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1 Introduction

Spatial Cournot competition with linear demand at all addresses has tradi-
tionally been studied within a framework where the consumers’ distribution
across markets is uniform: a framework where, starting from the work by
Hamilton et al. (1989) and Anderson and Neven (1991), the standard result
is that firms agglomerate in the middle of the linear city. As is well known,
Gupta et al. (1997) showed how the features of the consumers’ distribution
crucially affect such a result — agglomeration turns out to be conditional on
the density not being ‘too thin’ around the firms’ equilibrium location. They
also enquired about dispersion equilibria in the case of symmetric densities
by presenting some examples, all of which use (roughly speaking) U-shaped
distributions.
These results suggest that whether agglomeration or dispersion obtains

in equilibrium should depend on how consumers are distributed across mar-
kets.1 In this paper we build upon the work by Gupta et al. (1997) to
derive necessary conditions for a pair of locations to be an equilibrium in
the duopoly case with a generic density. In particular, this enables us to
show that a necessary condition for dispersion to be an equilibrium is that
the distribution be not unimodal. Our results are derived under assumptions
about parameters which ensure that all markets are served in equilibrium —
which, as is well known, amounts to transportation costs being low enough
relative to the consumers’ reservation price.
The paper is organized as follows. In the next section we recall the basic

model and characterize its equilibrium locations as the solution to a two-
equation system. Section 3 derives non-unimodality as a necessary condition
for dispersion to be an equilibrium. Section 4 gathers some concluding re-
marks.

2 Equilibrium

In this section we review the basic duopoly model with Cournot spatial com-
petition and give a general formulation of its equilibrium conditions for a
generic consumer distribution.
Two firms located on the unit interval sell a homogeneous product to be

1Notice however that switching to the circular road model may yield dispersion (Pal,
1998), while Benassi et al. (2007) show that one other key variable is the level of trans-
portation costs (relative to the consumers’ reservation price): dispersion is the unique
equilibrium in the linear city with a uniform distribution when such costs are high enough
(A < 1 in our notation).
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delivered in spatially diverse locations. Firm i = 1, 2, located in xi ∈ [0, 1]
bears a linear transportation cost t |x− xi|, t > 0, to deliver its product
at location x ∈ [0, 1]; production takes place at constant marginal costs
(standardly normalized at zero). Consumers are distributed as F : [0, 1] →
[0, 1] over the same interval, F differentiable with mean µ; the (inverse)
market demand at location x is linear and given by

px = a− bqx (1)

where qx ≥ 0 is the total quantity supplied at x, and a and b are strictly pos-
itive. We study the perfect equilibrium of the two stage game where firms
choose their locations in the first stage, and the quantities they produce in
the second stage of the game. By backward induction we first character-
ize the second stage Cournot equilibrium for given locations. To do so, we
assume that A = a/t > 2 to ensure that all markets are covered at equi-
librium (e.g., Gupta et al., 1997, p.264), and note that the assumption of
constant marginal costs allows to look at the quantity equilibrium as a set
of independent Cournot equilibria, one for each location x ∈ [0, 1].
The profit firm i = 1, 2 (i �= j = 1, 2), located at xi, obtains from the

market located in x is given by

πi(xi,xj; x) = (a− bqx − t |x− xi|) q
i
x(xi, xj)

where qix(xi, xj) is the output it sells at x and qx = q
1
x(x1, x2) + q

2
x(x1, x2) is

the total output available at location x. At the unique Cournot equilibrium,
firm i’s profits are given by

π̂i(xi,xj; x) =
1
9b
(a+ t |x− xj| − 2t |x− xi|)

2 (2)

which depend on both firms’ locations, and are to be used to determine the
perfect equilibrium locations in the first stage. To do so, we write the first
stage profit function for firm i as

Πi(xi, xj) =

∫ 1

0

π̂i(xi, xj ; x)f(x)dx (3)

where we integrate over all markets and (letting primes denote derivatives)
f(x) = F ′(x) is the (strictly positive) continuous density describing the con-
sumers’ distribution across locations.
A perfect Nash equilibrium in locations is then given by the pair (x∗1, x

∗

2)
such that ∂Πi(xi, xj)/∂xi = 0 (i �= j = 1, 2), and each firm’s profit is maxi-
mized. Straightforward calculations impose that the second order conditions
to be satisfied at an interior equilibrium are such that

f(x∗i )(A+ x
∗

2 − x
∗

1) ≥ 1 (4)
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for i = 1, 2, where w.l.o.g. we are assuming that x2 ≥ x1, so that x
∗

2−x
∗

1 = δ
∗

is the non negative equilibrium distance between the firms.
The firms’ equilibrium locations are identified by the following result,

derived for a generic consumer density:

Proposition 1 Let (x∗1, x
∗

2) = (x
∗, x∗ + δ∗), δ∗ ≥ 0, be the equilibrium loca-

tions of firms i = 1, 2. Then the pair (x∗, δ∗) is a solution to the system

δ∗ =
1

1 + 2F (x∗)

(
2

∫ x∗+δ∗

x∗
F (z)dz + x∗ − µ+ [1− 2F (x∗)]A

)
(5.a)

F (x∗ + δ∗) =
3

2

δ∗

(A+ δ∗)
+ F (x∗) (5.b)

Proof. See Appendix.

Proposition 1, which follows directly from equations (4.4) and (4.5) of Gupta
et al. (1997), amounts to identifying the pair (x∗1, x

∗

2) at which the first
order conditions for both firms’ profit maximization problems are satisfied,
and accordingly provides necessary conditions for a perfect equilibrium in
(quantities and) locations. As per (4), sufficient conditions also require that
the second order constraints f(x∗i ) (A+ δ

∗) ≥ 1, i = 1, 2, hold, while we know
from Gupta et al. (1997, p.265) that no firm’s equilibrium location will ever
be 0 or 1.2

We report in Figure 1 an example of equilibrium dispersion with a sym-
metric density, based on Gupta et al. (1997, p.280): we plot the mappings
xa (δ) (dotted) and xb(δ) (solid) which solve equations (5.a,b), such that
(x∗1, x

∗

2) = (0.4, 0.6) and hence δ
∗ = 0.2.3

2These authors’ proof relies on differentiating each firm’s profit function (3) with respect
to its own location, to get that limx1→0+ ∂Π1/∂x1 > 0 and limx2→1− ∂Π2/∂x2 > 0.

3This is Gupta et al.’s example 7 (see also their f.note 6, p.280), where the density is
f(x) = 1/2 + 6(x − 1/2)2, symmetric with mean µ = 1/2, and A = 2.681; the second
order bounds on the density are satisfied at (x∗

1
, x∗
2
). Notice that in general xb(δ) is not a

one-to-one function, since clearly equation (5.b) may have more than one solution. Also,
symmetry implies that xb(·) be vertical at δ∗.
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Figure 1. Equilibrium dispersion

We now turn to discussing dispersion equilibria.

3 Dispersion

Let h(x,A) = x − µ + [1− 2F (x)]A, and let some x̂ ∈ (0, 1) be a solution
to h(·, A) = 0. It is then obvious by inspection that (x∗, δ∗) = (x̂, 0) is a
solution to (5.a,b): i.e., agglomeration is a (candidate) equilibrium — actually,
one such always exists whenever the density is unimodal,4 and indeed Gupta
et al. (1997) show that in general agglomeration can be an equilibrium
only if the density is ‘thick’ enough around the firms’ location. However,
their discussion about dispersion relies mainly on examples of symmetric
densities, all of which are (roughly speaking) U-shaped. This suggests that
non unimodality be somehow crucial for the existence of dispersion equilibria.
In this section we show that this is indeed the case.
Two general observations should be made as preliminary remarks. First,

independently of the actual shape of the distribution, firms cannot locate too
far apart from each other, as the following Lemma applies

Lemma 1 Let (x∗1, x
∗

2) = (x∗, x∗ + δ∗), δ∗ > 0, be a pair of dispersed

equilibrium locations. Then F (x∗2)− F (x
∗

1) <
1
2
.

4This is an implication of Gupta et al. (1997, p.269), as unimodality implies the
existence of a ’modal interval’ I ⊂ (0, 1) such that f(x) > 1 for all x ∈ I. Notice that
h(0, A) > 0 > h(1, A), so that h(·, A) = 0 has always a solution.
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Proof. Contrary to the result, suppose F (x∗2)− F (x
∗

1) ≥
1
2
. Then equation

(5.b) implies 2δ∗ ≥ A: since A > 2, this implies δ∗ = x∗2 − x
∗

1 > 1, a
contradiction.

Secondly, Proposition 1 suggests that the existence of a dispersion equilib-
rium places some restrictions on the concavity of the consumers’ density.
Indeed, letting F (x∗ + δ∗) − F (x∗) = ∆F ∗, equation (5.b) can be written
as ∆F ∗/δ∗ = 3/2 (A+ δ∗): since by the mean value theorem there trivially
exists some z ∈ (x∗, x+ δ∗) such that f(z) = ∆F ∗/δ∗, at a dispersed equi-
librium one must have 2

3
f(z) = 1/ (A+ δ∗) ≤ f(x∗i ), i = 1, 2: i.e., the second

order conditions for maximum profits (see (4)) set limits on how thick the
density between locations can be, which actually vindicates Gupta et al.’s
(1997, p.277) emphasis on densities that are not unimodal.
Together with Lemma 1, this intuition accounts for the following result:

Proposition 2 Let (x∗1, x
∗

2) = (x∗, x∗ + δ∗), δ∗ > 0, be a pair of dispersed

equilibrium locations. Then the density f(x) is not unimodal.

Proof. See Appendix

Clearly, a natural implication of Proposition 2 is that non-unimodality is
required for the co-existence of equilibria with and without dispersion.

4 Concluding remarks

In this note we have considered the standard model of spatial Cournot com-
petition with two firms, to set up a general expression for identifying the
firms’ equilibrium locations. This allows to establish that non-unimodality
is a necessary condition for the existence of dispersion equilibria.
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Appendix

Proof of Proposition 1

The first order conditions for profit maximization, given definition (2) and
solving integrals, reduce to

A[1− 2F (x1)]− [1 + 2F (x1)] δ + x1 − µ+ 2I(x1, x2) = 0 (A.1.a)

A[1− 2F (x2)] + [1− 2F (x2)] δ + x2 − µ+ 2I(x1, x2) = 0 (A.1.b)

where to ease notation we let δ = x2 − x1 ≥ 0 and I(x1, x2) =
∫ x2
x1
F (x)dx.

Now we may sum and subtract over (A.1) to get

A∆F −
3

2
δ + δ∆F = 0 (A.2.a)

A [1− ΣF ] +
x1 + x2
2

− δΣF − µ+ 2I(x1, x2) = 0 (A.2.b)

where ΣF = F (x1)+F (x2) and ∆F = F (x2)−F (x1) ≥ 0. By summing over
again we obtain

δ =
1

1 + 2F (x1)
(2I(x1, x2) + x1 − µ+ [1− 2F (x1)]A) (A.3)

which, letting equilibrium values x∗1 = x∗ and x∗2 = x∗ + δ∗, amounts to
equation (5.a).
By subtracting (A.2.b) from (A.2.a) we now get

[1− 2F (x2)] δ = −{2I(x1, x2) + x2 − µ+ [1− 2F (x2)]A}
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which, solving for δ from (A.3) and letting x2 = x1 + δ gives, after semplifi-
cations, the equilibrium value

δ∗ =
2A∆F

3− 2∆F
(A.4)

which can be solved for ∆F = F (x∗ + δ∗)− F (x∗) to give equation (5.b).�

Proof of Proposition 2

If (x∗, x∗ + δ∗) is a pair of equilibrium dispersed locations, δ∗ ∈ (0, 1 − x∗)
must satisfy the twin conditions

κ(δ∗) = 0 (A.5.a)

λ(δ∗) = 0 (A.5.b)

where, using (5.a,b), the following definitions apply:

κ(δ) = δ[1 + 2F (x∗)]− 2

∫ x∗+δ

x∗
F (z)dz − h(x∗, A) (A.6.a)

λ(δ) = ∆(δ)−
3

2

δ

A+ δ
(A.6.b)

here h(x∗, A) = x∗−µ+[1− 2F (x∗)]A and, to ease notation, ∆(δ) = F (x∗+
δ) − F (x∗), an increasing function. Both κ and λ are continuous functions.
We now proceed in three steps:
(i) The function κ(δ) is strictly concave for any δ ∈ [0, 1−x∗], increasing

at least up to some δ̃ ∈ (δ∗, 1 − x∗], and such that κ(0) = −h(x∗, A) < 0
and κ′(δ∗) < 1. Indeed, differentiation shows that κ′(δ) = 1− 2∆(δ), clearly
decreasing and positive for δ ≤ δ∗, as by Lemma 1 ∆(δ∗) < 1/2: hence,
κ(0) = −h(x∗, A) < 0 and that κ′(δ∗) > 0. Since (A.5.a) is a necessary
condition for equilibrium, this ensures that for the given x∗ there is only one
δ∗ such that (x∗, x∗ + δ∗) is an equilibrium location pair.
(ii) The function λ(δ) is such that:

(a) λ(1 − x∗) > 0: from (i) it must be h(x∗, A) > 0: this directly
implies that

1− F (x∗) >
1

2

(
1−

x∗

A

)
(A.7)

Using (A.6.b) and noting that ∆(1−x∗) = 1−F (x∗), from (A.7) λ(1−x∗) >
1
2

(
1− x∗

A

)
− 3

2
1−x∗

A+1−x∗
, so that λ(1− x∗) > 0 if

1

2

(
1−

x∗

A

)
−
3

2

1− x∗

A+ 1− x∗
> 0 (A.8)
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which amounts to (A− x∗)(A+ 1− x∗)− 3A(1− x∗) > 0: this is surely true
for any x∗ ∈ [0, 1] and A > 2.

(b) there are at least two values of δ in the interval (0, 1−x∗) such that
the derivative of λ(δ) vanishes. To see this, notice that λ cannot be monotone
as λ(0) = λ(δ∗) = 0. Also, λ(1 − x∗) > 0 implies the existence of some

δ̂ ∈ (0, 1−x∗) such that δ̂ ≥ δ∗, with λ(δ̂) = 0 < λ′(δ̂) and λ(δ) > 0 for all δ ∈

(δ̂, 1−x∗). Let now Γ(δ) = κ′(δ)λ(δ)+κ(δ), such that Γ(0) = Γ(δ∗) = 0: there
has to be some δ ∈ (0, δ∗) such that Γ′(δ) = κ′′(δ)λ(δ) +

[
λ′(δ) + 1

]
κ′(δ) =

0 i.e. κ′′(δ)λ(δ) = −
[
λ′(δ) + 1

]
κ′(δ) < 0: since λ′(δ) + 1 = f(x + δ) +

2(A+δ)2−3A
2(A+δ)2

> 0 for all δ ∈ [0, 1 − x∗] and κ is concave, it must be λ(δ) > 0.

All of which implies that λ′(δ) changes sign at least twice over [0, δ̂]: there

is at least a pair (δ1, δ2), δ1 < δ2, say, δi ∈ (0, δ̂) for i = 1, 2, such that
λ′(δi) = 0.
(iii) By (A.6.b), it is now easily seen that f(x∗ + δ1) > f(x∗ + δ2),

since λ′(δi) = 0 is equivalent to f(x
∗ + δi) =

3
2

A
(A+δi)2

and δ1 < δ2. Hence,

unimodality is ruled out if one can find some δ3 > δ2 such that f(x
∗ + δ3) >

f(x∗ + δ2). To do so, consider the function θ(δ) =
1−F (x∗)
1−x∗

δ − 3
2

δ
A+δ

; this is
positive for any δ ∈ (0, 1−x∗]: indeed, θ(1−x∗) = λ(1−x∗) > 0 = θ(0), while

θ′(δ) = 1−F (x∗)
1−x∗

− 3
2

A
(A+δ)2

> 0: as θ is strictly convex, θ′(δ) > 0 if θ′(0) ≥ 0, i.e.
1−F (x∗)
1−x∗

≥ 3
2A
, which is true for A > 2. To see this, notice that h(x∗, A) > 0

implies 1−F (x
∗)

1−x∗
> A−x∗+µ

2A(1−x∗)
, so that θ′(0) > 0 if A+2x∗+µ− 3 ≥ 0. That the

latter is verified in equilibrium can be seen as follows:
(a’) h(x+δ∗, A+δ∗) = x∗+δ∗−µ+[1− 2F (x∗ + δ∗)] (A+δ∗) < 0: this

follows from (A.5) and the definitions (A.6), by noting that δ∗ [1 + 2F (x∗)] >
h(x∗, A) and substituting for F (x∗) from (A.5b); there follows µ > x∗+ δ∗+
[1− 2F (x∗ + δ∗)] (A+ δ∗) and A+2x∗+µ−3 > 2A−3(1−x∗)+2δ∗−2(A+
δ∗)F (x∗ + δ∗);

(b’) by substituting back F (x∗ + δ∗)(A + δ∗) from (A5.b) we get
A+2x∗+ µ− 3 > 2A− 3(1− x∗)− δ∗+2(A+ δ∗)F (x∗) > 0: which holds as
3(1− x∗) + δ∗ < 4, while 2A > 4.

Now notice that by construction δ̂ > δ2 > δ1 and θ(δ̂) =
1−F (x∗)
1−x∗

δ̂−∆(δ̂) >

0. Since ∆(1 − x∗) = 1 − F (x∗), it is true at δ̂ that ∆(1−x∗)
1−x∗

> ∆(δ̂)

δ̂
, so that

there exists some δ3 ∈ [̂δ, 1−x
∗] such that ∆(1−x

∗)
1−x∗

< ∆′(δ3) = f(x+ δ3); but

0 < θ′(δ2) =
∆(1−x∗)
1−x∗

− f(x∗ + δ2): hence f(x
∗ + δ2) <

∆(1−x∗)
1−x∗

< f(x+ δ3).�
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