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Abstract

This paper surveys the asymptotic distributions of three widely used
single equation cointegration tests. Particular attention is paid to the
case where the regressors are integrated with drift, i.e. at least one
of the regressors follows a linear time trend. Even if the regressions
are not detrended, the asymptotic critical values are affected by the
presence of linear trends in the regressors. Not taking into account
this fact leads to tests that are biased towards establishing cointegra-
tion too often. The correct limiting distribution theory of regressions
without detrending in the presence of integrated regressors with drift
is described. Appropriate critical values are readily available from the
literature and are simple to use following the tables included here.

∗I am grateful to Michael Neugart, Harvard University, and to Paulo Rodrigues, Uni-
versity of Algarve, for comments on an earlier version.
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1 Introduction

Many economic time series are not only considered as integrated of order one,

I(1), but also display an approximately linear time trend (often after taking

logarithms). Nevertheless, most economists prefer regressions of integrated

levels of the variables without detrending, see e.g. Watson (1994, p.2895):

“In most (if not all) applications, the cointegrating vector will annihilate both

the stochastic and deterministic trend [...].” Hence, researchers typically

run regressions without detrending and use critical values that are designed

for regressions without detrending when it comes to cointegration testing.

However, these critical values are always simulated under the assumption

that the data do not follow linear time trends. Unfortunately, they are not

correct if at least one of the integrated regressors has a linear trend (i.e. is

integrated with drift).

Since Johansen (1994) it is well known that the presence alone of linear

time trends in the data does affect the limiting distributions of multivariate

cointegration tests introduced by Johansen (1988), which rely on a multiple

equation reduced rank regression. Accordingly, different sets of percentiles

have been published and are used depending on the presence or absence of

linear trends in the series, see e.g. Osterwald-Lenum (1992) or Johansen

(1995). Similarly, in case of single equation cointegration testing “the deter-

ministic trends in the data affect the limiting distributions of the test statis-

tics whether or not we detrend the data” (Hansen 1992, p.103). This fact has

been established first by Hansen (1992) for the residual-based Dickey-Fuller

(DF) test, and further by Hassler (2000, 2001) for the error-correction and

the residual-based KPSS test. While the effect of linear trends turns out to

be negligible for the residual-based DF test, this is not true for the two latter
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single equation procedures.

The present article should be helpful for empirical researchers by clar-

ifying the effect of linear time trends on cointegration testing from single

equations. The next section briefly states the assumptions on the integrated

regressors with or without linear trends and provides some mathematical in-

tuition for the findings presented later on. Section 3 reports the results for

the residual-based DF test. The fourth section turns to the residual-based

KPSS test, while Section 5 deals with the single equation error-correction

test. Correct asymptotic critical values depending on the presence or ab-

sence of linear trends are available from the literature. They are collected

in tables that should facilitate valid inference for applied work. The final

section summarizes the general feature of cointegration testing from single

equations in the presence of linear time trends in a non-technical fashion.

2 Integrated processes

Let the typical regressor be denoted by xt. This is assumed to be a K-

dimensional integrated vector process, xt = (x1,t, . . . , xK,t)
′, defined by

xt = xt−1 + m + ut , t = 1, . . . , T , (1)

where m = (m1, . . . , mK)′ is a constant vector of length K. The vector of

innovation ut is a zero mean stationary process satisfying a functional central

limit theorem for 0 ≤ r ≤ 1:

T−0.5

[rT ]∑
j=1

uj ⇒ B(r) (2)

with a K-dimensional Brownian motion B(r). It is assumed that the covari-

ance matrix of B(r) is positive definite, which means the process xt alone is
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not cointegrated. Obviously, (1) implies by resubstitution

xt = x0 + mt +
t∑

i=1

ui , t = 1, . . . , T . (3)

If m = (0, . . . , 0)′, then xt is integrated without drift, while m 6= (0, . . . , 0)′

induces a linear time trend in the process, and hence xt is then called inte-

grated with drift. Using the symbol Op(·) for order of probability, (2) and

(3) yield

xt = x0 + mt +
∑t

i=1 ui

= O(1) + O(T ) + Op(T
0.5) , for m 6= (0, . . . , 0)′ .

In other words, the component model (3) consists of a bounded starting

value (denoted by O(1)), of a linear trend growing with order T (denoted by

O(T )), and of a stochastic component of order T 0.5. Hence, the the stochastic

trend is of lower order than the linear trend, and this is the reason for the

results presented in the next sections. Consider first the scalar case K = 1:

Clearly, the linear trend mt of order T grows faster than T 0.5 and hence

dominates the stochastic one. Therefore, in the long run xt will behave like

a scalar linear time trend. In case K > 1, there are K common stochastic

trends,
∑t

i=1 ui, of order T 0.5 (because there is no cointegration among the

K components of the process), and one common linear trend, mt, of order

T . Again, the linear trend will hence dominate asymptotically one of the K

stochastic trends. This is the intuition, why xt from (3) for m 6= (0, . . . , 0)′

behaves in the long run like a K-dimensional vector of 1 linear trend and

K − 1 stochastic trends. This intuition will be reflected in the results of the

following three sections.
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3 Residual-based Dickey-Fuller test

Engle and Granger (1987) suggested to apply the test for the null hypothesis

of a unit root by Dickey and Fuller (1979) to regression residuals. The null

hypothesis is that the scalar yt and the K-vector xt are not cointegrated,

yt = a + b′ xt + zt , zt = zt−1 + vt , t = 1, . . . , T , (4)

where zt is a scalar integrated process driven by vt with similar properties

like ut, see Section 2. The residuals are computed from an ordinary least

squares (OLS) regression without detrending,

yt = â + b̂′ xt + ẑt , t = 1, . . . , T .

Then, the auxiliary DF regression is run by OLS (denoted now with tildes),

∆ẑt = c̃ ẑt−1 +

p∑
i=1

d̃i ∆ẑt−i + r̃est ,

where ∆ = 1 − L represents the usual difference operator, and p is chosen

so that the auxiliary residuals r̃est are approximately white noise. The test

statistic is simply a studentized version of c̃,

τµ =
c̃− 0

s.e.(c̃)
.

The residual-based DF test is one-sided. The null hypothesis of no cointe-

gration, c = 0, is rejected for too small (i.e. too negative) values.

Analogously the test may be performed with residuals from a detrended

regression,

yt = α̂ + β̂′ xt + δ̂ t + ζ̂t , t = 1, . . . , T ,

∆ζ̂t = γ̃ ζ̂t−1 +

p∑
i=1

δ̃i ∆ζ̂t−i + r̃est ,
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ττ =
γ̃ − 0

s.e.(γ̃)
.

The resulting limiting distributions are summarized next, where
d→ is the

symbol for convergence in distribution.

Proposition 1: Under the null hypothesis (4) of no cointegration and with

xt = (x1,t, . . . , xK,t)
′ from (1) it holds as T →∞:

a) τµ
d→ DFµ(K) for m = (0, . . . , 0)′,

b) ττ
d→ DF τ (K) for any m,

c) τµ
d→ DF τ (K − 1) for m 6= (0, . . . , 0)′.

Here, DF τ (K) and DFµ(K) stand for the limiting distributions given

by Phillips and Ouliaris (1990) in terms of K-dimensional, detrended and

demeaned standard Brownian motions, respectively. The result c) is due to

Hansen (1992) and reproduces the intuition provided at the end of Section

2: If at least one of the K integrated regressors displays a linear trend and

the regression is run without detrending, then the asymptotic theory of a

detrended regression with K − 1 integrated regressors applies. If in partic-

ular K = 1 in c), then DF τ (0) abbreviates the limiting distribution of the

detrended DF test applied not to residuals but to directly observed series,

cf. Dickey and Fuller (1979) and Phillips and Perron (1988),

∆yt = α̃ + δ̃ t + γ̃ yt−1 +

p∑
i=1

δ̃i ∆yt−i + r̃est ,

γ̃ − 0

s.e.(γ̃)

d→ DF τ (0) .
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Table 1: Comparison of 10% critical values from Proposition 1

K 1 2 3 4 5

DFµ(K) -3.0462 -3.4518 -3.8110 -4.1327 -4.4242

DF τ (K) -3.4959 -3.8344 -4.1474 -4.4345 -4.6999

DF τ (K − 1) -3.1279 -3.4959 -3.8344 -4.1474 -4.4345

It is interesting to compare the different asymptotic critical values. The

ones used most often in practice are those by MacKinnon (1991), which are

reproduced for the 10% level in Table 1. From this table we observe that

i) DF τ (K) is shifted to the left relative to DFµ(K),

ii) DF τ (K − 1) is shifted slightly to the left relative to DFµ(K),

iii) the difference between DF τ (K−1) and DFµ(K) is small and decreases

as K grows.

Observations ii) and iii) imply together with Proposition 1: If there are linear

trends in our regressors but regressions are performed without detrending,

then the standard use of DFµ(K) instead of the correct DF τ (K − 1) distri-

bution results in rejecting the null hypothesis of no cointegration too often;

but this overrejection is very small and may be considered as negligible in

practice. Unfortunately, for other single equation cointegration tests this is

not true.

4 Residual-based KPSS test

Kwiatkowski, Phillips, Schmidt and Shin (1992) proposed as a counterpart

to the DF procedure a test for the null hypothesis of stationary time series
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against the alternative of integratedness. Applied to regression residuals this

KPSS test has the null hypothesis that yt and the K-vector xt are cointe-

grated,

yt = a + b′ xt + et , t = 1, . . . , T , (5)

where et is again a scalar stationary process with zero mean satisfying a func-

tional central limit theorem. The idea of a residual-based KPSS cointegration

test was suggested independently by Harris and Inder (1994), Leybourne and

McCabe (1994) and most rigorously by Shin (1994), see also McCabe, Ley-

bourne and Shin (1997). In particular, Shin (1994) stresses that the KPSS

test applied to OLS residuals will not in general lead to limiting distributions

independent of nuisance parameters. To guarantee limits free of nuisance

parameters, so-called efficient modifications of OLS are required, e.g. fully

modified OLS by Phillips and Hansen (1990) and Hansen (1992), or dynamic

OLS by Saikkonen (1991) and Stock and Watson (1993), or the canonical

cointegrating regression by Park (1992); technical details are omitted here.

Let tildes signify any of those (or other) estimators that are efficient in

the sense of Saikkonen (1991). The regression without detrending is given

by

yt = ã + b̃′ xt + ẽt , t = 1, . . . , T .

The KPSS test builds on cumulation of the squared partial sum of residuals.

The test statistic is

ηµ =
T−2

ω̂2
e

T∑
t=1

(
t∑

i=1

ẽi

)2

,

where ω̂2
e is a consistent spectral estimator of the long-run variance of et,

ω2
e =

∞∑
j=−∞

E (et et+j) .
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Most often this long-run variance is estimated by means of the simple Bartlett

window popularized by Newey and West (1987) in econometrics; again tech-

nical details are of no interest here. The null hypothesis of cointegration is

rejected for too large values of ηµ.

A detrended regression results in a test statistic ητ of completely analo-

gous structure, only that it builds on detrended efficient residuals:

yt = α̃ + β̃′ xt + δ̃ t + ε̃t , t = 1, . . . , T ,

ητ =
T−2

ω̂2
ε

T∑
t=1

(
t∑

i=1

ε̃i

)2

.

The resulting limiting distributions are summarized next.

Proposition 2: Under the null hypothesis (5) of cointegration and with

xt = (x1,t, . . . , xK,t)
′ from (1) it holds as T →∞:

a) ηµ
d→ KPSSµ(K) for m = (0, . . . , 0)′,

b) ητ
d→ KPSSτ (K) for any m,

c) ηµ
d→ KPSSτ (K − 1) for m 6= (0, . . . , 0)′.

Here, KPSSτ (K) and KPSSµ(K) abbreviate the asymptotic distribu-

tions derived by Shin (1994) in terms of K-dimensional standard Brownian

motions. The result c) has recently been given in Hassler (2001) and can

be restated in simple words as follows: If at least one of the K integrated

regressors displays a linear trend but the regression is computed without de-

trending, then the limiting distribution of a detrended regression with only

K− 1 integrated regressors arises. Similarly as in Proposition 1: If K = 1 in

c), then KPSSτ (0) denotes the limiting distribution of the detrended KPSS
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Table 2: Comparison of 10% critical values from Proposition 2

K 1 2 3 4 5

KPSSµ(K) 0.231 0.163 0.121 0.094 0.075

KPSSτ (K) 0.097 0.081 0.069 0.056 0.050

KPSSτ (K − 1) 0.119 0.097 0.081 0.069 0.056

test applied to an observed series yt instead of to residuals, see Kwiatkowski

et al. (1992),

yt = α̃ + δ̃ t + ỹt , t = 1, . . . , T ,

T−2

ω̂2
y

T∑
t=1

(
t∑

i=1

ỹi

)2

d→ KPSSτ (0) .

Table 2 compares asymptotic percentiles at the 10% level taken from Shin

(1994), and from Kwiatkowski et al. (1992) for KPSSτ (0). The most striking

observation is: The critical values of KPSSµ(K) are considerably larger than

those of KPSSτ (K − 1) (e.g. twice as big for K = 1). Hence, Proposition 2

has a drastic consequence. If there is a linear trend in any of the regressors but

efficient regressions are run without detrending (i.e. ηµ is computed), then

the common use of KPSSµ(K) will reject the null hypothesis of cointegration

far less often than the use of the correct distribution KPSSτ (K−1). In other

words, ηµ applied with KPSSµ(K) instead of KPSSτ (K−1) in the presence

of linear trends results in a conservative test with little power confirming the

null of cointegration too often.
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5 Error-correction test

The last single equation cointegration test considered here was proposed by

Banerjee, Dolado and Mestre (1998). It has the null hypothesis (4) that the

scalar yt and xt are not cointegrated. But the test does not rely on residuals

from a static regression but rather on the fact that cointegration is equivalent

to the existence of an error-correction mechanism,

∆yt = a + c (yt−1 − λ′xt−1) + b′ ∆xt + lagged differences + et ,

where lagged differences may be included to obtain errors et free of serial

correlation. The test assumes exogeneity of xt in the sense that in case of

cointegration, ∆xt does not adjust to past equilibrium deviations. Under

this assumption, if yt and the vector xt of length K are cointegrated with

vector λ, then the adjustment parameter c is negative, c < 0. Or the other

way round, if c = 0 in this error-correction equation, then yt and xt are not

cointegrated.

This reasoning justifies the following OLS regression without detrending

(where π = −c λ):

∆yt = â + ĉ yt−1 + π̂′ xt−1 + b̂′ ∆x
(k)
t + lagged differences + êt .

The test statistic is the usual t ratio testing for c = 0,

ECµ = tc =
ĉ− 0

s.e.(ĉ)
.

Under appropriate assumptions on the exogeneity of xt the limiting distri-

bution is free of nuisance parameters but of course not Gaussian. The null

hypothesis of no cointegration is rejected for too negative values of ECµ. A

detrended test relies simply on a detrended regression:

∆yt = α̂ + δ̂ t + γ̂ yt−1 + φ̂′ xt−1 + β̂′ ∆xt + lagged differences + ε̂t ,
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ECτ = tγ =
γ̂ − 0

s.e.(γ̂)
.

The corresponding asymptotic theory is characterized next.

Proposition 3: Under the null hypothesis (4) of no cointegration and with

xt = (x1,t, . . . , xK,t)
′ from (1) it holds as T →∞:

a) ECµ
d→ BDMµ(K) for m = (0, . . . , 0)′,

b) ECτ
d→ BDMτ (K) for any m,

c) ECµ
d→ BDMτ (K − 1) for m 6= (0, . . . , 0)′ where BDMτ (0) =

DF τ (0).

Obviously, BDMτ (K) and BDMµ(K) denote the limiting distributions

depending only on K that are given by Banerjee, Dolado and Mestre (1998)

in case of (not) detrending. Result c) was recently proven in Hassler (2000),

where DF τ (0) is described after Proposition 1. The meaning of result c) is

again: If at least one of the K integrated variables xt follows a linear trend

but the error-correction regression is run without detrending, then the limit

theory of a detrended error-correction regression with only K − 1 integrated

variables applies; if in particular K = 1, then BDMτ (0) reduces to the

limiting distribution of the usual detrended DF test.

Finally, Table 3 contains asymptotic critical values at the 10% level taken

from Banerjee, Dolado and Mestre (1998) (and from MacKinnon (1991) for

BDMτ (0) = DF τ (0)). The interesting observation is: The critical values

of BDMµ(K) are clearly larger than those of BDMτ (K − 1) (the difference

being roughly 0.2 for all K). As we reject for too small values this means:
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Table 3: Comparison of 10% critical values from Proposition 3

K 1 2 3 4 5

BDMµ(K) -2.89 -3.19 -3.42 -3.66 -3.82

BDMτ (K) -3.39 -3.62 -3.82 -4.00 -4.18

BDMτ (K − 1) -3.13 -3.39 -3.62 -3.82 -4.00

If there is a linear trend in any component of xt = (x1,t, . . . , xK,t)
′ but error-

correction regressions are computed without detrending, then the usual re-

liance on BDMµ(K) will reject the null hypothesis of no cointegration more

often than the claimed level of significance The use of BDMτ (K − 1) pro-

vides correct significance levels asymptotically. Put differently, ECµ applied

with BDMµ(K) instead of BDMτ (K − 1) in the presence of linear trends

results in a oversized test that does not control the probability of a type I

error and establishes cointegration too often.

6 Summary

In this paper we survey the limiting distributions of three widely used sin-

gle equation cointegration tests in the presence of linear time trends: the

residual-based Dickey-Fuller test, the residual-based KPSS test, and the

error-correction test. Those tests try to discriminate between the absence or

presence of cointegration between a scalar time series yt and a K-dimensional

vector xt, where the latter is not cointegrated by assumption. Particular at-

tention is paid to the case where the regressor xt is integrated with drift,

i.e. at least one of the K components of xt = (x1,t, . . . , xK,t)
′ follows a linear

trend
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The following properties hold true for all three tests:

(i) If the regressions include time as a linear regressor (detrended regres-

sions), then detrended asymptotic distributions (denoted by subscript

τ) depending on K arise, no matter whether xt has a drift or not.

(ii) If the regressions do not include time as a linear regressor (regressions

without detrending) . . .,

a) . . . and if xt does not contain a drift, then demeaned asymptotic

distributions (denoted by subscript µ) depending on K arise,

b) . . . but if the K-vector xt does contain a drift, then detrended

asymptotic distributions from (i) for K − 1 arise (i.e. critical

values from a) are inappropriate),

c) . . . but if xt does contain a drift and the wrong critical values from

a) are applied, then the tests are biased towards finding cointe-

gration.

The tables included in the paper should make it simple for empirical workers

to apply the correct critical values in case (ii) of not detrending.
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