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9 Abstract As an effective generalist predator of aphids and other hemipteran pests

10 H. axyridis has been a successful biological control agent. However, the very functional

11 traits that have contributed to its success in this regard also implicate it as an intraguild

12 predator that poses a significant risk not only to the diversity of other natural enemies of

13 Hemiptera (and their associated ecosystem services), but to biodiversity more widely. In

14 this paper we will specifically review the existing data on intraguild predation involving

15 H. axyridis, and consider the strength and symmetry of such interactions both within its

16 native guild and within exotic guilds where it has established as an invasive alien. We will

17 use these studies to interpret the observed population declines in predator diversity in the

18 field, predict species at risk in regions not yet invaded and consider implications for

19 resulting ecosystem services. We will also indicate gaps in our knowledge that require

20 further study in order to identify opportunities for mitigation.

21 Keywords Coccinellidae � Harmonia axyridis � Aphidophagous guild �

22 Intraguild predation � Predators � Parasitoids � Pathogens � Ecosystem services

23 Introduction

24 Terrestrial ecosystems support a diversity of species that are directly and indirectly linked

25 to each other within food webs that span multiple trophic levels. Natural enemy species (in

26 the context of this paper we will collectively call these ‘predators’ as they all have a trophic

27 relationship with their hosts/prey) contribute to the population regulation of species in both
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28 the same and lower trophic levels (top down pressure) and in this way influence the

29 structure of the community as a whole. In the case of aphids these natural enemies

30 (aphidophages) include specialist and generalist predators, parasitoids and pathogens

31 (Völkl et al. 2007). Together they represent a ‘guild’, i.e., a community of species that

32 share the same host/prey resource (Polis et al. 1989; Rosenheim et al. 1995). As aphids are

33 often pests in managed ecosystems these natural enemies provide a valuable pest man-

34 agement ecosystem service that can be manipulated within biological control strategies

35 (e.g., Barbosa 1998; Gurr et al. 2004; Losey and Vaughan 2006; Powell and Pell 2007; Pell

36 2008).

37 Different ‘predator’ taxa play different ecological roles within the guild (Rosenheim

38 et al. 2004a). ‘Intermediate predators’ function from the third trophic level suppressing

39 herbivores, whereas ‘top predators’ mainly operate from the fourth trophic level sup-

40 pressing ‘intermediate predators’ and, consequently, releasing herbivore populations from

41 control (Polis 1994; Rosenheim 1998). Intraguild predation occurs when one of two spe-

42 cies competing for the same host/prey also consumes its competitor, and can be a strong

43 force structuring communities. Omnivorous intraguild predation can be asymmetric when

44 one of the two species (the intraguild predator) always preys on the other (the intraguild

45 prey), or symmetric when both species prey on each other to a greater or lesser extent

46 (Polis et al. 1989; Polis and Holt 1992; Rosenheim et al. 1995). The intraguild predator

47 benefits not only from the nutritive value of the meal, but also from the removal of a

48 competitor. Coincidental intraguild predation occurs when a parasitoid or pathogen is

49 consumed while still developing within its herbivore host and, in this case, the herbivore

50 and the intraguild prey are directly linked (Polis et al. 1989). Intraguild predators function

51 as both ‘intermediate’ and ‘top predators’ by feeding on both herbivores and ‘intermediate

52 predators’.

53 The impact of intraguild predation on community structure and diversity can be

54 extremely variable, complex and difficult to predict (Rosenheim et al. 2004a; Snyder and

55 Evans 2006; Straub et al. 2008). Many studies have assessed the prevalence of intraguild

56 predation in aphidophagous guilds (Polis et al. 1989; Rosenheim et al. 1995; Holt and

57 Polis 1997; Müller and Brodeur 2002; Lucas 2005; Pell 2008) and reported it to be a

58 widespread phenomenon with implications for both predator diversity within the guild and

59 the pest management ecosystem services that the guild delivers.

60 As an effective generalist predator of aphids and other hemipteran pests Harmonia

61 axyridis (Pallas) (Coleoptera: Coccinellidae) has been widely and repeatedly augmented or

62 introduced for biological control. As such, it has contributed significantly to pest sup-

63 pression in a wide variety of managed ecosystems including pecan, apple, sweet corn,

64 alfalfa, cotton, tobacco, wheat and soybean (Tedders and Schaefer 1994; Buntin and

65 Bouton 1997; Brown and Miller 1998; Colunga-Garcia and Gage 1998; Wells and

66 McPherson 1999; Wells et al. 2001; Musser and Shelton 2003; Koch 2003; Majerus et al.

67 2006; Roy et al. 2006). However, the very functional traits that have made H. axyridis an

68 effective biological control agent, also implicate it as an intraguild predator that poses

69 significant risk to the diversity of other natural enemies of Hemiptera and their ecosystem

70 services. Although natural enemy diversity in its native range remains relatively stable in

71 the presence of H. axyridis (Kuznetsov 1988, 1997), wherever it has established after

72 introduction as an exotic species, it has been associated with declines in native natural

73 enemies, particularly native coccinellids (Majerus et al. 2006; Roy et al. 2006; Snyder and

74 Evans 2006). These declines have been attributed to direct interspecific competition for

75 resources with less competitive/fecund natural enemies (Michaud 2002) but are also likely

76 to be strongly influenced by its role as an intraguild predator.
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77 There are a number of functional traits that determine the nature, symmetry and

78 outcome of intraguild predation including: relative size (incidence of mortality is often

79 inversely correlated with size) (Majerus 1994; Evans 2000), aggressive strategies and

80 mandibular structure (Yasuda et al. 2001), degree of feeding and habitat specificity,

81 mobility (sessile stages are particularly vulnerable), defence strategies and abundance of

82 extraguild prey (Polis et al. 1989; Lucas et al. 1998; Roy et al. 2006; Straub et al. 2008).

83 In this paper we will specifically review the existing, largely experimental, data on these

84 traits for H. axyridis, and discuss their strength and symmetry both within its native guild

85 and within exotic guilds where it has established as an invasive alien. We will use these

86 studies to interpret the observed population declines in natural enemy diversity in the field,

87 predict species at risk in regions not yet invaded and consider implications for resulting

88 ecosystem services. We will also identify gaps in our knowledge that require further study

89 in order to identify opportunities for mitigation.

90 Current knowledge

91 Intraguild predation between H. axyridis and coccinellids of other species

92 Eggs

93 The relative size and mobility of the intraguild predator and prey are known to influence

94 the outcome of intraguild predation, both showing an inverse correlation with the incidence

95 of mortality (Huey and Pianka 1981; Sengonca and Frings 1985; Rosenheim et al. 1995;

96 Lucas et al. 1998). In coccinellids this equates to the immature stages being more

97 vulnerable than adults, and eggs being particularly threatened (Sato and Dixon 2004;

98 Cottrell 2007).

99 Harmonia axyridis adults and larvae find eggs of many insect species acceptable as

100 prey; laboratory stocks are often maintained on eggs of the Mediterranean flour moth,

101 Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) (Berkvens et al. 2008). Cottrell (2004)

102 reports that H. axyridis adults attacked eggs of Coleomegilla maculata (De Geer)

103 (Coleoptera: Coccinellidae) and Olla v-nigrum (Mulsant) (Coleoptera: Coccinellidae) more

104 frequently than adults of these species attacked H. axyridis eggs, and attest that intraguild

105 predation of eggs is a serious threat for these species. However, cannibalism and predation

106 of coccinellid eggs are most often associated with larval stages (Dixon 2000; Cottrell 2007)

107 and, for some species, may be affected by the relative abundance of extraguild prey (Sato

108 et al. 2003); at low aphid or coccid densities, coccinellid larvae are more likely to engage

109 in cannibalism or intraguild predation. In addition, the tendency for intraguild predation by

110 larvae varies between species both as intraguild predators and intraguild prey. Cannibalism

111 and intraguild predation by H. axyridis are commonly observed, both in the laboratory and

112 the field, even when aphids or coccids are abundant (M.E.N. Majerus and R.L. Ware

113 personal observation). A recent study concluded that H. axyridis larvae were more likely to

114 engage in intraguild predation of the eggs of C. maculata, Cycloneda munda (Say)

115 (Coleoptera: Coccinellidae), Hippodamia convergens Guérin-Méneville (Coleoptera:

116 Coccinellidae) and O. v-nigrum than for H. axyridis eggs to be the intraguild prey of the

117 larvae of these species (Cottrell 2007). This is in agreement with previous work of Cottrell

118 (2004) demonstrating that neither C. maculata nor O. v-nigrum larvae can complete

119 development on H. axyridis eggs whereas H. axyridis can complete development on a diet

120 of either C. maculata or O. v-nigrum eggs.

Intraguild predation involving H. axyridis
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121 Defensive adaptations (chemical or physical) are often effective in reducing the

122 susceptibility of sessile life stages, such as eggs, prepupae and pupae to intraguild pre-

123 dation and cannibalism. The chemical defences of coccinellid eggs have been well studied

124 (Agarwala and Dixon 1992; Hemptinne and Dixon 2000). Indeed, while intrinsic toxicity

125 or unpalatability is governed by de novo synthesis of species-specific alkaloids (Pasteels

126 et al. 1973; King and Meinwald 1996), Hemptinne and Dixon (2000) demonstrated the

127 existence of extrinsic chemicals on the surface of some species’ eggs that act as deterrents

128 against intraguild predation. Ware et al. (2008b) have recently discussed the role of

129 surface deterrents on eggs of the European species Calvia 14-guttata (L.) (Coleoptera:

130 Coccinellidae) as a defence against intraguild predation by H. axyridis. A similar

131 phenomenon has been speculated for the eggs of the Japanese species Eocaria muiri

132 Timberlake (Coleoptera: Coccinellidae) (Ware et al. 2008a). The defensive chemistry of

133 H. axyridis eggs themselves has been implicated as pivotal to the observed resistance of

134 H. axyridis eggs to predation by other aphidophages that appear to find them unpalatable

135 (Alam et al. 2002; Sato and Dixon 2004). Interestingly, similar alkanes to those found on

136 the surface of H. axyridis eggs are also present in larval tracks and act as oviposition

137 deterring semiochemicals for other ladybirds, thus reducing egg cannibalism and intraguild

138 predation (Magro et al. 2007).

139 Larvae and pupae

140 Ware and Majerus (2008) have comprehensively examined intraguild predation of

141 immature stages of British and Japanese coccinellids by H. axyridis. A total of 12 species

142 of coccinellid (Coleoptera: Coccinellidae) were included in this laboratory study: eight

143 derived from British populations (Coccinella 7-punctata L., Adalia 2-punctata (L.), Adalia

144 10-punctata (L.), Propylea 14-punctata (L.), C. 14-guttata, Anatis ocellata (L.), Harmonia

145 4-punctata (Pontoppidan), Coccinella 5-punctata L.) and four from Japanese populations

146 (Coccinella 7-punctata brucki Mulsant, Cheilomenes 6-maculatus (Fabricius), Propylea

147 japonica Thunberg and E. muiri). In general, H. axyridis was an intraguild predator of all

148 species, with the exception of A. ocellata. The important conclusions of this study were

149 that there was no obvious difference between the susceptibilities of Japanese and British

150 coccinellids to intraguild predation by H. axyridis, and intraguild predation by H. axyridis

151 represents a serious threat for many species in Britain (Ware and Majerus 2008).

152 The relatively large size of H. axyridis throughout its life cycle undoubtedly contributes

153 to its success as an intraguild predator following the ‘size matters’ hypothesis. In predatory

154 interactions between coccinellid larvae it is generally the larger that eats the smaller,

155 assuming both are mobile (Majerus 1994). Notably, in comparative tests between fourth

156 instar larvae of H. 4-punctata, H. axyridis and A. ocellata, which have similar behavioural

157 and physical defences, the level of intraguild predation was directly correlated to size. Larvae

158 of the largest species, A. ocellata, won the majority of encounters withH. axyridis, while the

159 smallest species, H. 4-punctata, lost most such encounters (Ware and Majerus 2008).

160 There are few reports of other larval coccinellids successfully attacking H. axyridis, and

161 most evidence suggests that the immature stages of H. axyridis are resistant to reciprocal

162 attacks. In a laboratory study assessing the interactions between H. axyridis and

163 C. 7-punctata, Yasuda et al. (2001) attributed the greater success of the former to its higher

164 attack rates and greater escape ability. Recent research is beginning to confirm the importance

165 of chemical defence ofH. axyridis larvae as ameans of preventing counter-attacks (Ware and

166 Majerus 2008), and larvae are known to produce similar defensive alkaloids to those present
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167 within eggs and released by adults (Pasteels et al. 1973; King and Meinwald 1996). Further

168 studies have also implicated the role of superior physical defences (spines rather than hairs) in

169 larval stages of H. axyridis compared to other species (Ware and Majerus 2008).

170 In the field, coccinellid larvae tend to disperse from a plant when prey abundance is low

171 (Sato 2001) and this reduces the incidence of cannibalism and intraguild predation by

172 larger larvae and adults (Sato et al. 2003). However, emigration is a precarious strategy for

173 an immature coccinellid, so there is a trade-off between emigrating or remaining on a plant

174 with a low prey density and risking cannibalism or intraguild predation. Harmonia axyridis

175 commonly co-occurs with C. 7-punctata brucki and P. japonica in their native Japanese

176 range (Yasuda and Shinya 1997; Sato 2001). In a Japanese field study of these three

177 coccinellid species co-occurring on shrubs both C. 7-punctata brucki and H. axyridis

178 larvae emigrated in response to low prey density whereas P. japonica larvae did not (Sato

179 2001). The prevalence of intraguild predation and cannibalism of C. 7-punctata brucki and

180 H. axyridis larvae was low whereas no P. japonica larvae completed their development on

181 the shrubs and this was assumed to be as a consequence of intraguild predation. In further

182 studies it was confirmed that the early emigration of C. 7-punctata brucki larvae enabled

183 them to escape from intraguild predation by H. axyridis larvae (Sato et al. 2003) and that

184 the late emigration of P. japonica larvae accounted for the high incidence of intraguild

185 predation by H. axyridis larvae (Sato et al. 2003).

186 Propylea japonica is also a smaller species than either H. axyridis or C. 7-punctata

187 brucki and so this further supports the hypothesis that ‘size matters’ in intraguild predation.

188 Ware and Majerus (2008) also report P. japonica larvae as highly palatable intraguild prey

189 with little physical defence from attack by H. axyridis. It is interesting to note from field

190 studies in Japan that C. 7-punctata brucki are active earlier in the spring than H. axyridis

191 (Takahashi and Naito 1984; Sato 2001). Therefore, H. axyridis are more likely to expe-

192 rience a scarcity of aphids, which are abundant in spring and early summer, than

193 C. 7-punctata brucki. Consequently, H. axyridis is likely to be more reliant on intraguild

194 prey to complete their development than is C. 7-punctata brucki (Sato et al. 2003).

195 Adults

196 Adult coccinellids are generally less susceptible to predation than immature stages due to

197 their protective elytra and aposematic colour patterns (Majerus 1994). However, they are

198 exposed to a particularly vulnerable period just after eclosion, when their elytra are still

199 soft. Ware and Majerus (2008) report observations of attacks made on eclosing or newly

200 eclosed adults by larvae, when no other food was available. Fourth instar H. axyridis larvae

201 were observed to attack and consume new adults of A. 10-punctata, A. ocellata,

202 C. 14-guttata, C. 7-punctata brucki and E. muiri, after not having attacked them as pupae

203 (Ware and Majerus 2008). However, the consumption of newly eclosed H. axyridis adults

204 was rare, and only performed by conspecific larvae and larvae of the congeneric species

205 H. 4-punctata. This supports the speculation that the defensive chemistry of H. axyridis

206 adults may make them unpalatable to other coccinellids (Hough-Goldstein et al. 1996).

207 Intraguild predation between H. axyridis and non-coccinellid predators

208 Coccinellids are common within aphidophagous guilds and most studies considering the

209 role of H. axyridis as an intraguild predator have focussed on interactions within the
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210 Coccinellidae. However, H. axyridis interacts with many other predatory insects at the

211 community level. Lacewings (Neuroptera) are both abundant as aphid predators in natural

212 systems, and as components of biological control strategies. In a laboratory study,

213 Phoofolo and Obrycki (1998) demonstrated that there was no difference in the develop-

214 ment time or survival of H. axyridis (and also C. maculata) fed on a diet of pea aphids,

215 Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), or eggs of the lacewing,

216 Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). In contrast, C. carnea was

217 unable to develop successfully when fed on H. axyridis eggs.

218 A further study examined the interactions between adult H. axyridis, C. carnea and the

219 gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) in the presence of

220 the soybean aphid, Aphis glycines Matsumara (Hemiptera: Aphididae), in microcosms and

221 field cages (Gardiner and Landis 2007). Harmonia axyridis engaged in intraguild predation

222 with both C. carnea and A. aphidimyza and was predicted to contribute to declines in both

223 species in the field. Phoofolo and Obrycki (1998) and Gardiner and Landis (2007) both

224 suggested the potential for H. axyridis to be an asymmetrical intraguild predator of

225 C. carnea. However, C. carnea will consume H. axyridis eggs (Phoofolo and Obrycki

226 1998) and recent observations by Fremlin (2007) indicate that C. carnea will also attack

227 H. axyridis pupae. Therefore, the interaction can be considered to be (weakly) symmet-

228 rical. Further research is required to expand our knowledge on interactions between

229 neuropterans and H. axyridis.

230 The spined soldier bug, Podisus maculiventris Say (Heteroptera: Pentatomidae) is

231 native to North America and has a broad prey range including over 100 species of insect,

232 primarily soft-bodied, slow-moving larvae of Coleoptera and Lepidoptera, but also aphids

233 (McPherson 1980; Herrick and Reitz 2004). Half of the species on which it preys

234 are important crop pests (Herrick and Reitz 2004). Podisus maculiventris is therefore

235 loosely linked with many trophic guilds, including that of aphids (McPherson 1980;

236 Hough-Goldstein et al. 1996), and four species of predaceous coccinellid are listed as prey

237 to this predatory bug (McPherson 1980). In laboratory studies, Hough-Goldstein et al.

238 (1996) demonstrated that although P. maculiventris did not consume adult H. axyridis they

239 did consume H. axyridis larvae in ‘no choice’ treatments. In this study, H. axyridis larvae

240 were described as ‘aggressive’ and often noted to escape predation, whereas adult

241 H. axyridis were rejected, presumably as unpalatable, by P. maculiventris. Indeed,

242 P. maculiventris took four times longer to capture H. axyridis larvae compared to Spo-

243 doptera frugiperda Smith (Lepidoptera: Noctuidae) larvae (Hough-Goldstein et al. 1996).

244 A further study demonstrated that interactions between P. maculiventris and H. axyridis

245 in the presence or absence of extraguild prey (Spodoptera littoralis Boisduval (Lepidop-

246 tera: Noctuidae) or Myzus persicae (Sulzer) (Hemiptera: Aphididae)) were asymmetric in

247 favour of the bug (De Clercq et al. 2003). Podisus maculiventris fed on H. axyridis eggs

248 and larvae but rarely on adults. As with interactions amongst coccinellids, this interaction

249 was dependent on the life stage of the bug; fourth instar nymphs and adults were more

250 aggressive in their interactions than second instars nymphs. In contrast, H. axyridis rarely

251 attacked P. maculiventris. Intraguild predation by P. maculiventris on H. axyridis was

252 reduced in the presence of S. littoralis but not M. persicae. De Clercq et al. (2003)

253 interpreted this to infer that H. axyridis was a less preferred prey in comparison to

254 S. littoralis and this was supported by the longer development time of the bug when fed on

255 H. axyridis larvae compared to S. littoralis. There was a slight difference in the survival to

256 adulthood of pentatomid nymphs fed on H. axyridis compared to S. littoralis (70% vs.

257 80–90% respectively) and no nymphs reached adulthood when fed on just aphids

258 (De Clercq et al. 2003).
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259 Intraguild predation between H. axyridis and parasitoids

260 Intraguild predation between predators and parasitoids is asymmetrical and can be

261 described as both coincidental and omnivorous (Polis et al. 1989). In contrast to the

262 literature on intraguild predation between H. axyridis and other predators, particularly

263 coccinellids, there is very little information on such interactions between H. axyridis and

264 parasitoids. Previous studies have reported the consumption of parasitized aphids by

265 coccinellids (Wheeler et al. 1968; Ferguson and Stiling, 1996) and that the presence, or

266 recent activity, of predatory coccinellids within an aphid colony can reduce the oviposition

267 rate of aphid parasitoids (Taylor et al. 1998).

268 Takizawa et al. (2000) assessed whether the aphid Aphis craccivora Koch (Hemiptera:

269 Aphididae), parasitized by Aphidius colemani Viereck (Hymenoptera: Braconidae), were

270 suitable prey for three coccinellid species: C. 7-punctata, P. japonica and H. axyridis. The

271 parasitoid was used at two life stages: 3-day-old larvae within living aphids (coincidental

272 intraguild predation) and sessile aphid ‘mummies’ containing pupae (asymmetrical

273 omnivorous intraguild predation). Consumption of parasitized aphids containing 3-day-old

274 larvae did not reduce survival or increase development time of any of the coccinellids. In

275 contrast, consumption of aphid ‘mummies’ increased the development time of all three

276 species and reduced survival to adulthood of C. 7-punctata by 70% but did not affect the

277 survival of H. axyridis and P. japonica. Coccinella 7-punctata is considered to be a more

278 aphid-specific predator than H. axyridis (Hodek and Honek 1988). It is likely that para-

279 sitized ‘mummies’ are unsuitable prey and, hence, the low survival rates of C. 7-punctata

280 fed on parasitized aphids could be attributed to their aphid-specific dietary requirements

281 (Takizawa et al. 2000). In contrast, H. axyridis selectively preyed on pea aphids, A. pisum,

282 rather than pea aphid ‘mummies’ parasitized by Aphidius ervi Haliday (Hymenoptera:

283 Braconidae) (Snyder and Ives 2003). Although this would not change the impact of

284 coincidental intraguild predation of larval parasitoids by H. axyridis, it does demonstrate

285 that interactions are variable depending on the prey concerned. Similarly, in a study at

286 larger spatial scales Snyder et al. (2004a) found that although H. axyridis did prey on

287 ‘mummies’ of the aphid parasitoid Aphelinus asychis Walker (Hymenoptera: Aphelinidae)

288 (adult H. axyridis showed no discrimination between ‘mummies’ and aphids although

289 larvae preferred aphids in feeding trials), the overall parasitism level was not affected.

290 Intraguild predation between H. axyridis and pathogens

291 Entomopathogenic fungi are common pathogens of aphids and can be involved in both

292 coincidental and omnivorous, asymmetrical or symmetrical, intraguild interactions (Roy

293 and Pell 2000; Völkl et al. 2007). The most common fungal pathogens are host-specific

294 species from the Zygomycetes, order Entomophthorales, although other species from the

295 Ascomycetes, order Hypocreales, some with wide host ranges, are used as biopesticides

296 and could, therefore, be involved in intraguild interactions (Powell and Pell 2007; Pell

297 2008).

298 During the final stages of infection by entomopathogenic fungi the host dies and the

299 fungus sporulates to produce more infective propagules (conidia) for transmission (Inglis

300 et al. 2001; Pell et al. 2001). As the sporulating aphid cadaver is sessile, it is an easy prey

301 item for generalist predators. In a laboratory study, Roy et al. (2008a) assessed the pre-

302 dation of aphid cadavers sporulating with Pandora neoaphidis (Remaudière and

303 Hennebert) Humber (Zygomycetes: Entomophthorales) by UK and Japanese-derived
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304 H. axyridis relative to that of the UK native species C. 7-punctata. Unlike C. 7-punctata,

305 which showed a strong preference for aphids over sporulating fungal cadavers, H. axyridis

306 showed little discrimination between the prey types and would consume whole, sporulating

307 cadavers. The consumption of whole sporulating cadavers could remove a significant

308 quantity of inoculum from the aphid population, which may result in a reduction in further

309 transmission. As P. neoaphidis only infects aphids, this represents asymmetrical intraguild

310 predation. The strength of intraguild predation by H. axyridis collected in the UK differed

311 from those collected in Japan, with H. axyridis (UK) showing less discrimination between

312 prey types compared to H. axyridis (Japan) (Roy et al. 2008a). Whether feeding on

313 infected cadavers has fitness consequences for H. axyridis is unknown.

314 Other entomopathogenic fungi have wider host ranges and may be infective

315 towards both coccinellids and aphids, making the intraguild interaction potentially

316 symmetrical. For example, isolates of the entomopathogenic fungi Metarhizium

317 anisopliae (Metschnikoff) Sorokin (Ascomycete: Hypocreales), Paecilomyces fumos-

318 oroseus (Wise) Brown and Smith (Ascomycetes: Hypocreales) and Beauveria bassiana

319 (Balsamo) Vuillemin (Ascomycetes: Hypocreales) have been recorded infecting both

320 aphids and coccinellids (e.g., Magalhaes et al. 1988; Keller and Zimmerman 1989; Butt

321 et al. 1994; James and Lighthart 1994; Yeo 2000; Pell and Vandenberg 2002; Ormond

322 et al. 2006). In particular, B. bassiana is a major overwintering mortality agent of

323 C. 7-punctata (Majerus 1994; Ormond et al. 2006). Roy et al. (2008b) assessed the

324 susceptibility of H. axyridis derived from the UK and Japan to B. bassiana relative to

325 that of the UK native species C. 7-punctata and A. 2-punctata. Only doses of 109 conidia

326 ml–1 resulted in mortality of H. axyridis, in contrast, 80% of C. 7-punctata and 70% of

327 A. 2-punctata exposed to 107 conidia ml–1 of B. bassiana succumbed to infection. In

328 addition, the results suggested that the UK derived strain may be more resistant to

329 infection than the Japanese derived strain. Interestingly, inoculation with B. bassiana at a

330 concentration as low as 105 conidia ml–1 reduced the fecundity of H. axyridis (Roy et al.

331 2008b). Whether any of these coccinellids feed on B. bassiana-infected cadavers and the

332 implications of this on the symmetry of intraguild predation is unknown. However, in the

333 study of Pell and Vandenberg (2002) the coccinellid H. convergens did consume living

334 Diuraphis noxia Kurdjumov (Hemiptera: Aphididae) aphids infected by P. fumosoroseus

335 but did not consume sporulating aphid cadavers.

336 In both studies by Roy et al. (2008a, b), the interactions involving H. axyridis collected

337 from the UK differed from those collected in Japan, with H. axyridis from the UK being a

338 stronger intraguild predator of P. neoaphidis and more resistant to B. bassiana than the

339 strain from Japan. These are the first studies to indicate fundamental differences between

340 H. axyridis subpopulations and demonstrate the importance of assessing genetic and

341 ecological variability amongst such subpopulations.

342 Intraguild predation involving H. axyridis: Conclusions to date

343 There is broad agreement, from the studies described above, that H. axyridis is a top

344 predator as it is predominantly a strong asymmetrical intraguild predator of other guild

345 members (Hironori and Katsuhiro 1997; Cottrell and Yeargan 1998; Phoofolo and Obrycki

346 1998; Yasuda and Ohnuma 1999; Michaud 2002; Sato et al. 2003, 2005; Felix and Soares

347 2004; Snyder et al. 2004b; Kajita et al., 2006; Perez and Omkar 2006; Roy et al. 2006,

348 2008a, b; Cottrell 2007; Ware and Majerus 2008) and as such can dominate in aggressive

349 intraguild interactions and lead to a decline in guild diversity.
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350 The key functional traits that make H. axyridis such an exceptional intraguild predator

351 are its relatively large size, aggressive behaviour, extreme polyphagy and the possession of

352 effective physical and chemical defence strategies. Together these traits provide the

353 mechanism by which H. axyridis impacts on guilds and food webs in general (Tedders and

354 Schaefer 1994; Hodek 1996; Yasuda and Shinya 1997; Yasuda and Ohnuma 1999; Kajita

355 et al. 2000; Koch 2003). It therefore seems likely that H. axyridis could disrupt

356 aphidophagous/coccidophagous community structure leading to declines in other species in

357 the guild where it establishes as a non-native species. Harmonia axyridis has certainly

358 become abundant and widely distributed as a non-native species throughout North America

359 and Europe (Koch 2003; Brown et al. 2008) and field data from the USA has reported

360 associated negative impacts on native coccinellid species in these regions (Elliott et al.

361 1996; LaMana and Miller 1996; Brown and Miller 1998; Colunga-Garcia and Gage 1998;

362 Lucas et al. 2002; Michaud 2002; Nault and Kennedy 2003). Interestingly, C. 7-punctata

363 was also introduced and became established widely in North America prior to the estab-

364 lishment of H. axyridis (Gordon 1985). It too displaced native coccinellids and became the

365 dominant predator. However, H. axyridis is a more aggressive predator than C. 7-punctata;

366 larvae of H. axyridis consume those of C. 7-punctata but the reverse occurs considerably

367 less frequently (Hironori and Katsuhiro 1997; Yasuda et al. 2004; Ware and Majerus

368 2008). Since the arrival of H. axyridis in the USA, it has displaced C. 7-punctata as the

369 ‘top predator’ demonstrating the considerable dominance of H. axyridis as an intraguild

370 predator of native and exotic coccinellids alike (Snyder et al. 2004b).

371 Similar evidence of declines in native coccinellid species after establishment of

372 H. axyridis is accumulating in Europe. For example, evidence suggests that in London

373 numbers of some, but not all, native coccinellids (particularly A. 2-punctata) have declined

374 significantly since the arrival of H. axyridis in 2004 (Majerus, unpublished data). This is

375 almost certainly due to its superior competitive ability and status as an intraguild predator.

376 From the experimental studies of Ware and Majerus (2008), with consideration of the

377 wider ecologies of H. axyridis and British ladybirds, and in the absence of control or

378 mitigation, we anticipate that aphidophagous habitat generalists such as C. 7-punctata,

379 A. 2-punctata and P. 14-punctata will be most at risk from the establishment of

380 H. axyridis in the UK, followed by aphidophagous habitat specialists such as Myzia

381 oblongoguttata (L.) (Coleoptera: Coccinellidae), Myrrha 18-guttata (L.) (Coleoptera:

382 Coccinellidae) and Anisosticta 19-punctata (L.) (Coleoptera: Coccinellidae). The only

383 species that may be relatively unaffected by invasive H. axyridis is A. ocellata, and indeed

384 H. axyridis could actually be at risk from detrimental interactions with this species where

385 they co-inhabit coniferous woodland. It is thought that the aphidophagous specialist

386 C. 5-punctata would be particularly threatened if H. axyridis invades unstable river

387 shingle, as it is already considered of conservation concern (Ware et al. 2005). Coccido-

388 phagous species such as Exochomus 4-pustulatus (L.) (Coleoptera: Coccinellidae) and

389 Chilocorus renipustulatus (Scriba) (Coleoptera: Coccinellidae) and the Erica/Calluna

390 heathland specialists Chilocorus 2-pustulatus (L.) (Coleoptera: Coccinellidae) and

391 Coccinella hieroglyphica L. (Coleoptera: Coccinellidae) are thought to be less at risk, the

392 latter because H. axyridis has yet to be recorded from such heathland. Mycophagous,

393 phytophagous and myrmecophilous coccinellids, such as Thea 22-punctata (L.) (Coleop-

394 tera: Coccinellidae), Subcoccinella 24-punctata (L.) (Coleoptera: Coccinellidae) and

395 Coccinella magnifica Redtenbacher (Coleoptera: Coccinellidae) respectively, are likely to

396 be the least threatened by the establishment of H. axyridis in Britain.

397 There is clear evidence for declines in diversity of coccinellids in the USA and

398 increasingly in Europe. However, there have been no studies to evaluate impacts on the
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399 diversity of other guild members or on biodiversity more widely; these are urgently

400 required, particularly in areas undergoing invasion by H. axyridis, if the full implications

401 of its presence are to be evaluated.

402 Knowledge gaps, future perspectives and implications for biodiversity

403 and ecosystem function

404 Harmonia axyridis is also a dominant intraguild predator in its native range, as shown by

405 Ware and Majerus (2008) who paired Japanese H. axyridis with Japanese native coccin-

406 ellids in their laboratory interaction studies and found that H. axyridis was the successful

407 intraguild predator in the majority of cases. It has also prevented the establishment of the

408 introduced coccinellid A. 2-punctata in Japan (Sakuratani et al. 2000; Kajita et al. 2006).

409 However, it appears to co-exist with most other guild members (Kuznetsov 1997) whilst

410 causing declines and competitive exclusion of other coccinellid species in regions where it

411 is an invasive exotic (e.g., Colunga-Garcia and Gage 1998; Michaud 2002). In co-evolved

412 communities that utilise limited resources, species will be under selection to either ensure

413 that they win any competitive interaction or that they avoid competition through resource-

414 use complementarity and niche differentiation (Wilby and Thomas 2002a, b; Pell 2008). It

415 is possible that, although H. axyridis is the top predator in its native range, other predator

416 populations can escape intraguild predation through spatial or temporal niche differenti-

417 ation. Studies to understand the mechanisms for co-existence with H. axyridis in its native

418 range are essential if we are to mitigate existing effects in its invasive range.

419 Temporal niche differentiation

420 The co-existence of H. axyridis and sympatric species in Asia may, in part, be due to

421 phenological differences that lead to temporal niche differentiation. For example,

422 C. 7-punctata brucki is active earlier in the spring in Japan than H. axyridis and its larvae

423 are therefore larger and more able to survive in intraguild combat with H. axyridis

424 (Takahashi and Naito 1984; Sato 2001). Phenological studies of H. axyridis in its non-

425 native range are essential if we are to predict the extent of intraguild predation and

426 consequent impacts on biodiversity. Such studies are underway and in the UK, for

427 example, early indications are that H. axyridis emerges from winter in synchrony with

428 most native aphidophagous coccinellids, which contributes to the latter’s inability to

429 escape intraguild predation. Harmonia axyridis is also multivoltine and remains active for

430 longer through the season, allowing numbers of individuals to build up rapidly. All life

431 stages of H. axyridis have been recorded in November (early winter) in the UK (Majerus

432 et al. 2006; Brown et al. 2008). In one study from the USA biological control literature,

433 Flowers et al. (2006) considered intraguild interactions amongst three exotic predators

434 attacking the hemlock woolly adelgid, Adelges tsugae (Annand) (Hemiptera: Adelgidae) in

435 hemlock stands in West Virginia. The species included were: specialists, Laricobius

436 nigrinus (Fender) (Coleoptera: Derodontidae) and the coccinellid Sasajiscymnus tsugae

437 (Sasaji & McClure) (Coleoptera: Coccinellidae), and the generalist H. axyridis. The

438 authors concluded that intraguild predation by H. axyridis was not common because they

439 were phenologically separated and active during different seasons; L. nigrinus was most

440 active in spring and H. axyridis in summer. This also has implications for the wider guild

441 beyond other coccinellids, for which there is currently very little information.
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442 Associations with ants

443 Other coccinellid species in H. axyridis’ native range may escape intraguild predation

444 through associations with ants. Although there are limited studies on myrmecophilous

445 interactions in the native range of H. axyridis, it is well documented for some coccinellid

446 species in Europe. Many aphids and coccids are myrmecophilous and gain benefits from

447 being associated with ants, including protection from natural enemies, in exchange for food

448 in the form of honeydew (e.g., Hölldobler and Wilson 1990; Jiggins et al. 1993; Majerus

449 et al. 2007). There is considerable evidence to demonstrate that ants display ownership

450 behaviour, whereby they behave more aggressively towards predators in the vicinity of

451 tended colonies than elsewhere (Way 1963). In the case of coccinellids, this aggression

452 may be directed toward both adults and larvae, the former being chased away (e.g., Itioka

453 and Inoue 1996; Sloggett 1998), while the latter may be picked up and dropped off the

454 plant, or killed (e.g., Jiggins et al. 1993; Sloggett and Majerus 2003). As a result of ant

455 aggression, most coccinellids only feed on ant-tended prey when untended prey are scarce

456 (Sloggett and Majerus 2000). Many coccinellids have defences against ant aggression,

457 which may be behavioural, chemical or physical and lead to variation in tolerance to ants

458 amongst different coccinellid species (Majerus et al. 2007). For example, Sloggett and

459 Majerus (2000) showed a hierarchy in six species of coccinellid living in pine woodland in

460 the UK to aggression from Formica rufa (L.) (Hymenoptera: Formicidae) from no toler-

461 ance (M. 18-guttata and A. ocellata) to high tolerance (C. magnifica). Unfortunately, the

462 level of tolerance of H. axyridis to ant aggression in either its native or its invasive range is

463 unknown. Should H. axyridis be found to be intolerant of ant presence, it is likely that

464 those aphidophages that have a significant degree of ant tolerance, such as M. oblongo-

465 guttata and C. 7-punctata, will find a refuge from some of the effects of intraguild

466 predation and competition imposed by H. axyridis in habitats occupied by ant-tended

467 aphids. Experiments to investigate the level of tolerance of H. axyridis to common aphid

468 tending ants, such as F. rufa, Lasius niger (L.) (Hymenoptera: Formicidae) and Myrmica

469 ruginodis Nylander (Hymenoptera: Formicidae), are urgently needed. The small number of

470 coccinellid species that are true myrmecophiles, i.e., have the closest relationships with

471 ants and associated high tolerance, are likely to have the safest refuge from H. axyridis,

472 unless H. axyridis is also highly tolerant to ants. These species include C. magnifica

473 (Sloggett et al. 2002; Majerus et al. 2007) and Platynaspis luteorubra (Goeze) (Völkl

474 1995; Godeau 2000). It is possible that some species that have some tolerance of

475 ants may come under additional selection pressures to improve their tolerance as a result of

476 the presence of H. axyridis. In regions now occupied by H. axyridis, monitoring the

477 coccinellid presence in the vicinity of nests of F. rufa over the next decade would be

478 valuable.

479 Behavioural interactions

480 Further work is also required to acquire data on behavioural defence strategies of guild

481 members in the presence of H. axyridis, such as dislodgement (dropping behaviour) and

482 escape behaviourswhich could be extremely important for some species. For example, larvae

483 of the coccinellid P. 14-punctata are consumed by H. axyridis in laboratory studies con-

484 ducted in Petri dishes, but it is speculated that the highly mobile larvae of this species may

485 have the capability to successfully escape from H. axyridis in field situations (Ware and

486 Majerus 2008). We also know that parasitoids and predators can use volatile and chemical
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487 cues to avoid competition; both the coccinellid C. 7-punctata and the predatory bug

488 Anthocoris nemorum (L.) (Heteroptera: Anthocoridae) can detect and avoid surfaces con-

489 taminated by the fungal pathogenB. bassiana towhich they are susceptible (Meyling andPell

490 2006;Ormond 2007). In addition, the aphid parasitoidA. ervi detects volatiles from the tracks

491 ofC. 7-punctata and avoids oviposition in nearby aphid populations (Nakashima et al. 2004).

492 Such behavioural responses can ensure co-existence by reducing the risk of intraguild pre-

493 dation. They may contribute to co-existence of H. axyridis in its co-evolved native guild

494 populations and are currently being evaluated for H. axyridis in the broader UK guild.

495 Other intraguild interactions, such as facilitation, have been recorded for some species

496 and shown to mitigate the effects of intraguild predation on guild diversity and may also

497 apply to H. axyridis. For example, although C. 7-punctata is an intraguild predator of the

498 aphid-specific pathogenic fungus P. neoaphidis, it does not consume whole, fungal

499 cadavers and transmission of the fungus is not reduced. Indeed, C. 7-punctata enhances

500 transmission of the fungus and passively vectors it between aphid populations, thereby also

501 aiding pathogen dispersal (Roy et al. 1998, 2001; Roy and Pell 2000). Some of these

502 co-evolved behavioural traits may contribute to the maintenance of guild diversity in the

503 native range of H. axyridis and may mitigate its effects on some species in the invasive

504 range. In preliminary studies, H. axyridis did enhance transmission and dispersal of

505 P. neoaphidis in the laboratory (J. Baverstock personal observation).

506 Natural enemy release and biotype variation

507 Differences in functional traits of invasive and non-invasive biotypes of H. axyridis may

508 have exacerbated their impact in non-native ecosystems. Although direct comparisons

509 between different biotypes of H. axyridis and other natural enemies found in its exotic

510 range have only been made for a limited number of functional traits, they have all dem-

511 onstrated that the UK invasive biotype is a stronger asymmetric intraguild predator than the

512 Japanese biotype. Specifically Roy et al. (2008b) demonstrated that H. axyridis from a

513 culture derived from Japan were less likely to consume aphid cadavers supporting the

514 beneficial aphid-specific fungal pathogen P. neoaphidis than those derived from the UK.

515 They speculated that H. axyridis obtained from non-native populations were derived from

516 biological control cultures and, through microevolution or founder effects, have been,

517 perhaps unintentionally, selected for extreme polyphagy and an increased tendency

518 towards intraguild predation compared to H. axyridis in its native range (Roderick and

519 Howarth 1999; Hufbauer and Roderick 2005; Roy et al. 2008a). It would be extremely

520 interesting to compare the strength and symmetry of intraguild interactions between

521 Japanese, UK and US derived H. axyridis for a wider range of guild members, from both

522 native and non-native ranges to determine if they function differently in relation to all guild

523 members with which they compete. In addition, UK-derived H. axyridis have greater

524 resistance to some natural enemies, such as the fungus B. bassiana and the parasitoid wasp,

525 Dinocampus coccinellae Schrank (Hymenoptera: Braconidae) than do Japanese-derived

526 H. axyridis, implying that they have also been released from their own population regu-

527 lators (Koyama and Majerus 2008; Roy et al. 2008b). Evolution of resistance to disease,

528 parasitism and insecticides is not uncommon in insects and may be associated with trade

529 offs in fitness (e.g., Foster et al. 2007; Völkl et al. 2007). For example, although

530 UK-derived H. axyridis were less suceptible to infection they were also significantly less

531 fecund when infected than B. bassiana-infected H. axyridis derived from Japan (Roy et al.
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532 2008b). Further research is needed to fully evaluate these interactions and determine

533 whether any associated fitness costs could prove to be H. axyridis’ weakness.

534 Going beyond managed ecosystems

535 The focus of research has largely been on interactions between H. axyridis and other

536 coccinellids in managed ecosystems and, until recently, mainly in the USA, which has very

537 different agricultural systems to Europe. However, it is clear from the studies described

538 above that H. axyridis can have impacts on many other species and that this has impli-

539 cations beyond managed ecosystems to natural habitats. Such impacts require urgent

540 investigation. Harmonia axyridis is dispersive and highly polyphagous and therefore likely

541 to impinge on many foodwebs in many different ecosystems, with the potential to disrupt

542 them all. Although native coccinellids with similar prey and habitat requirements are at

543 greatest risk, other non-coccinellid guild members and non-target species beyond the guild,

544 such as Hemiptera of no economic importance (Majerus et al. 2006), lepidopteran eggs and

545 larvae (Koch 2003; Koch et al. 2006) and all the predators, hyperparasites and pathogens

546 in the higher trophic levels (Roy et al. 2008b) that may also be negatively affected. This

547 represents a significant threat to biodiversity per se, particularly as some of these species

548 are of considerable conservation concern (Koch et al. 2006).

549 What about scale?

550 We must also remember that many of the studies to date have been made on a small scale

551 in the laboratory. This does not detract from their value in identifying key protagonists and

552 ‘worst case scenarios’: certainly, a species that is not preyed on by H. axyridis in a Petri

553 dish experiment is unlikely to be at risk in the field. However, they do not consider the

554 importance of spatial scale and habitat complexity on niche differentiation and the out-

555 come of contests. Testing hypotheses on these subjects requires experiments to move to

556 larger spatial and temporal scales. The work of Snyder et al. (2004a) demonstrated that,

557 although parasitoid ‘mummies’ of A. asychis were susceptible to intraguild predation by

558 H. axyridis, overall parasitism rates were unaffected when experiments were done on a

559 larger spatial scale. It is also important to consider more complex communities, i.e. not just

560 pairs of protagonist species but a more representative guild, if we are to determine whether

561 diversity will decline and what implications this will have for ecosystem services.

562 Potential implications for ecosystem services

563 Predators are part of the functional biodiversity in managed ecosystems and, while not the

564 only contributor to herbivore population regulation, they are essential for sustainable pest

565 management through the ecosystem services they provide and that we depend upon. While

566 the abundance of particular species can be enhanced through biological control, the

567 question of ‘how many species are required to achieve the required service in the crop?’

568 continues to be a matter of debate (e.g., Denoth et al. 2002; Pell 2008; Straub et al. 2008)

569 and must be considered in the context of the arrival of H. axyridis and potential declines in

570 guild diversity. The relationship between predator biodiversity and ecosystem function is

571 poorly understood. From the studies described above, and field observations of declines in
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572 native aphidophages and coccidophages since the arrival of H. axyridis, we must consider

573 whether H. axyridis as a top predator, will deliver the same ecosystem service when other

574 guild species are excluded or whether this will reduce aphid regulation (prey release) and

575 the reliability of biological control in the long term.

576 Straub et al. (2008) reviewed recent literature on the relative pest suppression function

577 of multiple (more than two) compared to single predator species and found that the rela-

578 tionship between predator diversity and pest suppression was context dependent and could

579 be positive, negative or neutral. Theoretically, if increasing predator diversity encourages

580 intraguild predation, or, as in the case of invasion by H. axyridis, an invasive intraguild

581 predator is introduced to the system, then the prediction would be that the equilibrium

582 density of the herbivore would increase and pest control function would be reduced (e.g.,

583 Polis et al. 1989; Finke and Denno 2004). Effectively, trophic cascades would be damp-

584 ened and the herbivore would be released from predation. However, the experimental

585 evidence to support this in a number of communities is mixed. Some studies have docu-

586 mented disruption of pest suppression and others have shown either no change or improved

587 pest suppression in the presence of intraguild predation (Straub et al. 2008). Most recent

588 meta-analysis by Rosenheim and Harmon (2006) and a literature review by Janssen et al.

589 (2006) find no evidence that the presence of intraguild predation disrupts herbivore control.

590 However, there was greater variation than expected between cases, suggesting that pest

591 release depended on system-specific factors, such as the biological traits of the predators

592 and prey, and extrinsic factors, such as the environment: i.e., there was no simple

593 prediction relating intraguild predation to pest release (Straub et al. 2008).

594 However, Straub et al. (2008) have identified particular traits of relevance from the

595 theoretical literature. The first relates to the life history of the intraguild prey. Coincidental

596 intraguild predation of parasitoids and pathogens is likely to be less disruptive to herbivore

597 suppression than omnivorous intraguild predation of other predators because predation of

598 the herbivore and the parasitoid/pathogen are directly linked and intraguild predation will

599 simultaneously result in predation of the herbivore (Rosenheim et al. 1995). However, this

600 may not hold if several generations of the intraguild prey are considered (Snyder and Ives

601 2001). Secondly, the relative mobility and size (foraging mode) of the intraguild predator,

602 intraguild prey and the herbivore can all influence the likelihood of prey release. A ‘sit and

603 wait’ intraguild predator could disrupt suppression of a sedentary herbivore by a mobile

604 intraguild prey species, although this will depend on the size of the intraguild prey species

605 too. If it is large and highly mobile, it will have a large demand for prey, and if removed

606 from the system by intraguild predation could result in release of the herbivore prey

607 (Rosenheim and Corbett 2003). Furthermore, if the intraguild prey is a similar size to the

608 herbivore then adding a larger intraguild predator will enhance herbivore suppression

609 because predation of the herbivore by the intraguild predator would greatly outweigh the

610 small release from predation achieved by the consumption of the intraguild prey (Diehl

611 1993). The opposite would be the case if the intraguild prey was much larger than the

612 herbivore (Rosenheim and Corbett 2003). There is some experimental support for this

613 second prediction (Rosenheim et al. 2004a, b) but for the most part they remain hypotheses

614 that require experimental evaluation. In addition, they will be influenced by whether the

615 top intraguild predator is co-evolved with the rest of the guild or whether it is an exotic

616 alien species, as is the case with H. axyridis. Using the hypotheses above, one could

617 predict from the biological traits of H. axyridis that it would release herbivores from

618 control because it consumes intraguild prey that are large and mobile. However, it is itself

619 large, mobile, well defended, multivoltine and highly voracious which could compensate

620 for this, at least in the short term.
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621 Within guilds of predators some species may be functionally redundant if they share

622 traits and their function would be replaced by other species should they be lost (Wilby and

623 Thomas 2002a, b; Ives et al. 2005; Casula et al. 2006). If there are many redundant species

624 within a guild, then a decline in their diversity associated with the arrival of H. axyridis

625 may not influence overall function. However, determining whether species are functionally

626 redundant within a guild relies on the ability to divide them into functional groups with

627 similar traits (e.g., prey preference, response to prey density, microhabitat use and phe-

628 nology). Those with similar traits should compete strongly for resources and are, therefore,

629 likely to be functionally redundant.

630 Within the aphidophagous guild there have been studies to demonstrate that increasing

631 the number of species in the guild increases prey suppression, suggesting resource-use

632 complementarity (Powell et al. 2006). However, other workers have shown no such effects

633 and suggest significant redundancy of some guild members (Evans 1991; Chang 1996;

634 Straub and Snyder 2006). The former may be more likely because the latter results could

635 be due to negative and positive interactions between species counteracting each other

636 (Snyder and Ives 2003) or because species that appear functionally redundant under some

637 environmental conditions are functionally diverse when environmental conditions change

638 (Naeem and Li 1997). This effect is encompassed in the ‘insurance hypothesis’ that

639 maintains that different predators perform better or worse in particular environments and

640 that by maintaining them all provides functional compensation and reliable pest sup-

641 pression despite changing conditions (Loreau et al. 2003). This is essential in managed

642 ecosystems that are fragmented and under constant change (Pell 2008). The multiplicity of

643 responses to change that species from a single functional group are capable of, is critical to

644 landscape scale ecosystem resilience (Elmquist et al. 2003). There are good examples of

645 this in the aphid/ predator system (Pell 2008). Key aphid mortality factors, which can be

646 parasitoids on some occasions and syrphids, ground predators or entomopathogenic fungi

647 on other occasions, demonstrate the need for diversity as insurance for function (Krauss

648 and Poehling 1996; Hemmati 1999; Östman et al. 2001; Powell et al. 2003, 2004;

649 Tscharntke et al. 2005; Pell 2008). Declines in guild diversity as a result of introduction of

650 H. axyridis could, therefore, reduce the resilience of pest suppression in the long term.

651 A single prey type, or even species, can provide multiple feeding niches that a diversity

652 of predators can use if there is niche complementarity rather than redundancy and this is

653 achieved by resource partitioning and facilitation amongst predators. If their is complete

654 complementarity then predator diversity should increase pest suppression (Wilby and

655 Thomas 2002a, b; Casula et al. 2006). There is significant evidence for resource parti-

656 tioning and facilitation within the aphid/predator system (Pell 2008). For example variation

657 between aphid species, or within a species, provides an opportunity for preference amongst

658 predators. The coccinellid C. 7-punctata exploited red morphs of the pea aphid more than

659 green morphs whereas the parasitoid A. ervi only attacked green morphs, effectively

660 partitioning the resource between them (Losey et al. 1997). Coccinellid species differ in

661 their response to prey density, some being more effective at low densities and others at

662 high densities, which effectively separates them into complementary niches (Evans 2004;

663 Schellhorn and Andow 2005). A further example of complementarity can be seen for the

664 interactions between C. 7-punctata, a foliar aphid predator, and the carabid beetle

665 Harpalus pennsylvanicus (DeGeer) (Coleoptera: Carabidae), which is restricted to foraging

666 on the soil surface. As the coccinellid forages, it dislodges aphids that are then consumed

667 by the ground predator, enhancing overall aphid suppression (Losey and Denno 1998).

668 Coccinellid predators and parasitoids also facilitate transmission and dispersal of the

669 beneficial aphid pathogen P. neoaphidis (Pell et al. 1997; Fuentes-Contreras et al. 1998;

Intraguild predation involving H. axyridis

123

Journal : Small 10526 Dispatch : 10-10-2007 Pages : 22

Article No. : 9125 h LE h TYPESET

MS Code : BICO632 h CP h DISK4 4

E
d

it
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

670 Roy et al. 1998, 2001; Baverstock et al. 2005). Avoidance behaviour of parasitoids and

671 coccinellids in relation to other intraguild predators is common (Nakashima et al. 2004;

672 Meyling and Pell 2006; Ormond 2007). As already described, coccinellid species can also

673 be phenologically separated, thereby partitioning resources temporally and avoiding

674 competition (Takahashi and Naito 1984; Sato 2001; Flowers et al. 2006) or they can have

675 different patch-leaving times (Sato et al. 2003). As there are numerous examples of

676 complementarity amongst aphidophagous species, it follows that the more species there are

677 in the guild, the greater pest suppression will be. This confirms the hypothesis that declines

678 in guild diversity as a result of introduction of H. axyridis could reduce effective pest

679 suppression.

680 Summary

681 Overall, the evidence suggests that predator diversity is necessary for resilient pest sup-

682 pression and that includes aphid and coccid control (Stiling and Cornelissen 2005;

683 Cardinale et al. 2006; Pell 2008; Straub et al. 2008). Although intraguild predation does

684 not necessarily interfere with the overall ecosystem service it can interfere with pest

685 suppression in some systems, particularly when the intraguild prey are large compared to

686 the extraguild prey and this is the case for H. axyridis. Niche complementarity is almost

687 certainly the mechanism by which H. axyridis remains in equilibrium with its co-evolved

688 native guild of predators. In its exotic range, the guild of predators are co-evolved with

689 each other but not with H. axyridis and as such come into direct competition with

690 H. axyridis. This has significant implications for predator diversity, biodiversity per se and

691 also ecosystem services. Pest management strategies aimed at maintaining predator

692 diversity through habitat manipulation and the diversification of our agricultural land-

693 scapes could help counter declines in predator diversity associated with the arrival of

694 H. axyridis (e.g., Barbosa 1998; Landis et al. 2000; Gurr et al. 2004; Pell 2008). Although

695 implications for biodiversity in natural habitats are of grave concern, it is perhaps through

696 the manipulation of managed land, which, for example, represents 70% of land in the UK,

697 that we have the greatest chance of optimising the environment to favour our native

698 diversity in the presence of H. axyridis, thereby also protecting diversity in natural

699 habitats. To achieve this we need robust research data to fill the gaps in knowledge

700 identified in this paper and develop mitigation strategies.
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