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Abstract We study linear production situations with an infinite number of production tech-
niques. Such a situation gives rise to a semi-infinite linear program. Related to
this program, we introduce primal and dual games and study relations between
these games, the cores of these games and the so-called Owen set.

1 INTRODUCTION

Linear production (LP) situations are situations where several producers own
resource bundles. They can use these resources to produce various products
via linear production techniques that are available to all the producers. The
goal of each producer 1s to maximize his profit, which equals the revenue of
his products at the given market prices. These situations and corresponding
cooperative games are introduced in Owen ([4]). He showed that these games
have a nonempty core by constructing a core-clement via a related dual linear
program. Samet and Zemel ([5]) study relations between the set of all core-
clements we can find in this way and the core, and the emphasis in their study 1s
placed on replication of players. Gellekom, Potters, Reijnierse, Tijs and Engel
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([2]) named the set of all the core-elements that can be found in the same way
as Owen did, the “Owen set" and they give a characterization of this set.

More general are situations involving the linear transformation of products
(LTP) introduced by Timmer, Borm and Suijs ([7]) because it is shown in this
paper that any LP situation can be written as an LTP situation. In an LTP
situation different producers may control different transformation techniques
and each of these techniques can have more than one output good. LTP situations
give rise to LTP games, which also have a nonempty core.

A part of Fragnelli, Patrone, Sideri and Tijs ([1]) 1s devoted to the study of
semi-infinite LP situations. These are LP situations where there 1s a countably
infinite number of products that can be produced. Semi-infinite LTP situations,
in which there is a countably infinite number of transformation techniques, are
analyzed in Timmer, Llorca and Tijs ([8]).

In this work we study the Owen set and the core of semi-infinite LP and
LTP situations and relations between these two concepts. For this reason, we
introduce primal and dual games corresponding to the primal and dual programs
of both semi-infinite LP and LTP situations. Using these primal and dual games
we show that if these games have the same value then the Owen setis included in
the core and otherwise, they are disjoint. Our main result 1s that for both semi-
infinite LP and LTP situations the core of the corresponding game 1s nonempty if
there exists a finite upper bound for the maximal profit obtained by the coalition
of all producers. Because LTP situations are more general than LP situations,
the use of more sophisticated tools is required to show that the results for LP
situations also hold for LTP situations. This is why we analyze LP situations
before turning our attention to LTP situations.

This work is organized as follows. The Sections 2 and 4 present the most rele-
vant results of respectively finite LP and LTP situations and their corresponding
games. Semi-infinite LP and LTP situations are introduced in the Sections 3
and 5, respectively. Relations between the Owen set, the core and the primal
and dual games are investigated and we show that the core is nonempty 1f there
exists a finite upper bound for the maximal profit obtained by the coalition of
all producers. Section 6 concludes.

2 FINITE LINEAR PRODUCTION SITUATIONS

Finite linear production (LP) situations describe situations with a set of pro-
ducers, a bundle of resources for each producer and a set of linear production
techniques that all the producers may apply. The resources are used in the var-
1ous linear production techniques to produce some products that can be sold on
the market at given market prices. We assume that there are no costs involved.
The goal of each producer is to maximize his profits. Producers are also al-
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lowed to cooperate and pool their resources. Such a coalition of producers also
maximizes its profit given the joint resources. Cooperation pays off because
the maximal profit of the group is at least as much as the sum of the individual
profits.

More formally, denote by NV, R and () respectively the finite sets of producers,

resources and products. The technology matrix A € RRKQ that is A € Rx¢
and A;; > Oforallz € Randj € @, describes all the dvallablclmcarpr()ductl(m
techniques in the following way. Each production technique produces one
product and you need A;; units of resource 7 € R to produce one unit of
product 3 € . The resources owned by the producers are described by the
resource matrix B € RRxN where producer & € N owns B;. units of resource

1 € R. Prices are denoted by the price vector ¢ € Rf \ {0}. We assume that
there 1S a positive quantity available of each resource, that is, for all resources
» € Rthere is a producer & such that B;; > 0. Furthermore, if there is a producl
7 with a positive market price, then we do not allow for “output without input"
and therefore there exists at least one resource ¢« € R with A;; > 0. Finally, all
producers are price-takers and all products can be sold on the market.

To maximize his profit, producer £ needs an optimal production plan z € Rf
that tells him how much he should produce of each good. Not all production
plans are feasible since the producer has to take into account his limited amount
of resources. The amount of resources needed in production plan z, Az, should
not exceed the amount of resources of producer k, Beygy, where egy denotes
the £*" unit vector in RY with ek}t = L1t = k and egy = 0 otherwise.
Furthermore, the production plan has to be nonnegative since we are only inter-
cqlccl In producing nonnegative quantities of the products, and its profit equals
2 c. The following linear program maximizes the profit of producer k.

max {:z:'c‘Aa: < Be{k}, T2 0}

Next to producing on their own, producers are allowed to cooperate. If a
coalition S of producers cooperates then they put all their resources together and
50, this coalition has the resource bundle Beg at its disposal, where eg € R
withesg; = 1ift € Sandegy = 0if t ¢ S. Given this amount of resources,
the coalition wants to maximize its profit,

/ol ma.x{:BTc\A:c < Deg. T > O},

where Pg denotes the primal linear program for coalition S. The corresponding
dual problem for this coalition, Dg, is the following program.

Pg: mm {yTBES IATy e Y= 0}

T'he vector y can be seen as a vector of shadow prices for the resources since
the condition ATy > ¢ can be interpreted as follows. If a company wants
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to buy the resources Beg of coalition S and is willing to pay y; per unit of
good = € M then for any product 7 € @, the value of the resources needed to
produce one unit of this product according to the prices in y should be at least
as large as the market price ¢;. Otherwise, coalition .S will not agree with this
sale. Therefore, the program Dg minimizes the value of the resources owned
by coalition S according to the shadow prices and subject to the restrictions
above.

For ease of notation, let F,5 and Fyg denote the set of feasible solutions of
respectively the primal and dual program for coalition S,

FpS
F4s

{SEERQ A$§585,$20},
{ye RR|ATy >¢, y>0},

denote by w,s and wgs the optimal values of the programs,

max {z'c|z € F,5},
min {yTBes ly € Fyg } ,

WpS
Wwqs

and let O,s and Oyg be the sets of optimal solutions,

Ops
Ogs =

|

}:’E = FpS zic = ’wps} ,
y € Fys |y’ Bes = wys } -

The assumptions we made ensure that Fg, Fyg, Ops and Ogg are nonempty
sets and wyg and wyg exist and are finite. It follows from duality theory ([9, p.
281]) that w,s = wqg for all coalitions S.

We see that an LP situation can be described by the tuple (N, A, B, c).
Corresponding to such a situation we define two games, (V,v,) and (N, vg).
The first one, (N, vy ), is the well known LP game where v, (S) = wygs for all
coalitions S. The second game, (NN, vq), is the game that gives each coalition
S the value of its dual program, v4(S) = wys.

If two producers cooperate then they can produce at least the amount that
they can produce on their own, so, their joint profit will be at least as large as the
sum of their individual profits. Similar reasoning shows that the highest profit
will be obtained if all the producers work together. But how should this joint
profit be divided among the producers? We could divide the profit according
o a so-called core-allocation. The core of a game (N, v), C(v), allocates the
profit in such a way that no coalition of producers has an incentive to start
producing on their own. More precisely,

C(v) = {3: ER ) zi=u(N), Y z;>v(S)forall S C N}.

1eN €S
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We define the core of an LP situation, Core(A, B, c), to be the core of the
corresponding LP game, Core(A, B,c) = C(vpy). Owen ([4]) shows that LP
games are totally balanced, that is, the games themselves have a nonempty core
and so do all of their subgames. He obtains this result by showing that we can
casily obtain a core-clement of an LP game as follows. Instead of solving the
programs Pg for all coalitions S C N in order to calculate v,(S) and the core,
we only solve Dy, the dual program of the grand coalition. Lety be an optimal
solution of Dy . If each producer k gets the value of his resources according to
the shadow prices, yTBe{k}, then this distribution of values is a core-allocation.
The set of all core-allocations that we can obtain in this way, is called the Owen
set corresponding to the LP situation (IV, A, B, ¢):

OWCH(A,B,C) — {(yTBe{k})keN ‘ YOG Od,\r} :

This set has been studied extensively by Gellekom et al. ([2]) and they also
provide a characterization of the Owen set. Because the set Ogn 1S nonempty,

sois Owen(A, B, c¢). Furthermore, each vector in this set is an element of C'(vp)
and therefore Owen(A, B, c) C Core(A, B, c¢).

We end this section with an example of an LP situation and corresponding
LP game.

Example 2.1 Consider the following LP situation. There are two produc-
ers, N = {1, 2}, two resources, two products and

e e S a1
Afi i 3]’3__0 7]’6—_“'

Producer 1 owns nothing of the second resource (see the first column of the
resource matrix B) and producer 2 owns nothing of the first resource. Since both
products require a positive amount of input of each of the two resources, a single
producer cannot produce anything. Consequently, v,({1}) = vp({2}) = 0. If
both producers cooperate then they own a positive amount of each resource and
they have many production plans at their disposal, namely all plans z € Fyn:

FpN={$€R2\2$1+2$2_§6, 1 + 3z < 7, .’L‘EO}

The profit of such a production plan z 1S cl'z = 3z, + 4z and so, the profit
maximization problem Py of the grand coalition equals max{3z, + 4z2|z €
F,n}. The maximal profit wpy = 11 is attained in the plan z = (1, 2)%s0
O,n = {(1,2)" }, and Core( A4, B; ¢} = {(a;1l — a)T|0 < a < 11}. For the
dual game (IV,vg) it holds that vg({z}) = vp({¢}) = 0 forall 2 € N. The set
of all feasible shadow prices for the grand coalition is the set

Fan = {y € R} 2y + y2 > 3, 2y1 + 3y2 > 4, y > 0}.
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We want to minimize the value of the resources of coalition N according to
the shadow prices y, y’ Bey = 6y; + Tyo, over all feasible shadow prices:
min{6y; + 7Tys|y € Fyn}. The minimum wgzy = 11 is attained in y =
(5/4,1/2)" and so Ogn = {(5/4,1/2)T}. The Owen set, Owen(A, B, c) =
{(15/2,7/2)T}, consists of one point and we see that Owen(A4, B,¢) C
Core(A,;:B;c); Owen(A,;B.c) # Core(A. B;c).

3 SEMI-INFINITE LP SITUATIONS

[f we extend the set ( such that it contains a countable infinite number of
products then we arrive at semi-infinite LP situations. Without loss of generality
we may assume that Q = N = {1,2,... }, the set of natural numbers. An
example of a production process with a countable infinite number of products
1s the “process” of baking pancakes at home. Pancakes are made of milk, flour,
cggs, salt, butter and perhaps a little sugar. If you have a recipe for baking
pancakes and you change the amounts of the ingredients slightly (e.g. you add
a little flour or you use a little bit less milk) then you get another recipe for
pancakes. This set of processes will be countable infinite if you require that all
quantities should be integer multiples of one gram, for example.

A semi-infinite LP situation (N, A, B, ¢) thus has A € REXQ, B € Rf’*”

and ¢ € Rf with ¢ = IN. As opposed to LP situations, we impose no further
restrictions on these variables since we want to keep our analysis as general
as possible. The restrictions we imposed in the previous section turn up by
themselves in the proof of Theorem 3.5. Because we have a countable infinite
number of products, the linear programs, which determine the “maximal” profits
of the coalitions, and their dual programs are now semi-infinite linear programs.
The primal program for a coalition S of producers that determines its maximal
profit, now equals

Fo.: Sup{a:Tc| Az < Beg, z >0},

where we replaced the maximum by the supremum since the optimal value may
not be reached by any production plan z. This program contains an infinite
number of variables z;, 7 € (). Similarly, in the dual program

Do inf{yTBeS| ATy >, 320}

we replaced the minimum by the infimum because we have an infinite number
of restrictions. The set of feasible dual solutions, Fzg, may now be empty and
the same holds for the sets of optimal solutions O,g and Ogs. The optimal
values are

Wps = Sup{:L‘TCI T Fpg}
Was = iILf{yTBES‘ YLE FdS}-
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Once again we define two games, the LP game (IV,v,) and the dual game
(N, vq) where v,(S) = wps and v4(S) = wgs. Notice that in this setting the
values wy,s and wgs may take any nonnegative number including +oco. Several
nice propertics of these games arec mentioned in the next theorem.

Theorem 3.1 Let (N, A, B,c) be a semi-infinite LP situation. Then
(G-) FdS — Fde()f' all S &= N,’

(b) vy, and vq are monotonic games; and

(c) vp(S) < vy(S) forallS C N.

Proof. First, by definition it holds that Fyg = {y € R ATy > ¢, y > 0} =
Fin forall § C N.

Second, let S € T C N be coalitions of agents. Then a game (V,v) 1S
monotonic if v(S) < v(T). Here, Beg < Ber implies that F,s C Fpr
and 5o v,(S) = sup{z’ c|z € F,s} < vp(T). From the first part of this
proof it follows that Fyg = Fyr and together with Beg < Ber this gives
valS) = inf{yTBeS\y € Fas} <wvq(T).

Third, let S C N be a coalition of agents. If Fgg = 0 then v,(S) <
0o = v4(S). Otherwise, take feasible solutions z € Fpg and y € Fys. Then
zTc = Tz < yT Az < yT Beg and therefore v,(S) = sup{z' c|z € Fps} <
inf{y’ Beg|y € Fys} = v4(S).

We use these properties to prove the next results about the relations between
the Owen set and the cores of the LP and dual games.

Theorem 3.2 Let (N, A, B, c) be a semi-infinite LP situation. Then
(a) Owen(A, B,c) C C(vy), and
(b) if vp(N) = vg(N) then C(vg) C C(vp).

Proof. To show the first item, if Owen(A, B,¢) = @ then we are finished.
Otherwise, take an element z € Owen(A, B, c¢). Then there exists an optimal
dual solutiony’ € Ogy suchthatz; = (y')" Beg;, foralli € N. S0, .y zi =
ZieN(y’)TBe{z—} = (y')' Beny = v4(N) because y' € Ogpn. It also holds that
D ics i = (v')T Beg > inf{y! Bes|y € Fys} = vq(S) where the inequality
follows from 4/ € Fg. We conclude that z € C(vyg).

For the second item, we are finished if C'(vg) = 0. Otherwise take an
element z € C(vg). By definition it holds that ) . n 2 = va(N) = vp(N).
It also holds that ) ;¢ z; > v4(S) > vp(S) where the first inequality follows

from z € C(vg) and the second one from statement 3 in Theorem 3.1. Hence,
2 € C(vy)-

A corollary of this theorem is that if v,(IV) = vg(N), that is, there is no
duality gap, then Owen(A, B, c¢) C Core(A, B, c¢). In the first part of the proof
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we noticed that Owen(A, B, ¢) = ® may hold. The following example provides
a semi-infinite LP situation where this is true and where the cores of the two
games arc nonempty.

Example 3.1 Consider the semi-infinite LP situation (N, A, B, c) where
N 1s a set of one agent,

e R B
cTzfz 4 ey ] _
Then
ve(N) = inf{y" Bey|ATy > ¢, y > 0}
= inf{yplyr + 0 > 2n, n=12,..., y >0}
)

0. However,

Fgn # 0 but Ogny = 0. Consequently, Owcn(A )=
{0} # 0. Similarly we

v,(IN) = 0 implies that Core(4, B,c) = C(v
can show that C(vg) = {0}.

Two other relations between the Owen set and the core, depending on the
values v, (V) and vy(N), are presented in the next theorem.

Theorem 3.3 Let (N, A, B, c) be a semi-infinite LP situation. Then
(a) ifvp(N) < vg(N) < oo then Owen(A, B,c)NCore(A, B,c) =0, and

(b) if v(N) < vg(N) = oo then Owen(A,B,c) = 0 and the core
Core( A, B, ¢) is nonempty.

l |

Proof. Concerning the first item, if Owen(A, B,¢) = 0 then the proof is
finished. Otherwise, let 2z € Owen(A, B,c) and take y € Ogn such that
Zil— yTBe{z—} forall 2 € N. Then ) ;. 2 = ZieNyTBe{i} — yI' Beny =
va(IN) > vp(V). Hence, z ¢ C(v,) = Core(A, B, c).

Secondly, since Ben contains finite quantities, vg(/N) = oo can occur only
if Fyny = 0. In this case, Ogny = 0 and therefore Owen(A, B,c¢) = (). The
latter part of this statement, the nonemptiness of Core( A, B, ¢), will be shown
in Theorem 3.5.

All the above relations between the Owen set and the core of a semi-infinite
[P situation can be summarized as follows.

Theorem 3.4 Let (N, A, B, c) be a semi-infinite LP situation.
(a) If vp(N) = vg(N) then Owen(A, B,c) C Core(A, B, c).
(b) If vp(N) < vg(IN) then Owen(A, B, c) N Core(A, B, c) = 0.
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Proof. The proof follows immediately from the Theorems 3.2 and 3.3.

As we stated in the second part of the proof of Theorem 3.3 there is one thing
left to show, namely that the core of a semi-infinite LP situation 1s nonempty
whenever the “profit" of the grand coalition is finite, v,(N) < oo.

Theorem 3.5 Let (N, A, B,c) be a semi-infinite LP situation where the
corresponding LP game (N, v,) has v,(N) < 0o. Then Core(A, B,c) # 0.

Proof. This proof is an exhaustive list of all possible semi-infinite LP situations
that we may come across. In each of these situations we will show that if v, (V)
is finite then Core( A, B, ¢) is a nonempty set.

First, suppose that Beny = 0, where 0 denotes the vector with each element
equal to zero. Thus, all the agents have no resources available. But then no
producer can produce a positive quantity of any product, so F5 = {0} for all
coalitions S and consequently 'up(S) = 0. In particular, v,(N) = 0 < oo and

Core(A, B,c) =Cu) =110 0)} # 0.

What happens if Bexy # 0 but every product needs a resource that 1s not
available? Let h(t) describe for all resource vectors ¢ € R those resources thal
are available in a positive quantity, so, h(t) = {2 € R|{; > 0}. Denote by €’

the 7th unit vector 1n RQ with €’ = if { = g and eﬂ = (O otherwise. Then Ae’-

1S @ vector In RR that dcscrlbcs how much we need of each resource to producc
one unit of product 7 € Q. Thus, h(Ben) 2 h(Ae ) for all 3 € ) means
that each product j € Q needs some unavailable resources. Consequently, no
producer can produce a positive quantity of some product, Fp,s = {(0,0,...)}
and v, (.S) = 0 for all coalitions S of producers. In particular, vp(N) =0< o0

and Core(A,B;¢) = {(0,.:.,0)} %~ 0.

Assume now that Beny # 0 and that some products can be produced, that
is, h(Ben) D h(Ae;) for some j € (. All coalitions of producers want
to maximize their proﬁ t and therefore they will restrict their production (o
the products that can be produced. So, without changing the values of the
coalitions we remove all products 7 € @ that cannot be produced, that is, for
which h(Ben) 2 h(Ae}), as well as all unavailable resources 2 € £, which
have (Bey); = 0. For sn‘npllcnty of notation, let (N, A, B, ¢) also denote this
reduced semi-infinite LP situation.

This brings us to the next situation where Bey > 0 and consequently,
h(Beny) = M D h(Ae;) for all 5 € Q. What happens if ¢ = 0, prices
are zero? 1If all products havc a price equal to zero then anything a producer
sells on the market will give him a revenue of zero. So, v,(S) = 0 for all
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coalitions S of producers and in particular it holds that v,(N) = 0 < oo and
Core( A, B, ¢c) #0.

[t Beny > Oandthereisaproducty € @ for whiche; > 0then we canremove
all products 7 for which ¢; = 0 without changing any of the values v,(.S). This
holds because each coalition of producers will restrict its production to the
products with a positive price.

This leads to Bexy > 0 and ¢ > 0. If there exists a product 7 € () that uses
NO resources, Ae_’;- — (), then the producers can produce an infinite amount of
this good, because it needs no input, and sell it at price ¢; > 0 to obtain an
infinite profit. Hence, v,(N) = oo and we may say that the producers are in
heaven since they can take as much of the profit as they want.

Finally, we end up with Bey > 0, ¢ > 0 and Ae; # 0 forall j € Q. In
this case we use a theorem of Tijs ([6]) that says that we either have Ogn = 0
and vp(IV) = vq(IN) = oo (heaven once again), or v,(N) = vg(N) < o0
and Ogny # 0. In the latter case Owen(A, B,c) # 0, which implies that
Core(A, B, c) # 0.

We may conclude from this theorem that if v,(/N) < oo then there exists a
core-allocation, a division of the value v,(/N) upon which no coalition S can
improve. If we are in the heavenly situation v, (V) = oo, then we do not need
shadow prices or core-allocations since any producer can get what he wants
from v, (NV), even if it is an infinitely large amount.

- FINITE LTP SITUATIONS

Another kind of linear production is described by situations involving the
linear transformation of products (LTP), where the “T" stands for the transfor-
mation of a set of input goods into a set of output goods. Timmer, Borm and
Suijs ([7]) show that an LP situation is a special kind of LTP situation.

In LTP situations each transformation technique may have more than one
output good. Recall thateach production process in an LP situation has only one
output good, namely its product. Furthermore, different producers may have
different transformation techniques at their disposal, while in an LP situation
all producers use the same set of production techniques. LTP situations are
introduced in Timmer, Borm and Suijs (|7]) and defined as follows.

Let M be the finite set of goods and N the finite set of producers. Producer
+ € NN owns the bundle of goods w(z) € Rff and we assume, as we do for
LP situations, that all producers together own something of each good, that is,
> _ien w(i) > 0. We do make this assumption although in this model there need
not be a clear distinction between input and output goods. A good may be an
output good of one transformation technique while it is an input good of another



THE OWEN SET AND THE CORE OF SIL PRODUCTION SITUATIONS D

technique. A transformation technique is described by a vector a € RM for
example

if M contains four goods. Positive elements in such a vector a indicate that
the corresponding good is an output of the transformation technique, negative
elements indicate input goods and zero means that the corresponding good 1s
not used in this technique. In this example, the first and third good are outputs
of the transformation process, the fourth good is an input and the second good
is not used. More precisely, 3 units of the fourth good can be transformed into
5 units of the first good and 1 unit of the third good. We assume that each
transformation technique uses at least one good to produce another good, so, it
contains at least one positive and one negative element.

L = O O

Denote by D; the finite set of transformation techniques of producer 2 € N.
Then k € D; means that producer ¢ can use technique a®. The set of all
transformation techniques is D = UjenD;. We assume that all producers
arc price-takers and that all goods can be sold at the exogenous market prices
p € RY \ {0}. All transformation techniques are linear, so, 2a” means that
twice the amount of input is used to produce twice the amount of output with
technique k. The factor 2 is called the activity level of technique k. Denote
by v = (yi)re p the vector of activity levels. Because we cannot reverse any
transformation process, all activity levels are nonnegative. The transformation
matrix A € RM*D ig the matrix with transformation technique a* at column
k. Related to this is the matrix G € R} *" that describes which and how many
of the goods are needed as inputs in the various transformation techniques. For

allj € Mandk € D wehave G, = g;f = max{0, —-a?}. From this it follows

that (a* + g*); = ma,x{a;’, 0}, so the vector a® + g* describes which and how
many of the goods are outputs in technique k. Thus, when technique & has
activity level y, > 0 then the vector g"y. describes the amount of input goods

we need and (a® + g*)y; describes the output of this transformation technique.

Consider first a single producer « € N. He should choose his activity vec-
tor y such that the amount of goods he needs does not exceed the amount
of goods he owns, Gy < w(z). Furthermore, this producer can only use his
own transformation techniques. Therefore yx = 0if & ¢ D;. The amount of
output of the transformation techniques will be (A + G)y. We see that the
producer started with w(z) from which he uses Gy as inputs and he obtains
(A + G)y as outputs, so he can sell the goods that remain after the transfor-
mation, w(z) — Gy + (A + G)y = w(z) + Ay, on the market. His goal 1s (0
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maximize his profit p (w() + Ay) such that the activity vector y is feasible:
max{p” (w(i) + Ay)| Gy < w(7), y > 0, yx = 0il k ¢ D;}.

Producers are also allowed to work together. When they cooperate then they
will pool their techniques and their bundles of goods. A coalition S C N of
producers has the bundle w(S) = » ;. gw(2) at its disposal and it can use all
the transformation techniques in D(S) = U;esD;. The profit maximization
problem of such a coalition is similar to that of a single producer and equals

max{p” (w(S) + Ay)| Gy <w(S), y >0, yr =0ifk ¢ D(S)}.

When we want to determine the dual problem of this profit-maximization prob-
lem then the last constraint, yx = 0if k & D(S), gives some trouble. We will
replace this constraint by another one with the same interpretation. For this,

define forallk € Dand SC N, S # 0

2 .k € D(S)
mﬁ””{? k& D(S5).

This vector B(S) gives an upper bound for the activity vector that can be chosen
by coalition S and it implies that

f Yk :OlfkiD(S)

< o { ¥<B(S)

Y= | ¥20.

The (primal) maximization problem Pg for coalition S can thus be rewritten to
Ps: max{p" (w(S) + Ay)| Gy < w(S), y < B(S), y > 0}.

Because of the vector A(S) it is now very easy to determine the dual program
Dg of Pg (cf. [9)):

o GTzir +izp > AX
5 T T M+ zp > Al p,
Dgs : min< (zp + p)" w(S) + zpB(S) e SN il }

\

The vector ATp € RP denotes the profits for all transformation techniques
per activity level. The matrix G is denoted in units of goods per activity level.
Therefore, the vector zpr € RM is denoted in units of dollars per good an the
vector zp € R indollars per activity level. A nice interpretation for the vector
zp follows from the complementary slackness conditions: it vy, Zpr and zp are
optimal solutions of the primary and dual programs of coalition .S then

0 = Zp[w(S) — GY) . (4.1)
0 = 25[B(S) — 9] (4.2)
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and
0= ﬂT[GTfM -+ ZDr— ATp].

Equation (4.1) is equal to ZjeM Zm j(w(S)—Gy); = 0. This sum of nonneg-
ative elements 1s zero if and only 1f each element equals zero. So, for all goods
7 € M 1t holds that EM,j(w(S) = G?})J — 1 Iffij > () then w(S)j == (GQ)J
the available amount of good 7 1s precisely enough to cover the amount of good
9 that 1s needed. From the objective function of the dual program Dg it follows
that an extra unit of good 7 will raise the profit by Zps because duality theory
says that the optimal values of Pg and Dg are equal. If, on the other hand, the
amount of good j available is too large, w(S); > (Gy);, then Zpr; = 0: an
extra unit of good 7 will not raise the profit. We can therefore think of Zps as the
vector of prices that the coalition S of producers i1s willing to pay for an extra
unit of the goods. We will call the vector zps + p the vector of shadow prices

for the goods of this coalition. The following theorem shows a nice result that
follows from (4.2).

Theorem 4.1 The equality z’”gﬁ (S) = 0 holds for all optimal solutions
(5M: ED) OfDS

Proof. Because the set of feasible solutions of Dg is the nonempty intersection
of a finite number of haltspaces that 1s bounded from below by the zero-vector,
the program Dg can be solved and a minimum exists. Let (Zp7, 2p) be an
optimal solution. By the complementary slackness conditions equation (4.2)
holds and is equal o ) ..pZpx(B(S) — ¥)x = 0. Again, this is a sum
of nonnegative elements, so it should hold that Zp x(B8(S) — 9)x = 0 for all
transformation techniques k € D. If Z2p x > 0then 3(S)x = k. The definition
of #(S) implies thatin thiscase B(S)r = 0,s0k ¢ D(S). If B(S)r > U, which
is equivalent to k € D(S), then Z2p x = 0. We conclude that Zp xB(S)x = 0
for all transformation techniques k& € D.

For ease of notation let £3,¢ and Fyg denote the sets of feasible solutions of
respectively the primal and the dual program for coalition .S,

Fps = {y € R?| Gy < w(S), y < B(S), y > 0},
Fus = {(2m,2p) € RM x RP|GT 2pr + 2p > ATp, za > 0,2p > 0},

denote by u,s and ugg the optimal values of the programs,

ups = max{p’ (w(S) + Ay)|y € Fps},
ugs = min{(zp + p)’ w(S) + zpB(S)| (2m, 2p) € Fus},
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and let O,s and Oyg be the sets of optimal solutions,

Ops = {y € Fps|p” (w(S) + Ay) = ups},
Oas = {(zm,2p) € Fys| (2m +p)" w(S) + 2pB(S) = uas}-

The sets Fpg, Fgs, Ops and Ogg are nonempty and the values u,s and uggs
exist and are finite. By duality theory it holds that u,g = ugg for any coalition
S of producers.

An LTP situation will be described by the tuple (N, A, D, w, p) where w =
(w(2))ien. Corresponding to an LTP situation we define two cooperative
games. The first one, (N, vp), is the LTP game as defined in Timmer, Borm and
Suijs (| 7]) where v, (S) = up,s, the maximal profit that coalition S can obtain.
The second one is the dual game (IV, vg) that gives each coalition S the value
of its dual program, v4(S) = uys.

The core of an LTP situation, Core( A, w, p), is defined as the core of an LTP

game, Core(A,w,p) = C(v,). Furthermore, we know that for all (zpr,zp) €
Odn

vp(N) = vg(N) = (2m +p)  wW(N) + 2LB(N) = (za + p)Tw(N),

where the last equality follows from theorem 4.1. Timmer, Borm and Suijs (
[7]) show that ((zar + p)" w(i))ien € C(vp). Thus it follows from Ogy # @
that LTP games are totally balanced: each LTP game has a nonempty core
and because cach subgame is another LTP game, these subgames also have
a nonempty core. Although G. Owen did not show that you can find a core-
clement of an LTP game via the dual program Dy, we let Owen(A, w, p) denote
the set of all core-elements that we can find in this way:

Owen(A,w,p) = {((zpm + p)"w(i))ien| (2a1, 2D) € Ogn}-

From Ogn # 0 it follows that Owen(A,w,p) # @ and Owen(A,w,p) C
Core(A, w, p).

The following example of an LTP situation with its two corresponding games
tlustrates the concepts introduced in this section.

Example 4.1 Consider the following LTP situation. There are two produc-
ers, N = {1, 2}. They work with two goods in their transformation techniques
and
-1 -1 el 1|

A=_ o gcu*(l):cd?):_1 it

The first column of A contains the technique of producer 1 and the second
column contains the technique of the other producer, so, D; = {i}, 71 € N.
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When each of the producers works on her own then she will transform her
single unit of the first good into respectively 2 and 3 units of the second good.
This producer already owns a unit of the second good and therefore v, ({1}) = 3
and v,({2}) = 4.

When the producers cooperate then they own w(N) = (2,2)" and their set
of feasible activity vectors 1s

Fon ={y eR’|y1 +y2 <2, y > 0}.

Producer 2 has a more efficient transformation technique than producer 1 be-
cause it generates a larger profit from the same amount of input, namely 2
dollars per activity level against 1 dollar per activity level for producer 1.

Py : max{4 + y; + 2y2|y € Fyn}

The maximal profit u,y = 8 is attained in y = (0, 2)%.,50 Opn = {10, 2)=1
The core equals Core(A,w,p) = {(b,8 — b)|3 < b < 4}.

For the dual game (IV, vq) it holds that vg({1}) = 3 and v4({2}) = 3. The
set of feasible solutions of Dy 18

Faun = {(2m,2p) € RS x R:|zm1 + 2p1 > 1, zm,1 + 2D2 > 2}

When we solve the program

DN : IDiI1{4 = 22:;\/{]1 =r QZM}g OO(ZDJ 17 ZD,'Z)! (ZJM,ZD) = FdN}j

then we get Ogny = {((2,0),(0,0))} and ugy = 8 = upn. Thus the Owen
set consists of only one point, Owen(A,w,p) = {(4,4)} and is contained in
Core(A,w, p)

d SEMI-INFINITE LTP SITUATIONS

In this section we will study semi-infinite LTP situations where the set D
contains a countable infinite number of transformation techniques. Without loss
of generality we assume that D = {1,2,3,... }. A semi-infinite LTP situation
(N, A, D,w,p) thus has A € RM*P (i) € Ri’f forall 2 € N and p € Rﬂf.
As opposed to the previous section, we do not put any further restrictions on A,
w and p.

Because of the infinite number of transformation techniques, the linear pro-
grams that determine the maximal profits of the coalitions and their dual pro-
grams are semi-infinite linear programs. Therefore, we will replace the maxi-
mum by the supremum in the definitions of Pg and u,g and the minimum will
be replaced by the infimum in the definitions of Dg and ugg. As opposed to
finite LTP situations, the set of feasible dual solutions Fzs may now be empty
and the same holds for the sets of optimal solutions Op,g and Ogs. The two
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games (NN, v,) and (V,v,) are defined as before, so, v, (S5) = upg for the LTP
game and vy(S) = ugg for the dual game. In this semi-infinite situation the
values u,s and ugg can take any nonnegative value as well as +00.

The Owen set, as defined in the previous section, 1s based on the dual program
for the grand coalition:

: GTzy + zp > AT
, T 1 i M D= P,
DN : 1nf{(zM+p) w(N) + zpB(N) Lir 50 o 5 0 }

In our definition of the Owen set we use that for finite LTP situations 1t holds
that z%ﬁ(N) — 0 for any optimal solution (zps, zp) of Dp. But this property
need not hold for semi-infinite LTP situations. When ugny = oo then an optimal
solution (zpr, zp) (if it exists) has z;,8(N) = oo but when ugy < oo then
z1,B(N') = 0. For this reason we will define the Owen set only if ugy < 0o:

Owen(A,w,p) = {((em +p)  w(4))ien| (2a, 2D) € Oan'}-

The next theorem states some nice propertics of the LTP and dual games.

Theorem 5.1 Let (N, A, D,w,p) be a semi-infinite LTP situation. Then
(a) Fyq = Fyn forall S C N,
(b) v, and vq are monotonic games; and

(c) vp(S) < wvg(S) forall S C N.

Proof. For the firstitem, by definition Fys = {(zar, zp) € RY xRP| GT zpr+
zp > ATp} = Fyn forall S C N.

To show the second item, let S C T' C N, then w(S) < w(T) and B(S) <
B(T). So; By = {y €' R2|Gy £ -wll), y < B(S);, y = 0} C Fyr
and therefore v,(S) = sup{p’ (w(S) + Ay)|y € Fps} < v,(T). From the
first part of this proof it follows that Fys = Fgr and together with w(S) <
w(T) and B(S) < B(T) this implies that v4(S) = inf{(zp + p)Tw(S) +

ZLB(S)| (2m, 2D) € Fas} < va(T).

Finally, for the third item, let S be a coalition of producers. If Fyg = ()
then v,(S) < oo = v4(5). Otherwise, take feasible solutions y € Fps and
(2m,2p) € Fys. Then p" (w(S) + Ay) = p"w(S) + y" ATp < p"w(S) +
y' (GTzp+2p) = plw(S)+21 Gy+2Ly < pTw(S)—f-zEw(S)ﬁ-z’f?ﬁ(S) =
(zapr+p) T w(S)+25B(S) and from this it follows that v, (S) = sup{p” (w(S)+
Ay)|y € Fps} < inf{(2am +p)" w(S) + 2pB(S)| (2m, 2D) € Fus} = va(S).

Some relations between the Owen set and the cores of the LTP and dual
games are stated below.
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Theorem 5.2 Let (N, A, D,w,p) be a semi-infinite LTP situation. Then
the following two relations hold:

(a) Ifvg(N) < oo then Owen(A,w,p) C C(vy).
(b) If vy(N) = vq(IN) then C(vq) C C(vp).

Proof. Foritem (a), if Owen(A, w,p) = 0 then the result holds. Otherwise, let
z € Owen(A,w,p). Then there exists a solution (2, 27,) € Ogn such that
T =z + p)Tw(z) for all € N. By definition, ZieN e ZieN(Zj‘w +
p)Tw(i) = (2 + p)Tw(N) = (2} + p)"w(N) + ()" B(N) = va(N),
where (2),)TB(N) = 0 because vg(N) < oo. Second, (z5)'B(N) = 0
implies (2,)Y 8(S) = 0 because S(N) > B(S). Also, (2,2p) € Oan C
F;n = Fyg, where the last equality follows from Theorem 5.1(a). Thus,
Zies z; = (2 + p) w(S) = (21 +p) ' w(S) + (zb)Tﬁ(S) > inf{(zm +
p)Tw(S) + 2B(S)| (2rm,2p) € Fas} = v4(S). Hence, z € C(vg).

For item (b), if C(v4) = 0 then we are done. Otherwise, take an element z €
C(vq). By definition it holds that ) .. z; = va(IN) = vp(N). Furthermore,

> ies Ti > v4(S) > vp(S) by Theorem 5.1(c). We conclude thatz € C(vp).

A consequence of this theorem is that if v,(N) = vg(N) < oo then
Owen(A,w,p) C Core(A,w,p). We can now have Owen(A, w,p) = @ even if
vp(IN) = vg(N), as the following example shows.

Example 5.1 Consider the semi-infinite LTP situation (N, A, D, w,p),
where IV 1s a set of one player,

-1 —4 —k* "1]
Al " TP & 2 s 27 sl e Sl s Sad
1 $F972 (k+1)%/2 2]
i
wN) = | 0
2

Then

i& B
’Ud(N):illf{(Zn,[ +p)Tw(N)+zgﬁ(N) G ZM"'ZDEA D, }

2m 20, zp 20

k%zm1 + z2m2 + 2Dk
= 1ni ZM,1+23M,3+5+WZZD,I: elc Hice—rll- DL Tk
keD 2z 20, zp 20

=5,

where Fyny # 0, but Ogn = 0 and this implies that Owen(A, w,p) = (. There
is no duality gap in this example because v,(NN) = 5 = vq(LV)
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In case of a duality gap, v,(IN) < vg(IV), another relation between the Owen
set and the core exists.

Theorem 5.3 Let (N, A, D,w,p) be a semi-infinite LTP situation where
Up(N) < va(N) < 0o. Then Owen(A,w,p) N Core(A,w,p) = 0.

Proof. The proof of this theorem goes analogously to the proof of the first part
in Theorem 3.3.

Finally, we obtain the same result as for semi-infinite LP, namely, that if
vp(4V) is finite in a semi-infinite LTP situation then the core is nonempty. For
this, we need two intermediate theorems. The first one is a theorem by Karlin
and Studden ([3]), which we translated to semi-infinite L TP situations.

Theorem 5.4 Suppose that v,(N) is finite and that w;(N) > 0 for all
7 € M. Then there is no duality gap, v,(N) = vq(N), and the dual program
Dy has an optimal solution.

I'he second intermediate theorem shows that we have no duality gap, v, (V) =
va(N), and C(v,) # 0 if certain conditions hold.

Theorem 5.5 Ifw(N) € RY\{0}, p € RY\ {0}, w;(N) =0 = g& =0
forallk € D, pa* > 0 for all k € D, a* i Rff forall k € D and
vp(N) < 00, then vy(N) = vg(N), Ogn # O and C(v,) # 0.

Proof. If w;(N) > 0 for all j € M then together with v,(N) < oo and
Theorem 5.4 it follows that there is no duality g?_p and there exists an optimal
dual solution 2. Definez € RY by z; = (2 + p)" w(3) foralli € N. We leave
it to the reader to show that z € C(vy).

If wj(N) = 0 for some 7 € M then define My = {j € M| w;(NV) = 0}
and My = {j € M|w;(N)>0}. Then My # 0 and M, # (. Now the
primal problem can be rewritten to

“ur < wi(N), 1 € M.,
vp(N)_pTw(N)-Fsup{ZpTakyk E;eé)gjyk < wj(N), J + }
keD =

and similarly, we obtain for the dual problem

- > ieM, 952 > pTa*, ke D,
vg(N) = p’ w(N) + inf 2iw; (V) JEM 59 v =
jezﬂ;+ o 7% 20,36 My

where we observe that the assumptions imply that for all & € D there exists a
7 € M, such that gf > 0. Thus, the latter problem is feasible. Let e/ denote

the jth unit vector in RM+ with ef =11l = 3 and ef = 0 otherwise. Define
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the cone K by

hi k - M
K, = cone (({gj }jEM+>k€D ; (ej)jeﬁvf+) = R++:

where the last equality follows from g¥ > 0 for all j € M, k € D. But then

: M
{wj(N)}jeMJr € int (K;) =R 7,

where int (K ) denotes the interior of the cone K, because w;(N) > 0 for all

7 € M. Together with v,(/N) < oo and Theorem 5.4 it follows once again

that v, (V) = vg(/N) and there exists an optimal dual solution 2. To obtain

an element of the core C(vp), we define z;, = z; forall y € M, and z; = 0

otherwise. Also, define z € RN by z; = (z + p)Tw(i) tor all's. € IV.. Eirst,

Y zi=Y (z+p)Tw(i) = (z+p)T w(I)

1iEN €N
= Z zjw;(N) +pTw(N) = vg(N) = vp(NN)
jeEMy

Second, let S C N, .S # 0, be a coalition of players. Notice that w;(N) =
for some 5 € My implies that w;(S) = 0 for all S C N because w(S)
> _ics w(z). Then,

(z+p)" w(S) =p"w(S) + ) %w;(S)
JEM

| o

. o >
ZpTw(S)-an Z z;w;i(S) ZJEM+ g;zj 2 p av, ke,

JEM 4 o
k .
o B TEK Zk p 97 Yk S wj(S), 7 € My,
— D w(S)—I—sup{Zpayk yzeo ] 7
keD
> p' w(S) +sup {p”" Ay |Gy < w(S); yr =0if k ¢ D(S); y >0}

= uy(.5).

We conclude that ) ;¢ z; = (2 + p)" w(8) > vp(S) and hence, z € C(vp).

With the help of these two theorems we prove our main result about semi-
infinite LTP situations, which states that if there exists a finite upper bound for
the maximal profit that all producers together can obtain then the core of the
LTP game 1s nonempty.

Theorem 5.6 Let (N, A, D,w,p) be a semi-infinite LTP situation and let
(N, vp) be the corresponding LTP game with v,(N') < co. Then C(v,) # 0.
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Proof. In this proof, we consider one-by-one all the possible semi-infinite LTP
situations that we may come across. In cach of these situations we show that

either v,(N) = oo or C(vp) # 0.

First, suppose that w(/N) = 0. This implies that w(S) = 0 for all coalitions
S. No coalition of producers can transform any goods or sell any on the market.
Hence, v,(S) = 0 for all S and C(vp) = {(0,...,0)}.

Second, consider the situation where w(/N) # 0 but every transformation
technique k& needs a good j for which w;(/N) = 0. Let h(t) describe for all
bundles of goodst € Rf those goods that are available in a positive quantity, so,
h(t) = {j € M|t; >0}. Then h(w(N)) 2 h(g*) for all £ € D means that
cach technique k£ needs some unavailable goods. Consequently, no coalition S
can transform any goods. The only thing it can do 1s sell its goods at the market
and obtain v,(S) = p’ w(S). From w(S) = >, gw(i) we derive that the
core consists of a single element, C(v,) = {(pTw(l), ... ,p" w(n)) }, where
INF=AN2 - eyl

Assume now that w(N') # 0 and that some transformation techniques can
be used because they only need goods that are available, h(w(N)) D h(g*)
for some £ € D. All the coalitions of producers want to maximize their
profit and therefore they will restrict their transformation (o those techniques
that can be used because the other techniques will not generate any profit.
Therefore, without changing the values of the coalitions we remove all the
transformation techniques &k for which h(w(N)) 2 h(g*). If this removal
implies that D(S) = @ for some coalition S then define v, (U) = p!w(U)
for all U C S. For convenience, let (N, A, D,w,p) also denote this reduced
semi-infinite LTP situation.

This leads us to the next situation where w(N) # 0, h(w(N)) D h(g*) for
all k € D, and also p = 0. If all the goods have a price of zero then v,(S) = 0
for all coalitions S and consequently, C(v,) = {(0,...,0)}.

If w(N) # 0, h(w(N)) D h(gF) forall k € D, p # 0 and p’ a* < 0 for all
k € D then no transformation technique gives a positive profit. For all optimal
solutions y € Ops it holds that pTaky, = 0 for all techniques k. Hence,

vp(S) = pTw(S) for all coalitions S and C(v,) = { (pTw(1),... ,p"w(n))}.

Now assume that w(N) # 0, h(w(N)) D h(g*) forall k € D, p # 0 and
pla® > 0 for some k € D. In the previous situation we have seen that if
pTa® < 0 then in the optimum p’ a®y, = 0. This technique k will not have
any influence on the profit and so, removal of these techniques will not change
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the values of the coalitions. Also in this case, we define v, (U) = p" w(U) for
all U C S if the removal implies that D(S) = 0.

In the next situation, we consider w(N) # 0, h(w(N)) D h(g®) for all
ke D,p+#0,p'a* > 0forall k € D and a* € Ri’f for some k& € D. Notice
that for this technique k& we have a® € Rf \ {0}, because a® = 0 implies
pTa® = 0, which is in contradiction to pTa® > 0. Ifa® € Rff then g = 0,
which means that technique k needs no input goods to generate the positive
profit pTaf. Consequently, the coalition IV of all players will set the activity
level yy, to infinity and so, v,(IN) = co. The total profit is infinitely large. We
may say that we are in heaven because all the producers can take as much of
the profit as they want.

Finally, we consider w(N) # 0, h(w(N)) D h(g*) for all k € D, p # 0,
pTak > 0 forall k € D and a* ¢ Rﬂ‘f for all K € D. Notice that pTa® >
0 implies that a®* ¢ RY for all k € D. Together with a® ¢ Rf we get
that each vector a® contains at least one positive and one negative element.
Each transformation technique needs at least one input good to produce at least
one output good. Now, two situations may occur. Either we have vp(N) =
vg(N) = 00, heaven once again, or v,(IN) < oo. In the latter case, Theorem
5.5 shows that the core 1s a nonempty set.

6 CONCLUSIONS

We studied the Owen set, the core and relations between these two sets
of two types of semi-infinite situations. These are situations involving linear
production (LP) and those involving the linear transt ormation of products (LTP).
We showed that if the underlying primal and dual problems of the grand coalition
of players have the same value, that is, there is no duality gap, then the Owen
set is a (possibly empty) subset of the core. Otherwise, the Owen set and the
core have nothing in common. In the case of LTP situations we had to exclude
situations where the underlying dual problem takes the value infinite. Finally,
we showed that if there exists a finite upper bound of the maximal profit then
the core 1s a nonempty set.

After completing this study, some questions remain. Throughout the paper
we use cones consisting of real numbers like R" and Rﬂ‘_’{. What would happen
if we replace these cones by more general cones? How do the results change
if we consider an infinite number of producers (implying an infinite number
of production techniques)? And finally, what happens if we assume that the
set of production techniques is no longer countable? We intend to study these
questions in the near future.
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