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Abstract

We use a simplified but still quite realistic model to the nuclear reactor fuel manage-
ment problem to search for optimal fuel loading schemes. Several adaptations and model
adjustments are described that make the model tractable for a general nonlinear mixed-
integer solver. Results are compared with results from pairwise interchange optimization.
Use of solutions from nonlinear mixed-integer optimization as starting values for local
search heuristics leads to powerful optimization methods.

1 Introduction

An important issue in the operation of a nuclear reactor is the design of a reloading pat-
tern for each cycle. Usually, a number of fuel bundles is discharged at the end of a cycle
(EoC), and the same number of fresh bundles is inserted in the core, while all bundles are
reshuffled to a configuration that is optimal with respect to some performance criterion.
There are several strategies for reloading. We consider the situation in which at each
reloading, the number of discharged bundles is the same, being one third or one fourth of
the total number of bundles.

Having fixed the number of discharged bundles, it is possible to simply measure the
remaining reactivity of the bundles at each EoC, and then find an optimal pattern using
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a subset of these bundles together with some fresh bundles. Another approach is to ap-
ply the same reloading pattern every year. After repeating this for a number of years,
the reactor will reach an equilibrium state, in which (ideally) each cycle has the same
characteristics. In this paper, we will consider such an equilibrium cycle strategy. A
recent study comparing this equilibrium strategy to the more usual strategy of successive
re-optimization at each EoC is made by Yamamoto [17].

Several optimization criteria can be chosen. One way is to search a loading pattern
for which the cycle length will be maximal before the reactor becomes sub-critical, i.e.
the number of neutrons produced is less than the number of neutrons lost by absorption
or leakage from the reactor, which stops the reactor operation. Another approach is to
minimize the leakage out of the core. In this paper, we fix the cycle length and search for
a pattern for which the reactivity of the core at EoC is maximal, measured by a property
called the uncontrolled effective multiplication factor. All the stated objectives are in
some sense equivalent in an equilibrium cycle [17]: a core with maximal EoC reactivity,
also would have the longest possible cycle length before becoming sub-critical. Further-
more, the leakage factor is correlated with the effective multiplication factor.

In the literature different methods to solve the reloading problem can be found. Sev-
eral papers describe solution methods using genetic algorithms, simulated annealing [6],
pairwise interchange and other neighborhood search heuristics [2]. Since the problem can
be stated as an assignment problem with nonlinear side-constraints, it can also be viewed
as a mixed integer nonlinear optimization problem. Variants using linear and nonlinear
programming to solve subproblems have been applied in [16, 15]. Recent results have
been published on a mixed-integer linear programming (MILP) approach [12], and also
on a mixed-integer nonlinear programming (MINLP) approach [13, 18].

In our paper, we compare a pairwise interchange heuristic to algorithms using MINLP
solvers. Some years ago it would have been impossible to solve the whole model as one
big nonlinear discrete optimization problem. At present, NLP solvers have been improved
to the extent that the results for realistic models compare favorably with combinatorial
search heuristics. In addition, with this approach it is well possible to include continuous
optimization problems in a natural manner. These include for example the.addition of
burnable poisons and the insertion of control rods.

This paper is organized as follows, In Section 2, we will give some general physical
background and review neutron diffusion theory. In Section 3, this physical description
is used to develop a mathematical optimization model and some special characteristics of
the model are discussed. Section 4 describes the implemented MINLP procedure. Section
5 deals with computational results on some test problems.

2 Physical description

In a nuclear reactor core, the desired energy is obtained by a controlled fission chain re-
action. The fission of a nucleus into two smaller nuclei is induced by the capture of a free
neutron, and produces a large amount of energy, together with some new free neutrons.
The state of the reactor depends on the number of free neutrons in the core. The neutron
flux therefore plays a major role in models describing the reactor processes.

A popular way to describe the neutron flux in the reactor core is to consider the produc-
tion, absorption and transport of neutrons as a diffusion process. This approach forms
the basis of the model used in this paper, and will briefly be discussed here. More detailed
descriptions can be found in e.g. [4, 10, 11].



2.1 Diffusion equations

The diffusion model describes how neutrons are produced, absorbed, and how they diffuse
everywhere in the core. The diffusion coefficients and production and absorption rates
depend on the material in the core, and also on the ’energy-level’ of the neutrons. Neutrons
at a higher energy have a higher diffusion coeflicient, and have different probabilities to
undergo certain reactions such as collisions with nuclei. Although the energy of the
neutrons in the core is spread over a very wide interval (from about 0.001 eV up to 10
MeV), we may divide them roughly in two groups. Group 1, the fast group, contains
neutrons at high energy (> 1 eV). Neutrons that are released during fission belong to
this group. Group 2 contains the neutrons at lower energy. It is called the thermal
group because the energy is comparable to the thermal energy of the surrounding nuclei.
Thermal neutrons arise when fast neutrons collide with nuclei, thereby losing much of
their energy. This process is called scattering.

The rates at which neutrons are absorbed by nuclei to cause different reactions are in
nuclear theory represented by macroscopic cross-sections 0 (dimension cm™1)!. These
can be interpreted as the probabilities that a neutron will take part in certain reactions
per unit path length when moving through the core. The cross-sections depend on the
composition of the core. Therefore they are position-dependent. Since the fuel is burning
up during the operation of the plant, the cross-sections are in fact also time-dependent,
but we first consider an idealistic core in which the core-composition is independent of
time. (Note that this does not mean that the neutron flux is invariant in time.) Let X be
the space of the core and the surrounding water, in a coordinate system that has yet to be
specified, then for any position z € X we distinguish the following types of cross-sections:

o Q}(z), Q}(z) (dim. em™): Fission cross-section of the fast and thermal group, i.e.
the probability per unit path length that a neutron in the fast or thermal group will
be absorbed by a nucleus to cause a fission reaction.

o Ql(z), Q%(z): Absorption cross-section of the fast and thermal group, i.e. the
probability per unit path length that a neutron in the fast or thermal group will be
absorbed by a nucleus, either to cause a fission reaction or due to another capture
process (except for scattering, see below).

e Qg (2): Downscattering (or slowing down) cross-section from the fast to the thermal
group, i.e. the probability per unit path length that a fast neutron is absorbed by
a nucleus and immediately re-emitted at an energy level in the thermal group. It is
assumed that we can neglect the scattering in the opposite way.

We further introduce the following parameters:

e DYz), D?(z) (dim. cm): The position-dependent diffusion coefficients for the fast
and thermal group.

o v1, va: The average number of fast neutrons, produced by fission reactions that are
induced by neutrons in the fast and thermal group.

e v1, vy (dim. cms™1): The average neutron speed in the fast and thermal group.

Given those parameters, the neutron flux in the core can be described by a set of diffusion
equations. This neutron flux is time-dependent, since it can increase or decrease when
the reactor is not in a stable (’critical’) state. We define

' In physical papers and textbooks, the notation ¥ is used. Since this can lead to confusion with the symbol
of summation, we use {2 instead.



o ¢!(z,1), ¢*(z,t) (dim. em~2571): The neutron flux for the fast and thermal group.
The neutron flux is defined as the total rate at which neutrons pass a sphere with
unit cross-section area.?

Now, the set of time-dependent diffusion equations for the fast and thermal group can be
written as (see [4]):

%%13(?”52 = Vg DY (2)Veot(e,t) + QL(z)¢' (2,1) + Qs(2)¢' (z,t) =
N} (2)6 (2,8) + s} (2)8% (3, ) (1)
L9l _ g, . DX () Va4 (a,t) + Q2(e)42(x, 1) = Q,(2)¢ (s, 1). 2)

Va2

These equations are stated in the general form
rate of change — diffusion term + neutron loss = neutron gain.

When the neutron gain by production and neutron loss by absorption and diffusion are
exactly equal, then the flux becomes independent of time, and the reactor is said to be
critical. This will in general not be the case. However, under certain conditions, we may
assume that ¢(z,t) can be separated into T'(t)¢(z), giving time-dependent relations, that
are not discussed here, and space-dependent equations. These space-dependent equations
can only have solutions if we introduce an additional degree of freedom in the system.
This is obtained by introducing an eigenvalue A to the system:

— Vo D (z) Vet (z) + [Qh(z) + Qu(2)] ¢1(2) =
A[mQ(=)d (2) + Q3 (2)6*(®)];  (3)
— Vg - D) Vaed?(z,1) + Q2(z)d%(2,t) = Qq(z)d (2,1). (4)

The eigenvalue is placed such that it has a nice physical interpretation. We define the
effective multiplication factor as follows:

pelf total neutron production rate

= : (5)

total neutron loss rate

Th
en 1

Leff”

The thermal group diffusion equation (4) is eliminated by neglecting the diffusion
term. This is possible since the neutron leakage in the thermal group is relatively small
[4]. Equation (4) is then rewritten as

A=

Ple) = gg—g¢l<w>,

which can be substituted in (3) to finally obtain the eigenvalue differential equation
Vo D @)Vagl(z) + QL(a)é(2) + Qu(2)éi(e) =
1 Qs (z
o7 [poe) + w8 s, ©

The thermal flux ¢?(z) is eliminated, so we only need to continue with ¢*(z). For ease
of notation we will simply define

¢'(z) — ¢(=).

2This is unlike the flux in other areas of physics, which is defined as the net flow rate per unit area in a
given direction.




Since (6) is a one-group approximation of the two-group diffusion equations, it is known
as the 1% group diffusion equation.

The introduction of an eigenvalue in (6) introduces the existence of infinitely many
eigenfunctions, and thus infinitely many solutions. However, the eigenfunctions are or-
thogonal. For a one-dimensional core, (6) is a Sturm-Liouville equation, which has the
property that the eigenfunction corresponding to the largest value of £/ is nonnegative
over the whole space X. For the more-dimensional case, the same property can be moti-
vated by physical reasons. The eigenfunctions corresponding to the other eigenvalues are
irrelevant for our study; they are not dominant in the system.

2.2 Some simplifications

We need to simplify (6) in order to derive our nodal model. First, we will assume that the
diffusion coefficient D*, as well as some cross-sections are position-independent. The fis-
sion cross-section €1 strongly depends on burnup and is very position-dependent. The ab-
sorption cross-sections, especially for the thermal group, also depend on burnup. However,
in the 1'/» group approximation, the downscattering of neutrons is the most important
mechanism of removing neutrons since we neglect thermal diffusion. This downscattering
is almost independent of burnup since it is mainly determined by the reactor coolant. So,
we redefine:

D'(z) = D', Q,(z) = Q,, QL) = QL Q2z)— Q%

We now use Q}(z) and Q% (z) to define the new variable £ (z) in the following way:

E°(z) = (mz}(m) + uznﬁ(m)g—;> /(@ + Q). (7

The variable k%, the infinite multiplication factor, is interpreted as the ratio of lo-
cal neutron production and absorption. The eigenvalue differential equation (6) then
transforms to

~LiViE) + $a) = k= (e)d(e), Q

Ly = v/ DY(Q% + &),

known as the fast diffusion length.

with

2.3 Boundary values

The eigenvalue differential equation (8) requires boundary conditions. The simplest
boundary condition is on the outer region of the core; we require that

#(z) = 0, z & boundary of X. (9)

We sometimes apply symmetry of the core and consider only a quarter or an octant of
the core; in that case, the derivative of the flux should vanish at symmetry edges:

O¢()
Oz

With these boundary conditions, ¢(z) is still not fully determined, since we may multiply
it with a constant. This freedom is used to fix the power, which is proportional to the
product k% (z)¢(x)

= 0, =z on symmetry-edge. (10)

=] — Pe
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where
e P, (eVs™1) is the required total power over the whole core;

o py (eV) is the amount of energy released per fission.

2.4 Fuel burnup

In Section 2.1, the cross-sections were assumed time-independent. After that, we used
separation of variables to find a steady-state estimation for the flux, being the solution
of a time-independent eigenvalue differential equation. In this section, we will study
time-dependence on the long term due to fuel burnup, that is, due to the changes in
cross-sections.

During reactor operation, the fission reactions cause burnup of the fuel. The amount
of fissionable material, and therefore the fission cross-sections Q1 and Q2 decrease. The
absorption cross-sections also change. On the one hand they decrease because of the
decreasing atom density of fissionable nuclides. On the other hand they increase because
the fission products absorb neutrons, without causing a fission or scattering reaction.
Moreover, most of the material is not fissionable and will not change in time. We assume
for the moment that we may neglect the changes in absorption cross-sections and only
concentrate on changes in the fission cross-sections. So, we introduce time dependence on
the following variables:

Qb(a) > Q(2,1), D) = G (w,1), K = k¥ (1), £(2) = K(,1), B(a) = B(,1),

where t ranges from the begin of a cycle (BoC) to EoC. The decays of Q}(w, t) and Qf. (=,1)
are described by

%Q}(w,t) = —0.0}(z,1)¢(z,1), (12)
%Qﬁ(m,t) = —0,(x,t)é(x,1), (13)

where
e 0, (dim. cm?) is the so-called microscopic cross-section.

From (12) and (13) we can derive a description for the decay of k* (z,t) by using (7):

2he(e,t) = (MEQHe1) + g0 0)S) / (Qh + Q)
= 0o [(MO(2,1) + m(e,0)%) / @ + )] ¢y (1
= —0k™(z,t)¢(z,1).

This differential equation is supplied with a boundary condition in time. If the initial
configuration of the fuel is known, we can specify the initial value of k*(z,t), which is
specified by the initial fuel distribution and denoted by k/"es":

k (2, 0) = kImeeh (). (15)

In this case no bounds on the end time tz,c are needed. In case equilibrium cycles are
studied, the boundary conditions become more complex. In that case, part of the core is
initiated with fresh fuel, but k% (z, 0) in the remaining bundles depends on k*° (y(z), tg.c),
with y(«) the place of the fuel in the previous cycle:

5 (2, 0) = kIresh(z) when the fuel at position x is fresh; (16
(2,0) = k*(y(z),tEoc) when fuel is moved from y(z) to z. )



Obviously, since k™ now is time-dependent, the flux distribution also is time-dependent, so
that we have to redefine the eigenvalue differential equation (8), the boundary conditions
(9), (10) and the normalization constraint (11) over the whole time-interval t = [0,{goc]:

1
—LiVig(z,t) + ¢(x,t) = 7k (@ )8l 0), (7
t
#(z,t) = 0, =z € boundary of X, (18)
ngéa;,t) = 0, =z on symmetry-edge, (19)
P,
Dk®(2,t) de = —— e, 2
J ety e = (20)

2.5 Derivation of the simplified model

The model as stated in (14) and (17) with boundary and normalization conditions (16),
(18), (19) and (20) for a fixed pattern can be discretized and solved using finite difference
algorithms. The starting value of £ (x,t} depends on the fuel configuration at the be-
ginning of the period, which in turn depends on the loading pattern. An extra difficulty
is that we are performing a search for the best of all possible reloading patterns, so the
loading pattern is unknown in advance. This makes all coefficients k*(z,0) variable, re-
sulting in a system of equations with a large number of nonlinear and nonconvex terms.
In this paper, we make use of a model based on the theory of Green functions [4, 9, 11].
The key idea of this approach is that we can write the solution of differential equation
(17) with boundary conditions (18}, (19) in implicit form:

b(z,t) = ;%/;{G(m,x’)km(x’,t)(ﬂi+Q,)¢(m’,t)dm’ (21)

where the Green function G(z,z') (dim em™2) can be interpreted as the probability
that a neutron produced at 2’ will be absorbed at z. The function G depends on the
left hand side operator of (17) and on the boundary conditions, and can be numerically
approximated beforehand using eigenvalue expansion methods.
Equation (21) will be discretized. The function G(z,2') is then replaced by a neutron
interaction matrix. However, since there is some freedom in how to approximate G(z, z')
and how to derive from G(z,z') the discrete version G; ;, a much rougher discretization
is possible than with direct discretization of (17), provided that some effort is spent in
finding a good approximation of G; ;. For convenience, we chose the discretization to
coincide with the nodes in the core. Suppose the core consists of N nodes. We define the
probabilities G; j, 4,7 = 1,..., N:

¢ G; j: the probability that a neutron produced in node j will be absorbed in node 1.

The infinite multiplication factor £°° and flux ¢ are averaged in a nodal way. Furthermore,
the time-axis is discretized; we divide the core cycle into T'—1 equal time periods of length
At, and calculate k% and ¢ only at T' different times. The discrete versions of k¢, k®
and ¢ are then defined as:

o k2: The effective multiplication factor at time .
e kf5: The average infinite multiplication factor in node ¢ at time ¢.
e ¢;¢: The average neutron flux in node 1 at time ¢.

The integral equation (21) will then result in the set of equations

N
1
it :WZGi,jk;;qu,,, i=1,..,N, t=1,...,T (22)
t j=1



The power fixing constraint (20) now becomes

N P,
o ] :__._....f.____._ == er
;kwm PRGIETRE t=1,..,T (23)

The decay equation (14) is replaced by the forward discretization
kfGer — ki = —0oaAtkidie, i=1,.,N, t=1,..,T-1 (24)

Resuming, the crucial issue in the model is the derivation of the matrix G; ;. There
are several ways to compute G (see e.g. remarks in [4, 14]). Different approaches are
described in e.g. [6] and [11]. In our paper, the method described in [6] is used.

2.6 Eigenvalues and eigenvectors

The nodalized integral equation (22) has solutions corresponding to a spectrum of eigen-
values. When we define, for fixed ¢, the diagonal matrix K containing the elements k{°,
and denote with ¢ the vector containing ¢;, 1 = 1, ..., N, then equation (22) can be written
in eigenvalue equation form (index # is omitted):

k¢ = GK.

As already noted at the end of Section 2.1, it is proven for the one-dimensional case
and expected for the more-dimensional cases that the eigenfunction corresponding to the
largest k°// is everywhere nonnegative in the continuous differential equation (17). This
therefore also holds for the integral equation (21), and we assume that it is also valid for
the discretized equation.

The consequence is that, using the restriction that ¢; ; is nonnegative everywhere, we will
find the principal eigenmode. This is the only one in which we are interested.

3 Mathematical model

In this section, we will develop a nodal core model that describes the reloading patterns
and the corresponding evolution of the core from BoC to EoC, where the physical charac-
teristics are calculated for each fuel bundle separately. The evolution of the core during
a cycle is computed in a fixed number of discrete time steps. We do calculations on
equilibrium cycle reload patterns, which means that after each cycle, the same reloading
pattern is applied. At each EoC, the same fixed number of old fuel bundles is discharged,
(typically one fourth), which are all of the same age. The advantage of this is approach
is that, ideally, the behavior of the reactor will be the same during all subsequent cycles.
The objective of our optimization is to maximize the effective multiplication factor at
EoC, while operational constraints are satisfied. In our case, these consist only of safety-
limitations, limiting the maximal power density in each node.

The necessary equations can be divided into four different types. The first class of
equations describes the evolution of the core during the cycle, given the infinite multi-
plication factors at BoC. The second class specifies a loading pattern. The third class
describes the reloading operation itself; here the equilibrium cycle property is specified.
The fourth class are the operational constraints, We will discuss the four types in sequence.

Before proceeding, we have to specify the problem dimensions. The following size-
constants are used:



e N - the number of nodes in the core;
o M — the number of discharged bundles at EoC;
o L - the number of age groups in the core; note that L = N/M;

o T — the number of time steps. A cycle is divided in T — 1 time-intervals of equal
length. The first time step describes the state of the core at BoC, the next time
steps describe the core at the end of the subsequent time intervals.

3.1 Core evolution equations

The physical state of the reactor core is computed using the model as derived in the
previous section, that is based on 1% group diffusion theory. From Section 2.5 we have
the variables

o k{3, the average infinite multiplication factor of the bundle in node ¢,
o ;¢, the average fast neutron flux at node ¢, and
. kf” , the effective multiplication factor of the core.

To simplify the model, we normalize the power by introducing the variable

0 +Q
Ri,t = ¢i,t#——--———f( P )

We further introduce -
a

T omelra)

Because of our assumption that (Q} + Q,) is constant, we can replace ¢ with R in (22),
and we get the core evolution equations from (22), (23) and (24):

N
kfffR,"t = ZG;,jk‘?;Rj,g, i=1,.,N,t=1,..,T,
J=1

X 00
kfter — ki

—aPAKSR(i ), i=1,.,N t=1,.,T—-1,

N
Y kSR, = 1, t=1,.,T
i=1

3.2 Loading pattern specification

‘We now turn to the variables and equations specifying the equilibrium cycle reload pattern.
At each EoC, the same number of old fuel bundles is discharged, and all those removed
bundles are of the same age. When, for example, a quarter of the bundles is removed
at each EoC, all those bundles have spent 4 cycles in the core. Furthermore, the initial
configuration of the core will be the same at each BoC. A handy way to describe the life
of the bundles in the core during L cycles is the trajectory notation [7}. This notation
describes how the bundles are moved during reloading. For example, suppose we have 12
nodes in the core, and at each EoC, three bundles are discharged. We then may have the
following trajectory representation:

4 - 6 = 8 —= 10
2 = 3 =1 = 5.
7 —= 11 = 9 — 12

From this representation, we can for example read that nodes 4, 2 and 7 always contain
fresh bundles. During a reloading, the bundle from node 10 is discharged, the one from



node 8 is moved to node 10, a fresh bundle is inserted at position 4, etc.

To be able to formulate the problem in optimization context, we introduce binary vari-
ables, which may take values either zero or one and describe the trajectories. We need
the set of variables

Tigm, 1=1,., N, £=1.,0, m=1,..., M,
that are defined in the following way:

. __J 1 ifnode ¢ will contain the bundle of age £ from trajectory m,
Fidm =1 0 otherwise.

In the above example, among the nonzero variables are for example ®41,1, ®s,2, and
T12,4,3. We denote the index m as the ’bundle-number’ of the bundle. Of course, we
need to describe the necessary properties of the variables ; ¢, in a set of equations. To
do this, it suffices to specify that each node contains exactly one bundle, and that each
bundle is located in one node:

L M
Zzzi,l,m =1, ¢=1,..,N;

=1 m=1
N
Swigm =1, £=1,.,L, m=1,..,M;
=]
ziem € {0,1}.

3.3 Reloading operation

After specifying the variables and restrictions that describe the core evolution and the
loading pattern respectively, we have to merge them by equations that specify the reload-
ing operation. That is, we have to specify how the infinite multiplication factors at BoC
depend on the EoC state of the previous cycle.

The reloading equation below consists of two terms. In the first term, we use the variables
#1,1,m to determine whether node ¢ contains a fresh bundle after reloading, and assign to
k§9 the value k/7e*% if this is the case. If not, then the second term determines from &; ¢,
which bundle (£, m) is in node 7. It then finds the node where this bundle was located at
age £—1 and assigns the k7% of that node to k{3 of the current node. The total reloading
equation is given by

M L M N
— h ;.
kf?l - Z mi’l’mkfres + Z Z milllm ijxl—lymk??fl‘: 1= 11 sy N
mz=1

£=2 m=1 j=1

As an alternative, one might write the reloading equation in the simpler format

N N
Z"E-e kS = Ej:l mjpf—l,mkffl” {=2,.,L,m=1,..,M,
£ i,6,mig 1 kjresh’ £ = ]_, m:l,...,M-

However, although the integer solutions of the two formulation coincide, the second for-
mulation allows fractional solutions with very unrealistic objective values.

10



3.4 Safety limitation

Not all loading patterns are allowed. For safety reasons, it is required that the maximal
power in one bundle is not too large. This power peaking constraint is applied for every
node and at any time, and is stated as follows:

flim

k,?;Ri)t S T, i:l,...,N, t:l,...,T,

where f%™ is a value greater than 1.

3.5 Objective

The objective of the optimization is to maximize the effective multiplication factor at
EoC:
max k;ff .

3.6 Octant symmetry

We can merge all the equations that are obtained in the above sections into one model.
When doing so for a whole core, we may get a huge problem. However, the geometric
structure of the core suggests that we may assume symmetry, so that we only need to
model a part of the core. It is usual in literature to assume at least quadrant symmetry,
and often octant symmetry is assumed. In our implementation, we restrict ourselves to
an octant core. This has some consequences for the model.

The most important difference concerns the bundles on diagonal positions (cf. Figure 1).

Figure 1: Octant symmetric core.

Suppose a bundle from a non-diagonal position has to be reloaded into a diagonal position.
Because this diagonal position belongs to two octants, there are in fact two candidates
from different octants for placing at the diagonal position. To solve this problem, we
require that a bundle is assigned to two diagonal positions simultaneously, with half the
volume in one position, and half the volume in the other position. When in a next cycle
these two half bundles are placed in one new node, the composed bundle has at BoC
average properties of the two diagonal bundles at EoC. This is modeled by introducing a
volume vector V = Vi, ..., Vi, where V; is 1/2 if 7 is a diagonal node, and V; is 1 for all
other nodes. Note that now the number of different ages in the core L times the number of

11



fresh bundles M is no longer equal to N, the number of nodes in the octant core. Instead,
N
LM =) V.
i=1

This has some consequences for the model equations. The restriction that each bundle is
in exactly one node, now is replaced by the restriction that each bundle is in one or two
nodes with total volume 1: .

Z Vizgigm = 1.

i=1

After reloading, a bundle is given the average properties of its predecessors:

M L M N
" A h e ;
k"o»ol = Z a’illlm]"fres + Z Z xi,l.,m Z ijle_lymkj?,oT’ t= 1) ey N

m=1 £=2 m=1 i=1

Moreover the power normalization has to be performed on the octant core:

N
> VikiRip = L.
=1

The way of dealing with diagonal elements as described here introduces small errors in
the solution. Suppose that a fresh bundle is placed in node 2 of the core in Figure 1.
For symmetry reasons, the corresponding node in the gray octant also contains a fresh
bundle. Both bundles have exactly the same characteristics at the first EoC. Now suppose
they have to be replaced to diagonal position 1 and 14. Since bundles cannot be split,
one bundle is placed in 1 and the other in 14. At the second EoC, they are replaced to
node 9 and its gray counterpart. For symmetry reasons, it is assumed that the bundles
in node 9 and its gray counterpart are exactly the same, which is in our model achieved
by averaging the bundles from node 1 and from node 14 at EoC. In reality however, the
bundle that has been at node 1 will have a burnup different from the bundle that has
been in node 14. To reduce the error as much as possible, we require that the two parts
of a diagonal bundle are in two adjacent nodes; in Figure 1, this means that node 1,7 and
11,14 respectively contain the same fuel element.

3.7 Model summary

The complete model for the octant core is listed below. For a larger part of the core, the
model structure is the same, except that then all volumes are equal to 1.

max k;ff
o kR kedt
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The above model differs from the model as used in [13] in mainly 3 ways. First of
all, the model in [13] had k®# fixed to 1, and instead the burnup of the bundles was
introduced as an optimization variable. Secondly, there was no distinction between the
bundles of the same age. However, it is clear that a fresh bundle in the centre has much
different characteristics at EoC than a fresh bundle at the boundary, so this was really
a rough estimation. Thirdly, there was no division of the cycle into time-steps, but the
power distribution was assumed to be constant during the whole cycle.

4 Mathematical Optimization strategy

Mathematical optimization is a powerful tool for optimization of a given objective func-
tion, subject to a number of constraints. A mathematical optimization algorithm searches
for an assignment of the variables such that the constraints are satisfied and the objec-
tive function value is (close to) optimal. Common mathematical optimization strategies
in loading pattern optimization are simulated annealing and other neighborhood search
heuristics. Those methods jump from pattern to pattern, and evaluate the physical vari-
ables in each fixed pattern.

In our approach, the problem is initially solved as a system of equations, where all the
equations listed in the model (Section 3.7) are regarded as one large system, except for
the integrality constraints @i¢m,m € {0,1}, which are relaxed to the range constraints
z; 0.m € [0,1]. During this process, one cannot speak about ’evaluating a pattern’, but
both the physical and assignment variables are varied simultaneously in one system to
find a solution that satisfies the equations and has an optimal objective value. This solu-
tion, called the relazed solution, need not be a valid loading pattern, as some z-variables
may be fractional. In physical terms, this may be interpreted in some sense as a ’partial
loading pattern’, in which parts of bundles are mixed up in several nodes. We need some
additional work to end up with an integer solution, where all z-variables are 0 or 1.

13



When an optimization model satisfies some conditions regarding convexity and continu-
ity, it can be shown that the relaxed solution is a global optimum. Using sophisticated
rounding and branching techniques, one then ends up with the global optimal loading
pattern with respect to the used model.

Unfortunately, our problem is not convex, and it seems to be extremely difficult to guar-
antee that a given solution is the global optimum. Nevertheless, rather good solutions
may be found within reasonable time. In the next section, we will discuss the method
that has been used in this paper.

4.1 Mixed integer nonlinear programming using DICOPT

Our model is a mixed integer nonlinear optimization model. To solve it, we used the
solver package DICOPT, running within the high-level modeling language GAMS [1]. In
GAMS, an optimization problem can easily be stated, without concerns from the user’s
side about memory storage, computation of function derivatives, and so on. The package
DICOPT solves a sequence of nonlinear programming problems and mixed integer linear
programming problems. Let y denote the physical variables, and » denote the binary
variables. The DICOPT algorithm can be stated as follows [5].

begin

read (2% y%); {read the user-supplied starting guess}
Solve the relaxed (NLP) problem — (z!,y').
if 2! is integer then stop: Optimal solution found;

else
1 = 1
z = —o0; Initialize lower bound on mazimization
repeat
7 = gz
linearize around (z*,1') and add constraints to the linearized (MILP) prob-
lem;
Add integer cuts to the MILP problem;
Solve the MILP problem to the integer optimal solution (z*+!, wi*!);
Solve the NLP problem with & = z'*! being fixed.
Let the solution be (zi*!,4i+!), and the optimum value z;
1= 1+ 1;
until (Z > z);
end {else};
end.

If the relaxed solution happens to be integral, then the algorithm is terminated. If
not, a linearization is made around the current solution point. The MILP consists of the
union of all linearizations of iteration 0 to i. It ends up with an integer solution, which is
in our case a loading pattern. However, the physical variables may not be accurate due to
the linearization. Therefore, the NLP problem is solved to find the physical variables for
this loading pattern. For our problem, also dedicated pattern evaluation methods could
be used. From the new point, a new linearization is made, until the objective function of
the NLP starts worsening.

Different solvers can be attached to DICOPT to solver the NLP subproblems and the
MILP subproblems. For the solution of the NLP subproblems, we used the nonlinear solver
CONOPT [3], which gave more robust solutions than the competing solver MINOS5. It
makes use of the Generalized Reduced Gradient method [8]. The MILP-solutions are ob-
tained by the solver CPLEX, one of the most advanced MILP-solvers today. It internally
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uses the linear simplex method combined with a Branch and Bound approach to reach an
integer solution.

Because our problem is nonconvex, the algorithm does not necessarily yield a global
optimum. Even worse, no guarantee about the quality of the solution can be given. This
holds also for the local search heuristics, however. In the next section, we describe the
adaptations of our model that made DICOPT working, and the specific problems we
encountered with our model.

4.2 Pairwise Interchange

We compared our MINLP results to the results from a pairwise interchange (PI) algorithm.
That algorithms starts by evaluating an arbitrary pattern. Then with this pattern as a
parent, all neighbor patterns are evaluated, that result from interchanging two bundles
in the core. From all neighbors that are feasible (i.e. satisfy the operational constraints),
we select the one with best objective value. If this value is better than the current best
objective, the neighbor is chosen as the new parent pattern. To prevent PI from getting
stuck in a local optimum too early, we also proceed if no improving feasible neighbor
exists, but infeasible neighbors with better objective function value do exist. Then the
best infeasible neighbor is chosen as a parent. So, we have the following algorithm,
begin

read the starting pattern z°.

evaluate 0 — f(z?)
If 20 is feasible then

fB = f(&°), fr == 0.

rp = £L'0.
else

zy = 20,
1= 0; Stop := False;
repeat

184 = Jo, 74 = £
do z € Neighbors(z*)
evaluate z — f(z);
if f(z) > fp and z is feasible thenfp = f(z), zp = w;
elseif f(z) > max(fg, fr) thenfr = f(z), 25 = g;
enddo
if f5 > f¥° thenz't! = gzp;
elseif fi > max(fg¢, f{*¢) then 2't! = g,
else Stop = True;
{i=id 1
until Stop = True;
if fg > 0 then Feasible Local Optimum found
else No feasible solution found

end.

From the 30 test cases that are listed in Table 2, the restart from the best infeasible
neighbor turned out to be helpful in almost half of the cases, as is shown in Table 1. On
the other hand it shows that in a few cases it caused a longer search without improving
the objective function,

Of course, there are several other options possible to take advantage of infeasible pat-
terns. Another approach is for example to simply select the neighbor with best objective
function value, regardless of its feasibility. When iterations proceed, the infeasibility al-
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Pattern with no Best pattern after exploring
feasible improvement infeasible neighbors

Prob. || Obj. value | Iterations || Obj. value | Tterations
small

4 || 1.04205 8 || 1.04275 12

5 || 1.03696 9 || 1.03975 17

6 || 1.03336 9 || 1.03407 12

7 || 1.02574 13 || 1.02753 21

10 || 1.02475 15 || 1.02475 21
medium

1| 1.03524 19 || 1.03537 23

3 || 1.03414 15 || 1.03492 24

4 || 1.03347 16 j| 1.03429 27

6 || 1.03558 21 | 1.03558 23

8 || 1.03477 18 || 1.03548 27
large

1} 1.04753 44 || 1.04758 74

3| 1.04718 43 1 1.04722 59

6 || 1.04758 44 || 1.04762 56

7 || 1.04673 48 || 1.04676 76

9 j| 1.04667 54 || 1.04670 62

Table 1: Test problems from Table 2 where infeasible neighbors were explored.

lowed is then gradually decreased, until only feasible patterns can be selected as new
parents. This further can be combined with a penalty in the objective function.

4.3 Rounding procedure

Instead of using the DICOPT scheme for finding an integer value, we also developed a
simple rounding procedure. As already noted, many integer solutions turn out to be local
optima, and in several cases, the NLP solver immediately ends up with an integer value.
When the returned optimum is non integer, this is often due to a power peaking limit
(see Figure 2), and the number of nonintegers is usually small. In order to quickly find
an integer solution, we start with the relaxed solution and enumerate all possible integer
solutions such that

e ones in the relaxed solution remain ones, and
o zeros in the relaxed solution remain zeros.

Suppose we have the following part of the assignment matrix:

02 0.8
08 0.2
05 05
0.7 0.3 .
0.3 05 02

There are two possibilities to round the first two rows and columns, and independently
there are three possibilities to round the last three rows and columns, so there are six
possible rounded solutions in total.

The feasible rounding with best objective value is returned, or, if none of the rounded
solutions is feasible, the best infeasible rounding is returned.
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Figure 2: Fractional solution due to the power peak constraint. In the first plot, it is shown that the two
integer solutions at z = 0 and z = 1 are local maxima. In the second plot, it is shown that in & = 0 the power
peak is exceeded. The solution found for the relaxed problem is indicated at z & 0.16. Rounding leads to the
(in this case even better) solution z = 1.

4.4 Setup of the problem

We can make several variations and reformulations of our model in order to make it more
appropriate to solve with DICOPT. Also a good initialization of the variables is very
important. In this section, the most successful adaptations and starting values will be
discussed.

4.4.1 Starting values

The choice of the starting values can have a big influence on the behavior of the algorithms.
If, for example, all variables in our model are initialized to 0, the optimization solvers often
get stuck in a local infeasible solution. We have to supply starting values that have some
sensible physical meaning.

We can get help from physical knowledge. It is known that fresh bundles in the middle lead
to a large value of the power peak. On the other hand, the bundles on the boundaries of
the core should be sufficiently burned, since this causes loss of neutrons in the surrounding
water. It is known that good patterns therefore have a sort of a ’ring structure’, in which
old bundles are put on the boundaries, and fresh bundles somewhere in the middle, (like
Figure 3). Although we want to use a starting point that is based on such known good

Figure 3: Ring structure of a good loading pattern.

patterns, we cannot use one such a pattern as a starting point, since in the nonlinear
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optimization approach, these integer assignments tend to be local optimal solutions in
the continuous space. It is therefore nearly impossible to escape from such a starting
point. Instead, we assigned for each age a number of nodes where it is likely that the
bundles of this age are located, as in Figure 4. Using these assignments, a fractional

Age Group | Age Group 2

]
Age Group 3 Age Group +

Figure 4: Most likely locations for bundles in the different age groups

starting pattern is constructed, in which it is specified how many percent of each bundle
is initially in each node. This assignment is made in such a way that 90% of the volume
of the bundles of age 1 is spread in the nodes assigned for this age, and 10% is spread over
the other nodes. An evenly distributed assignment is obtained by choosing that pattern
for which the sum of squares of the percentages is minimal.

Also, for the physical variables, an initial guess is needed. This is supplied by applying
the power methad to solve the physical equations for the given fractional assignment.

4.4.2 Decreasing k°/f

During the cycle, the value of the eigenvalue k® (which is a measure for the reactivity
of the core) decreases. Since the problem is very sensitive to the value of k*//, we added
the set of constraints

kD > kS, t=1,.,T-1

These constraints, which are intuitively clear, can be derived from (22) and (24).

4.4.3 Relaxation of the Power peaking constraint

For a fixed pattern (i.e. fixed binary az-variables), the physical equations describe the
evolution of the core, and there always exists a feasible solution with respect to those
equations. The power peaking restrictions however, really restrict the number of feasible
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reloading patterns. Motivated by this observation, we initially relax the power peaking
constraint with some perturbation variable ¢: instead of

flim
kidie < =
Zj:l V?

we implemented

flim
-
Zj:l VY
The variable € is nonnegative, and after some experiments given an upper bound of 0.01.

It is penalized in the objective function with penalty parameter w, which is set to 1. So,
the objective now becomes

kidir < (1+e)

ke — we.
sk pkell e
During the optimization, the value of ¢ should vanish. If not, we have to repeat the
optimization with the previous solution as starting point, but with a higher w or with ¢

fixed to 0.

5 Computational results

We compared the nonlinear programming approach to pairwise interchange. We consid-
ered three different core geometries, and for each geometry we used 10 different parameter
sets. The small problems have a core geometry as in Figure 1. One octant contains 14
nodes, of which 4 are diagonal nodes, so there are effectively 12 nodes. The medium-sized
core geometry is given in Figure 3, where one octant contains 31 nodes (effectively 28).
The large core has 52 nodes in an octant (effectively 48), as in Figure 5. In all problems,
all bundles remain for 4 years in the core before they are discharged. The cycle-length is
divided into 6 time-steps. We compared 4 algorithms:

1. DC: DICOPT running under the modeling language GAMS;
2. CR.: CONOPT, followed by the simple rounding procedure;
3. CRP: As CR, but then followed by Pairwise Interchange;

4, PI: Pairwise interchange from an arbitrary starting point.

The results are listed in Table 2. Computation times are in seconds on an HP 9000/720
workstation.

It should be noted, that using DC, only an older release of the nonlinear solver
CONOPT could be used to solve the nonlinear subproblems. For CR and CRP we could
use a newer release, and it turned out that especially the relaxed NLP problem took much
less time with this new release. For example, in large problem 7, the old release in DC
took about 66000 seconds to solve the first NLP problem, while the new release in CR
finished this in about 500 seconds. This suggests that the DC running times can be much
smaller. Since for all but one of the small problems, the new release of CONOPT gave
immediately an integer solution, using this new version with DC would have lead to the
same answers as CR for these problems.

Apart from these remarks, it is striking that the advanced and expensive method of
DC on the one hand and the simple and fast rounding procedure on the other hand do
not beat out each other. For the medium problems, DC returns 5 times a better integer
solution than CR, while CR wins 4 times. For the large problems, CR wins even 7 times,
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Figure 5: CRP solution (left) and PI solution (right) of Large 2, with the same objective value.

and DC 2 times, but the differences are very small.

Comparing the two PI implementations, it becomes clear that starting from the CR
solution is often helpful. For the small problems, CRP gives 5 times a better answer, the
direct PI method 1 time. For the medium problems this ratio is 7:3, for the large problems
it is 4:5. For all the cases it holds that starting at the CR solution on the average improves
solution time. Equal objective values do not always imply that the pattern is the same,
as is shown in Figure 5.

6 Conclusions and further research

Direct nonlinear optimization, combined with a procedure for finding integer solutions, is
a good candidate approach for the reactor core optimization problem. When the solution,
obtained with this approach, is subjected to a local search procedure, it produces for our
test problems results that are competitive to the direct pairwise interchange algorithm.
The computation time for the nonlinear optimization is very favorable.

Good modeling is essential, especially when using nonlinear optimization. Due to the
very nonconvex structure of the problem, relaxation of some constraints, or addition of
artificial constraints, is of much help in the optimization. It is also very important to
supply a good starting point.

There are several possibilities to find an integer solution from the relaxed solution, ob-
tained by nonlinear optimization. Besides subsequent linearization as in DICOPT, simple
rounding also behaves surprisingly good. We further may apply a Branch & Bound scheme
to refine the rounding method.

A strong advantage of nonlinear optimization is its capability to handle other, by nature
continuous optimization problems such as burnable poison distributions. It is interesting
to study the behaviour of a one-stage optimization procedure optimizing both the reload-
ing pattern and a Burnable Poison distribution over the fresh bundles.

Another advantage is that implicit formulations of the problem are allowed, since inside
such an optimization procedure a Newton-like method is used to find a feasible solution.
This makes it possible to apply for example central difference techniques for the time-
discretization, while in the direct iterative methods this is more cumbersome because it
needs some predictor-corrector techniques.

Due to all these possibilities, and regarding the results of this paper, we conclude that
the use of nonlinear optimization in core fuel management is worth to be studied in more
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detail.
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Objective Values

Comp. Times

Prob. || DC | CR | CRP [ PI DC [ CR [ CRP | PI
small
1 || INFEAS. | 1.00961 | 1.01130 | 1.01114 7.7 3.3 72.8 74.5
2 || 1.04361 1.04823 | 1.04844 | 1.04848 41.1 4.4 27.0 73.0
3 || 1.02023 1.02011 | 1.02069 | 1.02051 13.3 2.7 30.6 80.8
4 || 1.04035 1.04186 | 1.04275 | 1.04275 54.6 5.1 49.5 04.4
5 { 1.03917 1.03827 | 1.03975 | 1.03975 53.3 3.2 67.1 135.8
6 | 1.03321 1.03316 | 1.03407 | 1.03407 19.1 5.1 48.9 92.7
7 1 1.02541 1.02726 | 1.02753 | 1.02753 89.0 3.6 49.5 150.6
8 || 1.02765 1.02948 | 1.02970 | 1.02793 87.8 4.3 314 79.5
9 |l 1.02612% | 1.02645* | 1.02605 | 1.02425 162.6 3.1 35.5 68.0
10 || 1.02509 1.02504 | 1.02545 | 1.02475 103.4 4.2 54.3 136.5
medium
1 (| 1.03451* | 1.03536 | 1.03538 | 1.03537 2660.6 | 53.0 544.2 | 3852.9
2 |[ 1.03486 1.03476 | 1.03520 | 1.03510 517.3 | 61.9| 3112.6 | 3348.2
3 |l 1.03457 1.03475% | 1.03489 | 1.03492 1246.2 | 64.8 | 3057.8 | 3506.1
4 || 1.03347 1.03362 | 1.03432 | 1.03429 6604.7 | 75.8 | 2517.9 | 4125.9
5 || 1.03312 1.03345* | 1.03381 | 1.03380 588.0 | 61.1 | 2668.8 | 3476.4
6 || 1.03534 1.03518 | 1.03545 | 1.03558 850.9 | 70.7 | 2121.6 | 3855.6
71 1.03374* | 1.03332*% | 1.03404 | 1.03349 1584.9 | 63.9 | 2231.5 | 3002.7
8 [l 1.03490 1.03447 | 1.03532 | 1.03548 6656.1 | 57.8 | 2260.3 | 4630.7
9 || 1.03350 1.03387 | 1.03413 | 1.03402 1040.8 | 85.6 | 3446.7 | 4084.6
10 || 1.03300* | 1.03304 | 1.03340 | 1.03329 1795.8 | 53.5 | 2645.9 | 3562.1
large
1] 1.04718 1.04716 | 1.04761 | 1.04756 8480.5 | 475.6 | 38523.6 | 81468.1
2 || 1.04686 1.04724 | 1.04738 | 1.04738 8420.8 | 443.8 | 12720.2 | 61920.2
3 1 1.04687 1.04692 | 1.04717 | 1.04724 6335.1 | 387.2 | 20210.5 | 80259.1
4 ]| 1.04650 1.04645 | 1.04682 | 1.04658 7545.1 | 396.7 | 18669.3 | 39161.3
5 || 0.96213% | 1.04627* | 1.04648 | 1.04646 322.3 | 400.0 | 32159.7 | 60335.1
6 || 1.04719 1.04721 | 1.04756 | 1.04757 || 1.1E-+4 | 435.1 | 23060.3 | 53541.8
7 || 1.04656 1.04655* | 1.04663 | 1.04675 || 6.9E+4 | 562.3 | 12320.3 | 64471.6
8 || 1.04708 1.04727 | 1.04754 | 1.04739 5680.6 | 438.7 | 21513.7 | 38945.7
9 [l 1.04652 1.04654 1 1.04664 | 1.04665 4554.5 | 458.5 | 18176.8 | 52791.8
10 || 1.04281* | 1.04605 | 1.04618 | 1.04623 468.4 | 493.8 | 15823.7 | 50714.4

*=Fractional solution found, but no feasible integer solution found.

Table 2: Results for 30 different test problems.
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