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Abstract

In the classical model of games with transferable utility one assumes that each
subgroup of players can form and cooperate to obtain its value. However, we
can think that in some situations this assumption is not realistic, that is, not all
coalitions are feasible. This suggests that it is necessary to raise the whole question
of generalizing the concept of transferable utility game, and therefore to introduce

new solution concepts. In this paper we define games on matroids and extend the
T-value as a compromise value for these games.
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1 Introduction

Faigle and Kern (1992) proposed a model in which cooperation among
players is restricted to a certain family of subsets of players, the feasible
coalitions of the game. Their idea is to restrict the allowable coalitions
by using underlying partially ordered sets and they obtained an extension
of the Shapley value for games on distributive lattices. Their model is
a speclal case of the games on convex geometries studied by Bilbao and
Edelman (2000). In the present paper, we will define the feasible coalitions
by using combinatorial geometries called matroids. Games on matroids are
introduced by Bilbao, Driessen, Jiménez-Losada and Lebron (2001). Let us
assume that there are two rules of cooperation between players:
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e If a coalition can form, then any subcoalition is also feasible because it
the players that take part in the formation of a coalition have common
interests, a subset of these players has at least the same common
interests.

e If there are two coalitions where the cardinality differs one, there is
a player of the largest coalition which can join the smallest making a

feasible coalition.

The characteristic function of a game on a matroid is only defined on
the elements of the matroid. We propose a generalization ot the 7-value
introduced by Tijs (1981) and Tijs (1987) as a concept of compromise value
for games defined on matroids. Let us briefly outline the content. In the
next section, we define matroids, describe some of their properties and in-
troduce games on matroids. In the third section we extend the concept of
the 7-value to games on matroids and obtain a family of axioms that char-
acterize uniquely this value. Finally, we build two special classes of games
on matroids in the last section which have a nice expression of the 7-value.
Now, we introduce several concepts from the theory of cooperative games.

Definition 1.1. A transferable utility game is a pair (/NV,v), where N is a
finite set and v : 2V — R, is a function with v(0) = 0.

The elements of N = {1,...,n} are called players, the subsets S €&
2N coalitions and v(S) is the worth of S. The worth of a coalition is
the maximal profit or minimal cost for the players in that coalition. The
function v is called the characteristic function. Given a game (/N,v) and
a coalition S C N, the subgame (S,v) is obtained by restricting v to 2°.
By 'V we denote the set of all games (IV,v) where N is the set of players.
We will use a shorthand notation and write SU % for SU{i}, and S \ ¢ for
S\ {i}. In a game (N,v), a vector z € R" is called efficient if it distributes
the worth v(/N) among the players, i.e., > ..y Z; = v(IN). The set of all
efficient vectors is called the preimputation set and is denoted by I*(v).
The imputation set 1s defined by

Lw)k= o elt()isz: = vi(a) foriall's.e N

Note that I (v) # 0 if and only if v(IV) > ) ..y v(i). Assuming that

the coalition N of all players will be formed, a one-point solution concept
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will prescribe a distribution of the worth v(/N) among the players. Given a
vector z € R™ and a coalition S, we define z (S5) := ) ._sz; and z(0) = 0.

Definition 1.2. The core of a game (IV,v) is the set

C) ={ze€l*(v):z(S) > v(S) forall SCN}.

Games with a nonempty core are called balanced games.

The 7-value of a game is a compromise between the upper and the lower
vectors for the game introduced by Tijs (see Tijs and Otten (1993)). The
upper vector of the game (N, v) is the n-vector M", where M := v(N) —
v(N\1), for all i € N. The component M? is called utopia payoff for player 1
in the grand coalition. The remainder of 7 € S if the coalition S forms and all
other players in .S obtain their utopia payoff is RY(S,1) := v(S)—M" (S \ 7).
The lower vector is the vector m¥ € R™, defined by

m; = \maxsR’(Sx).
{S:1€S}

Definition 1.3. A game (/V,v) is called quasi-balanced if it satisfies:

(QB1) m¥ < M?, and
(QB2) m¥(N) < v(N) < M*(N).

The family of quasi-balanced games is a full-dimensional cone in the
(2™ — 1)-dimensional vector space I''Y and contains the family of balanced
games as a subset (see Tijs, 1981). For a quasi-balanced game v the 7-value,
denoted by 7Y, is the unique preimputation (efficient vector) on the closed
interval [m", M"] in R™. Then we have 7¥ = m? + A\ (MY —m"), where
A € R is such that ) .y 77 = v(N).

2 DMatroids and games

Let N = {1,...,n} be a finite set. A set system over N is a pair (N, F),
where F C 2% is a collection of subsets of V.

Definition 2.1. A matroid is a set system (NN, M) with the following prop-
erties:
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(M1) ) € M.
(M2) If SeMand T C S, then T € M.

(M3) If T,§ € M and |S
that T'U {7} € M.

= |T'| + 1, then there exists an ¢ € S \ T" such

We refer the reader to Welsh (1995) for a detailed treatment of matroids.
Throughout this paper we will often denote the matroid (N, M) by M.
From now on we assume that the matroid M is normal, i.e., for every
i € N there exists an S € M such that 72 € S. We present some examples
of matroids.

Example 2.1. For k € N, 0 < k < n, the family {S C N : |S| < k}, of all
subsets of N of size at most k is the uniform matroid U¥. In particular, 2%
1s called the free matroid.

Example 2.2. If 2,5 € N, @ # 3, the family
My (i]|j) ={S S N : {3, 7} g St,
1S a matroid.

Example 2.3. Let E be the set of edges of a graph G and let M = M(G)
be a family that consists of those subsets ot ' that do not contain a circuit
of G. The matroid (£, M) is called a graphic matroid.

Definition 2.2. A game on a matroid M 1is a function v : M — R with

v(0) = 0.

We denote by I' (M) the set of all games on the matroid M # {@}. The
set I' (M) is a vector space over R. We also need to introduce the following

definitions and results.

Definition 2.3. For a set system (N, M) and S C N, a subset B C S such
that B € M is called a basis of Sif BU{:i} ¢ M forall i € S\ B.

Let (N, M) be a matroid. Then B is a basis of S when B is a maximal
feasible subset of S. A basis of the ground set N is called basic coalition.
We denote by B the set of basic coalitions of (/V, M) and its cardinality by
b = |B|. The rank of the matroid (N, M) is the cardinality of the basic
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coalitions. Then we have B = {B € M : |B| = r}, where 7 is the rank of
M. A maximal chain of M is a family of feasible coalitions

) =S5.C S CeovnCS S =18

where B € B and the cardinal |Si| =k, forall k =0,1,...,r. Note that the
length of all the maximal chains of a matroid M is the rank of M.

We can consider a matroid M # 2% split into influence zones, where
the basic coalitions are the summits of the different influence zones. Note
that these influence zones are not disjoint.

Definition 2.4. The influence set of S € M is Bg = {Be€ B:S C B},

the set of the basic coalitions that contain S and its influence worth is the
quotient bg/b, where bg = |Bg].

We denote bg;y by b; when S = {i}. Let (N, M) be a normal matroid.
Then M = 2% if and only if b = 1.

3 The 7-value for games on matroids

Let M be a matroid on N = {1,...,n} such that {:} € M foralli € N,
and let v € I' (M). The upper vector MV € R" is given by

M ==Y (w(B)-u(B\i).

b.
’ BeB,;

It we consider the efficiency property on matroids then the payoff for the
players must not exceed this value and therefore MV is the utopia vector.
Let 2 € N and we consider S € M such that i € S. If the other players in S
obtain their utopia vectors, then the number R" (S,i) = v (S)— MV (S \ 1),
18 called the remainder for player 7 in the coalition S. The lower wvector
m" € R" is defined by

M = max.. R (S,9).
{SeEM: ieS}

T'his value is the minimal value expected by the player ¢ and then is called
also the minimal right vector.

Proposition 3.1. Ifv € I'( M), d € T' (M) is an additive game and o € R,
then
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1. Movtd — g MY 4+ d,
2. Rt (S 4) = aRY(S,1) +d;, where S€ M andi € S.

Proof. 1. Let 1 € NV,

M= = 3 (v +d) (B) = (v +d) (B\ )
Beb,;
Le bl Z o B
= Z ) —v(B\1) +
Beb;

= Clﬂfff + d;.

2. Let Se Mand 1 € S,

Rt (6 ) = o (8) + d(S) = M**F(S\ 1)
=av(S)+d(S)—aM?(S\i)—d(S\ 1)
— aR" (S,’i) + d;.

In the context of games on matroids, we define the gap function ntro-
duced by Driessen and Tijs (1983).

Definition 3.1. The gap function of v € I' (M) is the game ¢g* : M — R
given by g¥ (S) = MY (S) —v(S), for all S € M.

Note that the maximal concession which a player ¢ can give is the number

A= ni Sl
: {seIA/tl:Iz*le.S'}g (5)

and therefore we call \V the concession vector. It i1s easy to prove that the
lower vector is the difference between the upper and the concession vector.

Proposition 3.2. If v € I' (M) then m" = MY — \".

Proposition 3.3. Let v € I' (M), d an additive game on M and a € R.
Then



The T-value for Games on Matroids i

1..:g*v1%(8) = ag® (S)> for:all S &€ M,
9. Nvha — ¥ ifa >0

3. m®¥te —am¥+d, ifa > 0.

Proof. 1. Let S € M, then

gEVEE(G) = MOHSY e (8] = d(S)
=aM” (S)+d(S)—av(S) —d(S) =ag"(S).

2. Let 1 € N, then

ovtd min aUEa QY — min .aq” (S

: {SEM:iES}g (5) (SEM:ieS) g4
= a min Y(S) = a)\l.
{SeM:iES}g ) :

3. This property follows from Propositions 3.1 and 3.2.

Definition 3.2. A game v € I' (M) is quasi-balanced if it satisfies:

L. “mY < M"Y,

2. ) .Bes™’ (B) <) gepgv(B) < > _pesM? (B).

The class of quasi-balanced games on matroids is denoted by QB (M).
We can also define this class using the gap function and the concession
vector,

QB (M) = {v eTM): 20, 3 m'(B)< ) v(B)= ZM”(B)}

BeB BebB BeB

= {ver(M):g“(spa vSeM, ) g¢"(B) < Z/\”(B)}-

BeB BeB

Definition 3.3. The core C' (v, M) of a game v on a matroid M is the set

{x € R" : 2(B) =v(B) for all B€ B, z(S) >v(S) for all S € M}.
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We prove now that the core elements of games on matroids are bounded
by the upper and the lower vectors.

Theorem 3.1. Let v € T' (M) be a game such that C (v, M) # 0. Then
for all x € C (v, M) we have m" <z < M".

Proof. If z € C (v, M) then v(B) = z(B) and v (B \¢) < z (B \ 1) for all
the basic coalitions. Hence

' BeB,
g T
—_ — i — €Iy
b;
BeB,;
Further,
m; = max R"(S,1)
{SeM:ieS}
=RY(T2)=v(T)=M"T\1)
<z(T)—x(T\i)=ai
where

Ti€arg max, R {S2):
{SeEM:HeS}

Corollary 3.1. If v € T'(M) is a game with C (v,M) # 0 then v €
QB (M).

The 7-value for a quasi-balanced game on a matroid is the unique eth-
cient vector on the segment between m" and M".

Definition 3.4. Let v € QB (M). The 7-value of v is the vector defined
by 7¥ = m' + a (MY — m"), where a € R is such that

:E:lHTfZZZEEZ:U(I3).

€N BeB
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1'his value 1s given by

MY, if g* (B) =0 for all B € B,

v — Hs)
g MY 2 pes gﬂ( ) AV, if there is a B € B with ¢g" (B) # 0.
ZBeB AV (B)

Tijs (1987) proved that the 7-value is the unique value on QB (QN)
which satisfies efhciency, restricted proportionality and the minimal right
property. We study the axiomatization for games on matroids by using the
restricted proportionality property: 7 1s proportional to M" it m; = 0 for
all 2 € V.

Theorem 3.2. The 7-value on QB (M) satisfies the individual rationality,
the dummy player, the covariance and the restricted proportionality proper-
t1es.

Proof. Let v € QB (M), then we have m} < 7’ < M” for all 2 € N.
Individual rationality: 1t 1 € N then

R AR 01 oK ik o A
{S:1€S5}

> R" ({i},1) =

The dummy player property: If i € N is a dummy player then for all B € B;
we obtain v (B) —v (B \ 1) = v (1) and therefore

s Mi= = Z =B\ 2)) = i@ )

Beb,

Covariance: Let v € QB (M), d € I' (M) an additive game and a > 0. By
Propositions 3.3 and 3.1 we obtain that the game av +d € QB (M) and
the value 7eVt% = a1¥ + d.

Restricted proportionality: 1t follows from 7¥ = m" +a (M"Y —m").

Theorem 3.3. The T-value is the unique value on QB (M) which satisfies
effictency, covariance and the restricted proportionality property.

Proof. The t-value satishies the above properties by Theorem 3.2. We only
prove that 1s the unique one-point solution with these properties. Let W
be a value that satisfies the axioms and let v € QB (M). We consider the
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game w = v —m". From the covariance we obtain that ¥V (w) = ¥ (v) —m"
and 7% = 7Y — mY. Thus we only need to prove that ¥ (w) = 7. By
Propositions 3.1 and 3.3, we have M¥ = MY — m" and m" = 0. Then
™ = BM™ and, by the restricted proportionality, ¥ (w) = aM™. Since ¥
and 7 are eflicient we obtain that a = 3. ]

The next results deal with relations between the 7-value and the core
for games on matroids.

Proposition 3.4. Let v € I' (M) be a game such that g* (S) > 0 for all
SeM. If gt (B) =0 for all B € B, then C (v, M) = {7"} ={M"}.

Proof. For any 1 € N there exists a B € B such that : € B. Then

W= : v (S) =0,
" {senﬁEES}g \#]

for all : € N and the game v € QB (M). Since m¥ = MY — A\Y, we obtain
m' = 7¥ = M". Next, our hypothesis show that M" (B) = g* (B)+v(B) =
v(B) for all B € B and also MY (S) = g (S) + v(S) > v(S) for all

S € M. Therefore M' € C (v, M). Finally, Theorem 3.1 implies that
C (v, M)={M"}.

Theorem 3.4. Let v € QB (M) be a game such that g* (B") > 0 for some
B' € B. Then ¥ € C (v, M) if and only if for all S € M,

(Z g" (B)) X" (S) < (Z 3 (B)) g" (S).
BeB BeB

Proof. Suppose first that 7¥ € C (v, M). Then 7Y(B) = v(B) for all B € B,
and 7V(S) > v (S) for all S € M. The definition of the 7-value gives

which is equivalent to

(Z g" (B)) N s (Z 3¢ (B)) ¢ (S),

BeB Beb
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for all S € M. Conversely, the above inequalities imply that 7V(S) >
v (S) for all S € M. Further, the 7-value satisfies

N TU(BYy= ) b= Y i BYe= Yo (B) 5 u(B)) =0

BeB €N BeB BeB

and 7V (B) — v (B) > 0 for all B € B. It follows that 7V (B) = v (B) for all
B e b.

4 Special subclasses of games on matroids

In relation to the core and quasi-balanced games, 1-convex games and
semiconvex games were introduced by Driessen and Tijs (1983) and Driessen
and Tijs (1985). We define analogous subclasses of games on matroids.

Definition 4.1. A game v € I' (M) is 1-convex with gap g > 0if ¢ (B) = g
for all B € B and ¢* (S) > g for each § € M.

The family of 1-convex games on a matroid (N, M) with gap g is denoted
by C; (M) .

Theorem 4.1. Ifv € Cy (M) then v € QB (M) and for alli € N

V= V&) g
T‘i —A’[.i Sl e

r

where T s the rank of the matroid M. Moreover, TV € C (v, M).

Proof. If a game v is 1-convex with gap g > 0, then g" (S) > g > 0, for all
S € M, and hence

Ai="  .nin “lSHhi=a
; {SEM:z’GS}g Cilst

for all © € N. Since |{B: B € B} =band |B| = r > 1 for every basic
coalition, we obtain

Y _g"(B).= by,

Beb

Z A LB)i= Z rg ='brg.

BebB BeB
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Then ) g g’ (B) <) gep A’ (B) for all B € B, and so v € QB (M).

[ts 7-value satisfies for every 7 € NV,

>_per Y (B)
>_Bes A (B)

We observe now that g (B) = g for all B € B implies M? (B) —v (B) =
g, and therefore

b
=My - g=mp-2

T, = M}
: : brg i

™' (B)=M"(B)-} T =v(B)+g-g=0(B)
€B

T'he game v satisfies g" (5) > g for all S € M, and we obtain also that

(S =M (S) -7

i€ S
S
>v(S)+g Iig
r—|S
L i ( l ) g
> 0 (S).

using r > |S| for every S € M. The conclusion is that 7¥ € C (v, M).

Definition 4.2. A game on a matroid v € I" (M) is semiconvex if for each
1 € N and S € M such that i € S, we have gV (S) > g* (¢) > 0.

T'he family of semiconvex games on a matroid (N, M) is denoted by
SC (M). The imputation set I (v, M) of a game v € I' (M) is the set

{z€eR":x(B)=v(B) forall BeE B, z; >v(i) foralli € N}.
Note that if I (v, M) # @ then ) _._gv (i) < v (B) for all B € B.

Theorem 4.2. If v € SC(M) and I (v,M) # 0, then v € QB (M).
Moreover, if g¥ (k) > 0 for some k € N, then

ZBEB gﬂ (B) g'-r_,
ZkeN brg? (k)

V= MY (7).

Otherwise, 7V = MV".



The T-value for Games on Matroids 79

Proof. 1f the game v is semiconvex then g" (S) > g¥ (i) > 0, for all S € M
such that 2 € S. Hence

AL =7, T “(S)r=ag* (1) = M =q13).
= min g (5) =" () = My~ (@

for all 2 € N. Since I (v, M) # 0, it follows that

D AN (B)=) ) (M} —v(i)

BeB BeBieB

= ( M"(B) =) v (i))

BeB 1€B

> ) (M"(B)—v(B))

BeB

=3 ¢°(B

BeB

From this and the inequality ¢" (S) > 0 for all S € M, we deduce that
v e QB (M). To prove the formula of the 7-value we compute

DA By =D 56

BeB BeB1€B

Suppose that g¥ (k) > 0 for some £ € N. We can find B € B with k € B,
and hence g¥ (B) > g (k) > 0. Since AY = gV (¢) for all 2 € N, Definition 3.4
implies the formula. Otherwise, AY =0 1for all2 € N and so 7¥ = M". O

Let v € SC (M) such that v(z) = 0 for all ¢ € N. Then g (i) = M}

and hence
¥ it = N MY == Y B

1 EN €N BeB
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If I (v, M) # () then the 7-value satisfies

Example 4.1. We consider a simple game v : 2"V — {0, 1} with two players
i, 7 € N such that coalitions with both players are not feasible and v (5) = 0
if SN{i,7} = 0. Then (v, M, (2]|7)) is a simple game on the matroid defined
in Example 2.2. Suppose further that the two basic coalitions B; = N \ j
and B; = N \ ¢ are winning. For this matroid we have: r =n —1, b = 2,
b =b; =1 and by = 2 for all k € N \ {¢,7}. The coalitions of the veto
players in B; and B; are respectively

Vo =4k e:NNtiat v By\vk) =0}
Vi={ke N\{i,j}:v(Bj\k)=0}.

First, we obtain the upper vector:

1. if ke (VinV;)U{s, 5},
MP={ 1/2, ifke(V;UuV)\(V;nV;),
0, otherwise.

Then the gap function is given by
0 (S) (1/2) (IVin S|+ |V;nS)), if v(S)=1o0r SN{i,j} =0,
4 7 (1/2) (]V;n S|+ |V;nS|)+1, otherwise,

for all S € M, (¢||7). Since g* (S) > g¥ (k) > 0 for each k € S, we conclude
that v is a semiconvex game. Moreover, e; + e; € I (M) and Theorem 4.2

implies that v € QB (M). The T-value is given by

2
e tElesel (Ve MV T 8
vl s 1
s if ke (V;uV;)\ (VinV;),

0, otherwise.
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