame multifunction it, for each € > 0, there is an R > 0 such that for
each x € B(0, R) N X the set F(x) N B(0, R + ¢) 1s non-empty, where B(0, R) ={z e U |
Iz]] < R}.

Example 2.1. The map F : [0, oo —— [0, o¢], defined by

F(x)=[x4+(x+1)"",00[ forallxe[0,o0,

1s a tame multifunction on the unbounded set [0, oo[. Moreover, F has e-fixed points for
each € > 0 (see Theorems 2.4 and 2.5).

Example 2.2. Let U be a normed space. Let F: U —— U be a multifunction with F(x) #
¥ for each x € U. Suppose that the image F(U) ={ye U | y € F(x) for some x € U}
of F 1s a bounded set. Then F is a tame multifunction (for each ¢ > 0, take R = 1 +
sup{||v]l, vy € F(U)}).

Remark 2.2. It follows from Example 2.2 that each F: X —— X. where X 1s a bounded
subset of a normed space U and F(x) is non-empty for all x € X, is a tame multifunction.
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Example 2.3. Let U be a normed linear space. The translation 7 : U — U given by T(x) =
x +a, where a € U \ {0}, i1s not tame and for small € > 0, T has no e-fixed points. The
tame property for multifunction in the next theorems is a non-superfluous condition for the
existence of e-fixed points.

Theorem 2.4. Let X be a convex subset with non-empty interior, containing 0, of a reflexive
real Banach space. Assume that F : X —— X is a tame and weakly closed multifunction
such that F(x) is a non-empty and convex subset of X for ecach x € X. Then FIX® (F) # ()
foreach e > (.

Proof. Lete > 0and R > O such that F(x)NB(0, R+¢e/2) %W foreachx € B(O, R)N X,
and let C = B(0, R) N X. C 1s a non-empty, bounded and convex set. Then G:C —— C,
defined by

=1
£
G(x) = R(R—l— 3) F ()M B((). R + 2) for all x € C,

= A

satisfies the conditions of Theorem 2.1. Hence there is x* € FIX®/*(G) such that
d(x*,G(x™)) < e/4 < £/2 and there exists x' € G(x™) such that ||x" — x™|| < £/2. More-
over, there exists an element z € F(x*) such that z = R~ '(R + £/2)x’. This implies that

< E.

& | ™

ol == | F ! ! / i & - /
lz=x 1< (R (R4S = |+ = < SR+

i

S0 x™ e FIXC(F).

Theorem 2.5. Ler X be a convex subset with non-empty interior, containing 0, of a reflexive
and separable real Banach space. Assume that F : X —— X is a tame and weakly upper
semicontinuous multifunction such that F(x) is a non-empty and convex subset of X for
each x € X. Then FIX® (F) # W for each € > 0.

Proof. Using the same arguments of the proof of Theorem 2.4, we can show that the
multifunction G, defined on B(0, R) N X by

e
E &
G(-x*):R(R+;) F(.I‘)QB(U,R-F;),

satisfies the conditions of Theorem 2.2 and the conclusion follows as in Theorem 2.4.

3. Approximate Nash equilibria for strategic games

In Nash [20], Nash equilibria for n-person non-cooperative games have been introduced
and using Kakutani’'s fixed point theorem 1t has been shown that mixed extensions of finite
n-person non-cooperative games possess at least one Nash equilibrium. The aggregate best
response multifunction on the Cartesian product of the strategy spaces constructed with
the aid of the best response multifunctions for each player possesses fixed points which
coincide with the Nash equilibria of the game.
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Of course, for many non-cooperative games Nash equilibria do not exist. Interesting are
games for which e-Nash equilibria exist for each ¢ > (). Here a strategy profile is called an
e-Nash equilibrium if unilateral deviation of one of the players does not increase his payoff
with more than £. One can try to derive the existence of approximate equilibrium points
following the next scheme:

(1) develop e-fixed point theorems and find conditions on strategy spaces and payoff
functions of the game such that the aggregate £-best response multifunction satisfies
conditions 1n an e-fixed point theorem:;

(11) add extra conditions on the payoff-functions, guaranteeing that points in the Cartesian
product of the strategy spaces nearby each other have payotts suthiciently nearby.

We will derive 1n this section a key proposition, which gives the possibility to find
various approximate equilibrium theorems.

First we recall some definitions. An n-person strategic gameis atuple I' = (X, ..., X,
71 (e u,) where for each player i € N ={1,...,n} X; 1s the set of strategies and
iyt ]_L-,Ef.\,- Xi — R 1s the payoft function. If players 1, ..., n choose strategies xi, ..., x,,
thenlii . Of vusar )i st 757 (& o (ST, x,;) are the resulting payoftts for the players 1,..., n,

respectively. Let € > (. Then we say that (.1‘f JieN € | |;on Xi 18 an e-Nash equilibrium if

_—

ui(xi,x" ) <uj(x”)+e forallx; € X; andforalli € N.

Here x”; 1s a shorthand for (x ) jen\ (i) and we will denote by NE* (I") the set of £-Nash
equilibria for the game I". Note that for an x* € NE* (I"), a unilateral deviation by a player
does not improve the payoft with more than e. Usetul will be for each i € N the ¢-best
response multifunction B; :l—[EN i1 Xj —— X; defined by

Bf & = [.1‘; € X |\ HikXi, X~7) = Sup willi, X—i) — &
LeX

and the aggregate e-best response multifunction B : X —— X defined by

By = | BiGe-s).

1eN

Obviously, if x* € B (x™), then x* € NE*(I'), and conversely. So if B® has a fixed point,
then we have an e-Nash equilibrium. If we do not know whether B® has a fixed point but
we know that B® has é-fixed points for each 6 > 0, then this leads under extra continuity
conditions to the existence of approximate Nash equilibria for the game as we will see.

The nextresult 1s called the key proposition because 1t opens the door to obtain different
g-equilibrium point theorems, using as inspiration source the existing literature on Nash
equilibrium point theorems. Many of them contain collections of sufficient conditions on
the strategy spaces and payoff functions, guaranteeing that the aggregate best response
multifunction has a fixed point. To guarantee the existence of e-fixed points one has to
modify, often 1n an obvious way. the conditions guaranteeing the existence of é-fixed points
for the aggregate e-best response multifunction and to replace the condition (111) 1n the key
proposition by the obtained conditions.
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Key proposition. Let ' = (X,.... X,,uy, ..., u,) be an n-person strategic game with
the following three properties:

(1) foreachiiie N =11...: n}, the strategy space X; is endowed with a metric d;;
(11) the pavoff functions uy, ..., i, are uniform continuous functions on X =[['_, X;,
where X is endowed with the metric d defined by
/N
d(x,y) = Zd;(r,-, yi) forallx,y e X;
=]

(111) for each € > 0 and § > 0, the aggregate e-best response multifunction B® possesses
at least one 6-fixed point, 1.e., FIX '(Bf) £ 0.

Then, NE° (') # W for each € > 0.

Proof. Take ¢ > 0. By (ii) we can find 1 > 0 such that for all x, x" € X with d(x,x") <
we have |u;(x) — u;(x")| < &/2 foreach i € N. We will prove that

x* e FIX""*(Bt/%) = x* eNE‘(I).

£ / .

Take x* € FIX"/*(B*/-), which is possible by (iii). Then there exists x € Bf/%(x*) such
that d(x*, X) < 7, and, consequently, foreachi € N, d((x],x" ), (x;, x*,)) < 7. This im-
plies that

gl X ) Zuilxi,x ;) — € foralli € N. (1)

.“

Further X € Bf/*(x*) implies

A, . 1 .. .
wilx;s x2 )-2 sup wilt; x2;) = S € foralli € N. (2)

ti€X; ~

Combining (1) and (2) we obtain

wilx:,x".) 2 sup ui(ti,x_;) —¢ forallieN, (3)
[[€X;

that1s, x™ € NE® (I').

[t will be clear that using the key proposition many approximate Nash equilibrium the-
orems can be obtained. We restrict ourselves here in giving three examples.

Example 3.1 (Games on the open unit square). Let (]O, I{, JO, I], uy, u2) be a game with
uniform continuous payoff functions u; and wu>. Suppose that u 1s concave in the first
coordinate and u» is concave in the second coordinate. Then for each ¢ > 0, the game has
an £-Nash equilibrium point. In fact, apply the key proposition to the above game and note
that (i) and (ii) are satisfied by taking the standard metric on ]O, 1[. Further, (i11) follows
from Theorem 2.1 applied to the set-valued function B*.
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Example 3.2 (Completely mixed approximate Nash equilibria for finite games). Let A and
B be (m x n)-matrices of real numbers. Consider the two-person game (A,,. A, uy, u»>).
where

i
o

Apm= 3L peR"™| p; > 0foreachie {1,....m}, pr =
=1

I
A, =g eR" q; = 0foreach j.€ {1, . nj. qu =1

i
up(p,qg)= p; Ag, ua(p,g)= p" Bgq forallpe A, g€ A,.

Then for each ¢ > 0 this game has an e-Nash equilibrium. Such an £-Nash equilibrium

s called completely mixed, because both players use each of their pure strategies with a

positive probability. The proof follows from the key proposition and Theorem 2.1 taking

the standard Euclidean metric.

Example 3.3. Let X be a normed linear space such that there exists a € X \ {0}. Let
[ = (X, X, uy,u>) be the two-person game with u (x|, x2) = —||x; — x|, u2(xy, x») =
—|[x1 —x2 —a/(1+ [|x1]|])]| forall (x;,x2) € X x X. Then B;j(x2) = {x>2} and By(x|) =
(x1 —af(1 4 |[x1])}. So B(x;, x2) = {(x2, x1 —a /(14 ||x1]]))) foreach (x, x3) € X x X.
Hence, FIX(B) = . However, for each § > 0, FIX°(B) # ¥l since one can take x € X with
|x|| = & '|la|l and, then, (x, x) € FIX°(B) because

“ a ( la
(X)) — I XX — < —— < 4.
|+ [|x|] L+ lxf|

Moreover, u| and 1> are uniform continuous functions on X x X. In fact.

‘ | ]l — Iy _
S (16X = Y1) = 0= ya)d -
(L Nlxr iDL+ Iyl

< (llxr = il + llx2 = v2ll) (1 + |lall).

U ( X X2) — Ua(yi; ¥2)

Theretore, in light of the key proposition we can conclude that NE* (I") # ¥/ for each
¢ > (. In fact, for ||x|| sufficiently large, (x,x) € NE*(I"), since u>(x,x>) — ur(x,x) <
lall /(L + [lxI]).

4. Concluding remarks

In Section 2 we developed five new approximate fixed point theorems in infinite dimen-
stonal Banach spaces. In Theorem 2.1-2.3 bounded and totally bounded convex regions
in Banach spaces are considered, while Theorems 2.4 and 2.5 treat possible unbounded
convex regions. Theorems 2.1 and 2.2, and Theorems 2.4 and 2.5, respectively, differ only
in that in Theorems 2.1 and 2.4 the multifunction is required to be weakly closed, while
in Theorems 2.2 and 2.5 1t 1s required to be weakly upper semicontinuous. Theorem 2.3
considers the situations in Theorems 2.1 and 2.2 in the context of the strong topology in-
stead of the weak topology. It seems important to find more sophisticated approximate
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fixed point theorems, especially for (tame) multifunctions on unbounded sets. In Section 3
we have indicated, via the key proposition, how approximate fixed point theorems can play
a role in non-cooperative game theory to prove the existence of approximate Nash equilib-
ria. For a survey of techniques to prove the existence of (e-) Nash equilibria see Tijs [21].
For approximate equilibrium theorems using approximations of games with smaller sub-
games see Lucchetti et al. [14]. Also we refer to Lignola [10] for the existence of Nash
equilibria for games with non-compact strategy sets and to Lignola and Morgan [11] for
convergence of Nash equilibria. The importance of e-Nash equilibria 1s also motivated by
well-posedness for Nash equilibria (cf. Lignola and Morgan [13], Margiocco et al. [17]),
convergence properties of approximate Nash equilibria (c¢tf. Morgan and Raucci [ 18]) and
approximate solutions for hierarchical games (ct. Mallozzi and Morgan [ 15,16] for approx-
imate mixed strategies).

Also finding new applications of approximate fixed point theorems in economic theory
and 1n the study of well-posed fixed point problems (Lemaire et al. [9]) could be interesting.
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