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Abstract

In this paper we propose tests for the null hypothesis that a time series process
displays a constant level against the alternative that it displays (possibly) multiple
changes in level. Our proposed tests are based on functions of appropriately stan-
dardized sequences of the differences between sub-sample mean estimates from the
series under investigation. The tests we propose differ notably from extant tests for
level breaks in the literature in that they are designed to be robust as to whether the
process admits an autoregressive unit root (the data are (1)) or stable autoregressive
roots (the data are I(0)). We derive the asymptotic null distributions of our proposed
tests, along with representations for their asymptotic local power functions against
Pitman drift alternatives under both 7(0) and (1) environments. Associated estima-
tors of the level break fractions are also discussed. We initially outline our procedure
through the case of non-trending series, but our analysis is subsequently extended
to allow for series which display an underlying linear trend, in addition to possible
level breaks. Monte Carlo simulation results are presented which suggest that the
proposed tests perform well in small samples, showing good size control under the
null, regardless of the order of integration of the data, and displaying very decent
power when level breaks occur.
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1 Introduction

Testing for structural change is a long-standing area of important research in econometrics
and statistics. A vast number of tests for the presence of structural change in the parameters
of stationary (7(0)) regression models have been proposed in the literature; see, inter alia,
the literature reviews in Stock (1994), Kuan and Hornik (1995) and Perron (2006).

Only recently in the econometrics literature have methods surfaced for structural change
testing that are valid regardless of whether the regression errors are stationary or follow
a unit root (/(1)) process. This is an important practical development because macroe-
conomic and financial series typically appear to be characterized by temporary (1(0)) or
permanent (/(1)) shocks fluctuating around a broken trend function: see, inter alia, Stock
and Watson (1996,1999) and Perron and Zhu (2005). Indeed, Perron (2006, p.279) empha-
sizes the intricate interaction between unit roots, stationarity and structural changes, and
the need to distinguish between them in practical economic applications.

Developing structural change tests that are valid under both 7(0) and I(1) errors is,
like developing unit root tests which are robust to changes in the deterministic trend func-
tion, not an easy task, however, and only a small number of contributions exist with this
property. Harvey et al. (2009a) develop tests for a one-time break in the slope of the
deterministic trend function (of the form embodied in Models B and C of Perron, 1989,
p.1364), while Perron and Yabu (2009b) [PY] and Saygmsoy and Vogelsang (2010) (build-
ing on the approaches of Perron and Yabu (2009a), and Vogelsang (1998) and Bunzel and
Vogelsang (2005), respectively) also allow for the possibility of a one-time shift in just the
intercept (Model A of Perron, 1989, p.1364). The importance of the need to control for
the possibility of either I(0) or I(1) errors has also been recognized in the recent literature
on testing for and detecting outliers, with Perron and Rodriguez (2003) and Burridge and
Taylor (2006) developing procedures which allow for (multiple) outliers and are robust to
the order of integration of the data.

All of the above tests for level and/or trend breaks, which have the property of being
robust as to whether the errors are I(0) or I(1), have in common the feature that they
only allow for the possibility of a one-time change in the parameters of the trend function.
In a recent paper, Kejriwal and Perron (2009) [KP] extend the work of PY, developing a
sequential approach which allows the practitioner to test the trend function for multiple
breaks in slope or multiple simultaneous breaks in slope and level, but not multiple breaks
solely in the level. In this paper our aim is to fill this important gap in the literature by
providing tests which allow for multiple level breaks, which are robust as to whether the data
are I(0) or I(1) and, subject to standard moment conditions holding, to the distribution
of the innovations. This particular testing problem is especially relevant for the analysis of
financial time series data where there is a continuing debate in the literature over whether
such data is subject to multiple level shifts; see for example the discussion in Perron (2006,
section 8.7) and the references therein. Testing for and dating such level breaks is clearly a
very important exercise in its own right, but also as a first step in developing other testing
procedures in the data, such as unit root tests, which are robust to the possible presence
of multiple level breaks.

The tests which we propose in this paper are based around statistics formed from
sequences of the differences between sub-sample mean estimates (modifications to allow for
a linear trend in the data are also discussed) from the data and test the null hypothesis
that no level breaks are present against the alternative of at least one break in level. These



statistics belong to the generalized fluctuations class of statistics for structural change;
see Kuan and Hornik (1995), inter alia. We demonstrate that these statistics cannot be
employed directly to test for level breaks in the presence of uncertainty over whether the
data are I(1) or I1(0) because in each case the standardization (both in the sample size and
the long run variance) required to obtain pivotal non-degenerate limiting null distributions
for the statistics differs according to whether the data are I(0) or I(1). This leads us to
consider tests based on two statistics, one appropriate for the case of 7(0) data and the
other appropriate for I(1) data. We derive the large sample properties of these statistics
in both 7(0) and (local to) I(1) environments. This analysis reveals that the test statistic
appropriate for the case of I(1) errors converges in probability to zero under I(0) errors,
while the test appropriate for I(0) errors is always under-sized when the errors are (local
to) I(1). These properties facilitate the construction of a size-controlled union of rejections
testing approach whereby we reject the null hypothesis of no level breaks if either of the two
tests rejects. We investigate both the asymptotic local power and the finite sample power
properties of the three tests. Here it is shown that the union test essentially capitalizes on
the superior power of the test designed for I(0) errors when the errors are I(0) and of the
test designed for I(1) errors when the errors are (1), losing very little in power relative to
the better of the two tests in each environment.

A rejection by any of our proposed test procedures indicates that at least one level break
is present and so we also outline an associated sequential procedure for detecting and dating
possibly multiple breaks in level. Monte Carlo evidence suggests that this procedure does a
very good job in practice. The statistics used in constructing the proposed tests and level
break detection procedure require a choice of window width for constructing the sequences
of sub-sample mean estimates, and this choice in turn impacts on the maximum number of
breaks assumed to be present in the data. We present a detailed examination of the impact
of this choice on the performance of our approach.

The paper is organized as follows. In section 2 we introduce our reference data gener-
ating process [DGP], a first-order autoregression, which embeds both the (near) unit root
and stationary cases, driven by linear process innovations, and which allows for (multiple)
level breaks occurring at unknown points through the sample. In sections 3 and 4 we de-
velop our approach to testing for level breaks, the latter section including an analysis of
the asymptotic local power properties of our proposed tests. Finite sample critical values,
obtained under the assumption of normal errors, are reported in section 5, and this section
also examines the robustness of the tests’ finite sample size to non-normal errors, and also
autocorrelated errors, as well as investigating the finite sample power properties of the
tests. Our sequential procedure for determining the number and timing of the level breaks
is detailed in section 6. Extensions of our approach to allow for the presence of a linear
trend in the data are discussed in section 7. Section 8 offers some conclusions. Proofs are
placed in an Appendix. In the following ‘|| denotes the integer part of its argument; ‘-’
denotes weak convergence and ‘%’ convergence in probability, in each case as the sample
size diverges to positive infinity; ‘I(-)" denotes the indicator function, and finally ‘z := y’
(‘z =: y’) indicates that z is defined by y (y is defined by z).



2 The Multiple Level Breaks Model

Consider a time series process {y;} of T' observations generated according to the DGP

ye=a+ Y vieDU(|7T]) +uy, t=1,..T, (1)
i=1

ug = puy_1+¢e4, t=2,...,7T, (2)

where DU(|7,T]) :=1(t > |7;T]) with |7;T| a potential level break point with associated
break fraction 7; and break magnitude 7;;. We assume that the break fractions, 7,
i =1,...,n, are unknown but satisfy 7; € A, where A = [r, 7¢y] with 0 < 7, < 7y < 1; the
fractions 7, and 7 being trimming parameters below and above which no break is deemed
allowable. We further assume that 7y < 79 < ... < 7,1 < 7,,, without loss of generality.
The initial condition, wu, is assumed to be such that T-Y2u; % 0, while the error
process {e;} is taken to satisfy the following conventional linear process assumption.

Assumption LP. The stochastic process {e:} is such that ¢, = C(L)n,, C(L) :=
> e Ci L7 with C(1)? > 0 and Y772, i|Ci| < oo, and where {n,} is an IID sequence with

mean zero, variance a% and finite fourth moment. The long run variance of &; is defined

as w? = limyp_ T_IE(Z:tT:1 g)? = 020(1)2.
Remark 1. Under Assumption LP, {¢,} satisfies a functional central limit theorem [FCLT],

|T]
TN e S wW () (3)
t=1

where W (-) is a standard Brownian motion process on [0, 1].

We consider two cases for the order of integration of the autoregressive process, u;. The
I(1) case for u; is represented by setting p = pp :=1—¢/T for 0 < ¢ < oo in (1), which
permits (local to) unit root behaviour when (¢ > 0) ¢ = 0. Here we will also assume that
Vir = w2y, i = 1,..,n. The T'? scaling in v}, provides the appropriate Pitman
drift, while scaling by w. is a convenience device allowing it to be factored out of the limit
distributions that arise later. The I(0) case for u; is represented by setting |p| < 1 in (1).
In this situation the long run variance of u; is given by w? := limy ., T7'F (Zthl ug)? =
02C(1)%/(1—p)*. Here we assume v}, := w, T~/?y,, i = 1,...,n, with T~'/? now providing
the appropriate Pitman drift, and scaling by w, again being used for convenience. For
future brevity, the two cases are embodied in the following assumptions:

Assumption I(1). Let Assumption LP hold. Also, let p = pp:=1—¢/T, 0 < ¢ < o0,
and let vip = w T2,

Assumption I1(0). Let Assumption LP hold. Also, let |p| <1 and let v} = w, T2,

3 Detecting Multiple Level Breaks

The focus of this paper is on testing the null hypothesis of no level breaks, that is Hy : ;7 =
0 for i = 1,2,...,n, against the alternative of at least one level break; that is Hy : ;7 # 0
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for at least one ¢ € {1,...,n}. In implementing a test of such a hypothesis, consider a
sequence of statistics of the form M, ,,,p|, for t € Ap := [|7,T, |[7¢T]], where

L3T] Exdl

Dol Yrri — Qs Yiitl
Mt, mT| = = m = (4)
[mT] LETJ
which is the difference between the mean of the |57 observations yi1, ¥i12, ..., Yer |27
and the mean of the [§T'| observations g, y;—1, ..., Yi | )41

The statistic My |,,r| of (4) belongs to the generalized fluctuation class of test statistics
for structural change introduced in Kuan and Hornik (1995) and Leisch, Hornik and Kuan
(2000), inter alia. We need to ensure that at most only one level break can occur in the
data spanned by any M, |,,7|; we therefore impose the restriction that 7; —7;,_; > m for all
1 = 2,...,n. Under this constraint, the DGP admits n level breaks occurring at unknown
points across the interval A, with a minimum of |mT | observations between breaks. Notice
that n and m must satisfy the relation

TU — T
n<l+ {uJ = Nmax
m

which provides an upper bound for the maximum number of breaks assumed to be present
for given choices of the window width, m, and the trimming parameters, 7, and 7.

By way of motivation for our approach, consider a stylized example where the errors
g; in (2) are Gaussian white noise and only a single mid-sample break is present (i.e.
71 = 0.5). Suppose first that Assumption I(1) holds with p = 1, so that the process follows
a random walk with Gaussian innovations. Then the optimal test of 77 = 0 is based on
the maximum likelihood (ML) (equivalently GLS) estimator y|o.57j+1 —¥j0.57] = AYjo.s7)+1
i.e. M|osr),|mr) With m = 2/T. If, on the other hand, Assumption I(0) holds with p = 0,
so that the process is simply Gaussian white noise, then ML considerations would lead to
a test statistic based on |0.57 ! Z;TF:LO_E)TJH yi — [0.57 71 21097y which is identical to
MI_O.BTJ,LmTJ of (4) with m = 1.

As regards Mo sr) 2, only two observations are used, and it is therefore not possible to
establish an invariance principle for Mo 572 under Assumption I(1). Clearly this is also
the case under Assumption I(0). This mitigates the use of Mg 57| 2, notwithstanding the
fact that under Assumption 1(0) it is far from being the optimal approach in any case. On
the other hand, Mo 57| 1 uses all observations and therefore no such limitations regarding
an invariance principle apply. However, it is also obvious that under Assumption I(1), use
of M|o.57)r is completely at odds with what the optimal approach suggests.

These considerations prompt the use of statistics based on the form of M |, of (4), but
also highlight the difficulties involved in devising a powerful and robust testing approach
when the order of integration is unknown. A possible approach in this regard, which lies
in between the I(1)- and 1(0)-based extremes of using m = 2/T" (which, of course, implies
that m — 0 as T' — oo) and m = 1, respectively, is to consider a statistic based on My |, 7|
but where we restrict m, the window width, to lie in the range 0 < m < 1.

Whilst using a fraction of the data to detect breaks in level might at first sight appear
inefficient (in the 7(0) case), a very important consideration arises in the current context of
detecting multiple level breaks. Specifically, if we are attempting to identify the break point
7i (with 7} 7 # 0), then if two neighbouring breaks exist (i.e. v;_; 7 # 0 and vj,, p # 0), the
only data relevant for the purpose of identifying the break at 7; is the subset of observations



contained in the interval |7; 1T|+1 <t < |7;117T; the remaining observations are totally
uninformative with regard to detecting that level break.

Motivated by the above discussion, and given that we do not assume knowledge of the
order of integration of the data, in this paper we examine statistics based on M, .7 of
(4) with 0 < m < 1 for detecting possibly multiple breaks in level. Since our focus is on
detecting breaks at unknown points in time, consider the following prototypical statistic
based on the maximum function of |M; 7| (notice, therefore, that we assume the signs
of the possible breaks are unknown) over all t € Ar, i.e.

= M
M 1= max [M, |mr)]

cf. Andrews (1993). For a given value of m, this statistic therefore takes the largest (in
absolute value) fluctuation measure |M; |,,,r|| over all possible break points in Ap. Note
that we require 7, > m/2 and 7y < 1 — (m/2), to ensure M, |,,,r| is only calculated from
observed data. In the following theorem we establish the limiting distribution of M under
both (near-) I(1) and I(0) environments.

Theorem 1 Let y; be generated according to (1) and (2) and let Assumption LP hold.
Then,

(a) Under Assumption 1(1),

w ' T2 M % sup |Ly(r,m, ¢) + K(r,m, T,7)],

reA
with
r+m/2 r
Li(r,m,c) :==2m™* {/ W.(s)ds — / Wc(s)ds}
r r—m/2
where Wo(r) = [[e""=9°dW (s) denotes a standard Ornstein-Uhlenbeck (OU) process,
W(s) the standard Brownian motion arising from the FCLT in (3), and
( 0 7, <r <7 —m/2
71(1—%) T1—m/2<r<T11+m/2
0 T1+m/2<r<719—m/2
Kmny e d I mom2Er < nam
0 Tno1+m/2<r<71,—m/2
fyn(l—%) Tn—m/2<r<T1,+m/2
\ 0 Tnt+m/2<r<ty

where T := [T1,Tay ..y Tn| and 7 1= [V, Yoy s Yl -

(b) Under Assumption 1(0),

wy 'TY* M 2 sup | Lo(r,m) + K (r,m, T,7)|
reA

with Lo(r,m) = 2m~*{W (r +m/2) — 2W (r) + W(r — m/2)}, W(s) again arising from
the FCLT in (3), and where K(r,m,T,~) is as defined in part (a).
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Remark 2. Under Hy, where 7, = 0, i = 1,2,...,n, observe that K(r,m,T,v) = 0,
7, < r < 7y, from which we obtain representations for the limiting null distribution of M,
when appropriately standardized for either (1) or 1(0) errors.

An immediate consequence of the large sample results in Theorem 1 is that in attempt-
ing to use M to test Hy, we would encounter two problems in practice. Firstly, under
Hy, the appropriate scaling factor in the sample size, T', and choice of long run variance
standardization (either w? or w?) to apply to M to obtain a non-degenerate and pivotal
limiting null distribution both depend on whether the errors are I(1) or 1(0), which will be
unknown to the practitioner. Secondly, in practice we would also need to estimate either
w? or w? in order to yield a feasible testing procedure. In the next section we will explore

solutions to both of these issues.

4 Feasible Robust Tests for Level Breaks

In this section we address the practical issues that exist in developing a feasible test for
level breaks outlined at the end of the previous section. In section 4.1, we first consider
the issue of long run variance estimation, and examine the behaviour of the estimators
under both (1) and 7(0) errors. In section 4.2, we then use the results from section 4.1
to develop an operational test against level breaks in model (1)-(2) for the situation where
the order of integration is unknown. Section 4.2 also presents an analysis of the asymptotic
size properties of the proposed tests for a range of values of the window width, m, while
section 4.3 gives asymptotic power results.

4.1 Long Run Variance Estimation

We now consider estimation of the long run variances w? (relevant under (1) errors) and

2

w: (relevant under I(0) errors). Here, we focus on Berk (1974)-type estimators, initially

assuming knowledge of the relevant order of integration.

4.1.1 Estimation of w?

First we consider estimating w? when the errors are known to be I(1). It is obviously
desirable from a power standpoint that the long run variance estimator is influenced by
the presence of the level breaks to the least degree possible, hence we need to remove the
effects of the level breaks, bearing in mind that the number and timings of these breaks
are unknown. Our first consideration is therefore estimation of the timings of the potential
breaks. In the context of our reference level break model (1)-(2), we further assume that
when there are n level breaks, that |y,| > |y,] > ... > |7,|. This ordering is adopted to
expedite the arguments made below, and does not compromise the generality of the results.

Under Assumption I(1), if the errors &, in (2) are Gaussian white noise and only one
break is present (at time [7,7]), the optimal test of 77, = 0 is based on the ML es-
timator Ay|;,rj+1. It makes sense, therefore, under I(1) errors, to consider |Ay| to
identify any break points. Consequently, let £, := (arg max,cq, |Ay|) — 1 where Qp :=
(|77 | +1, [7vT| +1] (bearing in mind that the outliers are observed one observation after
a corresponding break point). Next, since we are assuming that the breaks are separated by
at least |mT | observations, we now wish to exclude the dates [t; — |mT | +1,%, + |[mT] —1],
so now let £y := (arg maxyeq,—q,  |Ay:|) — 1 where Qy 7 := [t; — [mT'| +2, {1 4+ [mT]], then
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ty = (arg maxseqr—0, 70, |Ay|) — 1 where Qo7 = [ty — [mT| + 2,1, + [mT|], and so
on, until Q2541 r = &. This procedure identifies 7 break points, where it can be shown that

MT vT] Q_LngijjTi Jlr LmTJJ <n<

Nmax- (5)

Using the estimated break points, 1, ..., ts, we then remove the effect of the level breaks
on the Ay, series by taking the residuals &; from the OLS regression

Ay =Y AiDi(ti) +&, t=2,..,T (6)
=1

where the Dy(t;) := I(t = #; + 1), 4 = 1,...,n, are one-time dummy variables. The Berk
(1974)-type autoregressive spectral density estimator of w? is then obtained as

which is based on estimating the OLS regression
k—1
Ney=reiy+ > A& j+é, t=k+2,..T (7)

J=1

with 6% == (T — 2k — 1)7' 3/, ., ¢2. As is standard, we require that the lag truncation
parameter, k, in (7) satisfies the condition that, as T'— oo, 1/k + k3/T — 0.

In Theorem 2 below, we now establish the large sample behaviour of d)?; since, in
practice, the order of integration is unknown we detail the asymptotic properties of the
estimator under both I(1) and /(0) errors.

Theorem 2 Let the conditions of Theorem 1 hold. Then,

(a) Under Assumption 1(1),
(i) Whenn > 0: t, — |1 T| 20, to — |72 50, ..., tn — [72T] 20, and 7 > n;
(i) Forn > 0: &* 2 w2,

(b) Under Assumption 1(0), & = O,(k™2).

Remark 3. The break point consistency result in Theorem 2 (a)(i) relies on the break
magnitudes under I(1) errors being O(T'/?). 1If the breaks are of fixed magnitude, con-
sistency no longer pertains. However, in this case it is easily shown that the results in
Theorem 2 (a)(ii) and (b) continue to hold.

4.1.2 Estimation of w?

Now consider estimating w? in the case where the errors are known to be I(0). Given the
estimated break points, %1, ..., t5, from section 4.1.1 above, we again account for the level
breaks by taking the residuals 4; from the OLS regression

ye=a+ Y ADU(E) + iy, t=1,..,T (8)

i=1



where DU, (;) :=I(t > 1;), i = 1,...,2. The estimator of w? in this case is given by

&
I
>K>| Q&D

where m and ¢ are now obtained from the OLS regression

Ay = 7y 1+Zw Adiy_ ﬁZZwﬂDt )+, t=k+1,..,T, (9)

7=0 =1

with 6% := (T — (2 + a)k) "' 3.1_,., é7, and where k again satisfies the condition that, as
T — oo, 1/k + k*/T — 0. Notice that, for the reasons outlined in Perron and Vogelsang
(1992), the regression in (9) augments the usual ADF-type regression with the 7 one-time
dummy variables, D;(f;), i = 1,...,n, and the (k — 1) lagged values of each of these.
Theorem 3 provides the large sample behaviour of &2 under both (1) and I(0) errors.

Theorem 3 Let the conditions of Theorem 1 hold. Then,
(a) Under Assumption I(1),

where

{fo (r,c,d,T)*dr}?
{fo (rye,d, 7)dW.(r)}?

and H(r,c,d,T) is a continuous time residual from the projection of W.(r) onto the space
spanned by {1,1(r > 71),1(r > 73),...,1(r > 7)} with 7; == limp_oo T~ ';, i = 1,2,...,7
and T :=[T1,Ta, ..., Tn]. Here, as T — oo, i > n and:

(i) If n = n then T =[T1,T2, ..., Tn| = [T1,T2y ..., Tn| = T (i.e. T is a non-stochastic
argument of H);

(i) If n = 0, which is the null case here, T =[T1,Ta,...,Tn] s a vector of i dependent
random variables (whose length n is stochastic but satisfies (5)), but whose distribution is
the same for all e, and is independent of W.(r);

(i) If n >n >0, T = [T1, T2, s Tn, Tt -, Ta) (Whose length n is stochastic but satis-
fies (5)) where Tpy1,..,Tn are i — n dependent random variables whose distribution is the
same for all e, and is also independent of W.(r).

Qc,d, T) =

w*

(b) Under Assumption 1(0), &2 25 w?

Remark 4. Observe from part (a) of Theorem 3 that the limiting distribution of 7-2&2
under /(1) errors does not depend on the underlying break magnitudes, v;, i = 1, ..., n. This
invariance arises from the presence of the one-time dummy variables, Dt(fz-), 1=1,...,n
and the (k — 1) lagged values of these, in (9); cf. Perron and Vogelsang (1992).

Remark 5. Under Assumption I(0), the level breaks are given by i, = w T2y,
1 =1,...,n, and they have no asymptotic effect on long run variance estimation. It follows
that the consistency result of &2 for w? (i.e. Theorem 3 (b)) does not actually require the
fitting of the dummy variables in (8). However, in finite samples it is to be expected that
the presence of level breaks will have a non-negligible impact on the behaviour of the long
run variance estimator, thus we continue to include the dummies in the estimation of &2
so as to minimize the impact of any level breaks on the estimates in finite samples.

9



4.2 Feasible Tests and Asymptotic Size

Having proposed suitable long run variance estimators and established their asymptotic
properties, we are now in a position to define feasible statistics for detecting multiple level
breaks. The results of Theorem 1, along with the properties of the long run variance
estimators described in Theorems 2 and 3, suggest the following statistics, appropriate
under /(1) and I(0) errors, respectively:

Sy = o'TV2M (10)
Sy = & 'TV2M. (11)

Remark 6. It is useful for analysis in subsequent sections to note that S; and Sy could
equivalently be expressed as S := maxyen, S1,|mr) and Sy := maXien, So,|mr|, Where
Stpmr) =02 T2 My )| and So g mr) := @y ' TV | My, (rr |-

In the following lemma we now establish the large sample behaviour of the S; and S
statistics of (10) and (11), respectively, in both I(1) and I(0) environments.

Lemma 1 Let the conditions of Theorem 1 hold. Then,

(a) Under Assumption 1(1),
(Z) Sl ﬂ) SUPrep ‘L1<T7 m, C) + K(T’, m,T, ’7)|;

.. W sup,.ep|L1(r,m,c)+K(r,m,77y)|
(ii) So — e .

(b) Under Assumption 1(0),
(i) S1 = Op(kT™);
(ii) So = sup,ey [Lo(r,m) + K(r,m, 7, 7)].

Asymptotic null critical values for S; under I(1) errors with ¢ = 0, and Sy under
I(0) errors, are reported in Table 1 for m = {0.10,0.15,0.20,0.25,0.30}, for the settings
71, = 0.15 and 7y = 0.85 (the symmetric interval commonly employed in the breaks testing
literature), and for the significance levels ¢ = 0.10, 0.05 and 0.01.! Our choices of m,
71, and 7y imply that the maximum number of possible breaks that are assumed to be
admitted in the model are n,.. = {8,5,4,3,3}, respectively, for the values of m given
above. The numerical results were obtained by simulation of the asymptotic distributions
given in Lemma 1, setting K (r,m,T,v) = K(r,m,7T,0) = 0, approximating the functionals
Li(r,m,0) and Lo(r,m) by normalized sums of 5,000 steps using normal I7D(0, 1) random
variates. In the simulations here and in the remainder of the paper, unless stated otherwise,
we use 50,000 Monte Carlo replications for computing critical values and sizes, and 20,000
replications for powers. All simulations were programmed in Gauss 9.0.

Tables 1 and 2 about here

It is also of interest, given lack of knowledge concerning the order of integration, to
examine the asymptotic size properties of S; when ¢ > 0, and also Sy under both ¢ = 0
and ¢ > 0. These results are provided in Table 2, again obtained via direct simulation of

!The values that we consider for m are constrained to be no greater than 0.30, given that we require
7L > m/2 and 7y < 1 —(m/2), with 7, = 0.15 and 7y = 0.85. Finite sample considerations lead us to
use m = 0.10 as a lower bound, so that no less than 10% of the observations are used in the window over
which M; |7 is computed.
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Ly(r,m,c) and Q(c,d, T) in Lemma 1 (a). The S; test becomes increasingly under-sized as
¢ increases; essentially, this is because the OU process W,(r) is distributed N(0, V.,.), where
Ver = (2¢)71(1 — e7%), is a monotonically decreasing function of ¢. Therefore, employing
critical values which are appropriate for ¢ = 0 will result in an under-sized test when ¢ > 0.
Other things being equal, the under-sizing becomes more apparent as m is increased.

Of particular interest is the behaviour of Sy in the (local to) (1) case. Consider the
nominal 0.05 significance level (i.e. Panel B). For m = 0.10, we see that the asymptotic size
of Sy is never above 0.003 across all c. As m increases, the maximum sizes are increasing
in m but remain well below 0.05 (reaching a maximum across ¢ of 0.036 when m = 0.30).
Similar comments apply to tests conducted at the nominal 0.10 and 0.01 significance levels.

We now turn to consideration of a feasible test that can be applied in the absence
of knowledge concerning the order of integration. Our approach deliberately exploits the
under-sizing phenomenon seen in the Sy test in the (local to) I(1) world, and is based on
the union of rejections approach advocated by Harvey et al. (2009b) in a unit root testing
context. Specifically, we consider the union of rejections decision rule

U : Reject Hy if {S1 > kecvg or Sy > kecvg}

where cvg and cvg denote the £ significance level asymptotic critical values of S; under I(1)
(¢ = 0) errors and Sy under I(0) errors, respectively, and k¢ is a positive scaling constant
whose role is made precise below. Note that U can equivalently be expressed as

. . CU% 1
U : Reject Ho if max q S1, | —5 | So ¢ > Kecvg.
cv
3

If the U decision rule was to be applied with k¢ = 1 (i.e. without any adjustment to
the asymptotic critical values used for the constituent tests in U), then the testing strategy
would be asymptotically correctly sized under I(0) errors, as S; = 0. In the I(1) case,
the Bonferroni inequality along with the size results for S; and Sy reported in Table 2,
show that such a strategy could only ever be (modestly) asymptotically over-sized when
¢ = 0; indeed, for m = 0.10 the maximum possible asymptotic sizes at the 0.10, 0.05 and
0.01 nominal significance levels are, respectively, 0.104, 0.053 and 0.011, such that the size
distortions will be almost non-existent. However, to ensure that U is an asymptotically
conservative testing strategy (i.e. asymptotically exactly correctly sized in the case of I(0)
errors and [(1) errors when ¢ = 0, and always asymptotically under-sized elsewhere), we
can avoid any size distortions by suitably choosing k.

Noting that the maximum size of U is realized when ¢ = 0, choosing ¢ such that
U has an asymptotic size of £ in this case ensures that the procedure will be conserva-
tive. We therefore obtain k¢ by simulating the limit distribution of max{S, (cv¢ /cv¢)So},
calculating the ¢-level critical value for this distribution, say cvg, and then computing
ke = cvf®™ /cvi. Values of ke for different m and ¢ are shown in Table 1. Hereafter,
reference to the decision rule U assumes the k¢ adjustment values from Table 1 are used.

Table 2 also provides asymptotic size results for U. As expected, the testing strategy
is correctly sized for I(1) errors when ¢ = 0. When the errors are I(1) with ¢ > 0, U is
conservative, in line with the size properties of the constituent tests S; and Sy discussed
above. It is also conservative when the errors are I(0).

Remark 7. It is important to note that the union of rejections procedure is only rendered
viable due to the specific behaviour of the Berk-type estimator (Di under (1) errors, in
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that it diverges at a rate T2 see Theorem 3 (a). This ensures that Sy is O,(1). If a
typical kernel-based (e.g. Bartlett) long run variance estimator with bandwidth ¢, say,
growing at rate smaller than 7" was used, then under Assumption I(1), it is easy to show
that &2 diverges at a rate less than 72, so that Sy diverges to co. In such a case, a union
of rejections approach is clearly precluded, because, regardless of the choice of kg, its size
would approach one in the limit under (1) errors.?

4.3 Asymptotic Power

Table 3 shows asymptotic local powers of S7, Sy and U, conducted at the nominal 0.05-
level. We consider the same settings of m (and hence np.y) as in Table 2, and the same
error specifications (i.e. I(1) errors with ¢ > 0 and 1(0) errors). As regards the break(s)
in mean, we consider four different specifications: Panel A provides results for a single
mid-point break, while Panels B, C and D present results for two, three and four equally
spaced breaks in the DGP, respectively. The break magnitudes are common across both
the break dates and the number of breaks in the DGP, ie. 7y =v, = ... =, = 7, and
benchmarked so that the powers of S} for ¢ = 0 in the I(1) case, and Sy in the I(0) case,
are equal to 0.50 when m = 0.10 and there is a single break in the generated data.?

Table 3 about here

Consider first the behaviour of S;. For /(1) errors and a given ¢, power decreases mono-
tonically as m increases, as might be expected in view of the discussion of the stylized
example in section 3. In addition, for a given m and number of breaks, power is monotoni-
cally decreasing as ¢ increases, while for a given m and ¢, power is increasing in the number
of breaks, as would be expected since the test essentially now has an increasing number of
opportunities to detect a level break. It can also be seen that the power losses that accrue
across m do so at a faster rate for larger values of c¢. For example, in the two break case of
Panel B, when ¢ = 0, power falls from 0.736 when m = 0.10 to 0.324 when m = 0.30, but
when ¢ = 40, power falls from 0.694 to zero across this same range in m. Note also that
for 1(0) errors, the power of S is always zero, in line with the results of Lemma 1 (b) (i).

The power of Sy under I(0) errors is seen to increase monotonically as m increases,
for example in the one break case of Panel A, rising from the benchmarked power of 0.50
for m = 0.10 to a power of almost one for m = 0.30, which is again consistent with the
discussion in section 3. When the errors are I(1), the power of Sy rises monotonically in ¢ for
a given value of m. When ¢ = 0 (with the exception of m = 0.30 when only a single break
is present), Sy has lower power than Si; indeed, the power displayed is often trivial. As ¢
increases, this ranking becomes reversed, with Sy being substantially more powerful than
Sy for all m and all numbers of breaks once ¢ = 40. This feature is somewhat surprising,
given that in these cases Sy was seen to be markedly under-sized. For a given value of c,
the power of Sy is broadly increasing in m, although this pattern is not monotone.

Inspection of the power performance of U shows that it essentially capitalizes on the
relatively high power of S; for I(1) errors when c is zero (or small) while simultaneously

2As pointed out by a referee, an alternative to the autoregressive spectral density long run variance
estimator we adopt here would be to use the fixed-bandwidth kernel-based estimator suggested by Kiefer
and Vogelsang (2005), since this is also 72 divergent.

3Note that no results are reported for m = 0.30 in the case of three breaks, or m = 0.25 and m = 0.30
in the case of four breaks, since, given our chosen dates for the breaks in the DGP, these settings of m
would violate our assumption that no more than one break can occur within any |mT'| observations.
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capturing the superior power properties of Sy for larger ¢ and also 1(0) errors. For a given
DGP and choice of m, U generally displays power very close to the better power of the two
individual tests S; and Sy. Some minor power losses inevitably arise due to the adjustment
parameter ¢ included to ensure that U is an asymptotically conservative testing strategy.
These losses are not surprisingly at their largest when the adjustment factor is furthest
from one, i.e. when m = 0.30 where a power loss of 0.058 is seen for the two break case
when ¢ = 10. Conversely, they are at their smallest when the adjustment factor is closest
to one, i.e. when m = 0.10. On the other hand, there are many instances where the power
of U exceeds that of either of the constituent tests S; and Sy, resulting from the fact that
the rejections from S; and Sy need not be perfectly correlated. These power gains can be
quite substantial, for example in the two break case with ¢ = 10, a gain of 0.128 is evident
over the best of S; and Sy when m = 0.15. The robust power performance of U relative to
S1 and Sy, whose powers are sensitive to particular properties of the DGP, therefore makes
a strong case for using the modified union of rejections approach in practice.

5 Finite Sample Analysis

In order to ensure that the robust strategy U retains decent size control in finite samples,
in Table 4 we report finite sample null critical values for the S; and Sy tests, again for
m = {0.10,0.15,0.20,0.25,0.30}, together with finite sample variants of the adjustment
factors ke. These are calculated by simulation using the DGP (1)-(2) with y; = u; (without
loss of generality). To obtain the critical values for S; we generate I(1) data by setting
p = 1, with u; = €1, while for Sy we generate I(0) data with p = 0. In both cases
we generate ¢, = 1, as IIDN(0,1). In the computation of the test statistics here and
in all subsequent finite sample results, the long run variance estimators d}? and d)i use
values of k (in (7) and (9), respectively) determined according to the BIC criterion with
kmax = |4(T/100)'/*]. We consider the sample sizes T = {150, 300,600, 1200}. Because
the tests are based on only modest fractions of the data (m), it is perhaps no surprise
to see that the speed of convergence of the finite sample critical values to their limiting
counterparts in Table 1 is fairly slow. This makes a prima facie case for employing the finite
sample critical values (and the corresponding adjustment factors) of Table 4 unless sample
sizes are reasonably large. We will therefore adopt these in all the remaining simulations.

Table 4 about here

5.1 Robustness to Non-Normal Errors

We next investigate the finite sample size of the recommended U procedure in the presence
of non-normal errors. While the assumption of normality is not required for any of our
asymptotic results, our finite sample critical values are nonetheless calculated using nor-
mally distributed errors. Since fat-tailed and/or skewed data is often encountered when
modelling macroeconomic and financial time series, it is therefore important to assess the
effects of such data on the finite sample size of our procedure.

Table 5 reports simulated empirical sizes of nominal 0.05-level U tests using the DGP
(1)-(2) with y; = ug, p = {1,0}, uy = €3, and g, = 7, generated as [IDN(0,1), I1Dt(5)
(the smallest degrees of freedom we can permit since we require the error fourth moment
to be finite; see Assumption LP), and I7D x?(3) (centered). While still providing plausible
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distributional assumptions for errors in macroeconomic and financial time series, the latter
two distributions allow for a high degree of kurtosis in the innovations, and in the case
of x%(3), the errors are also highly skewed. The simulations are conducted for the sample
sizes T' = {150, 300, 600, 1200}.

Table 5 about here

The U test sizes do not seem unduly sensitive to the normality assumption (under which
the finite sample critical values are derived). For T' = 150, our test has at most a size of
around 0.16, occurring with I(1) errors when the window width m = 0.10 and is generally
much closer to the nominal level either under 7(0) errors or when we employ larger window
widths. Of course, our procedure is asymptotically size controlled and therefore becomes
robust to non-normality as we increase T', as Table 5 makes evident.

As a point of comparison, we also show the corresponding sizes of the KP procedure
which allows for testing at least one simultaneous break in level and/or trend. Since the
procedure essentially involves sequential application of the PY test, the KP test of the null
of no breaks is simply the PY test for a single break in level /trend. This takes the form
of a Wald test for a break, where the statistic is computed using either a first differenced
regression (if PY’s estimator of p is found to be within a 7-'/2 neighbourhood of 1), or a
quasi-feasible GLS regression (otherwise).? We see that in the (1) case, when the errors are
non-normal, PY suffers very significant upward size distortion, to the extent that in large
samples the test can almost always reject the null of no breaks when the distribution of
the innovations departs from the normal. This arises because here the PY statistic involves
searching for a single outlier in first differenced data which precludes the application of an
invariance principle (cf. section 3), so their critical values need to be based on a known
error distribution, which they assume to be normal. Clearly then, such an approach will
lack robustness to departures from this normality assumption, both in finite samples and
asymptotically.

5.2 Robustness to Non-I1ID Errors

Here we analyze the finite sample size of the U procedure when the errors &; are auto-
correlated. Table 6 reports simulated empirical sizes of nominal 0.05-level U tests us-
ing the DGP (1)-(2) with y; = u; and ARIMA errors for w;. Specifically, we consider
p ={1.00,0.95,0.90,0.70,0.00}, with ¢, generated according to the M A(1) scheme

€t =T — 977t—1: = 17 "'7T7

with 7, generated as IIDN(0,1), uy = ¢; = n;, and # = {0.0,0.5,—0.5}. Results are
reported for T'= {150,300} and these show the dynamics to have reassuringly little effect
on finite sample size; in particular, they do not lead to much in the way of over-rejection,
which is perhaps the greater concern. As would be expected from the asymptotic results,
what over-sizing does occur generally diminishes as we increase sample size from T = 150

to T = 300.

Table 6 about here

“Here, and in Tables 7 and 8 below, due to the substantial computational requirements of PY, the KP
entries are based on 1000 Monte Carlo replications, as in PY and KP.
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5.3 Power

Lastly in this section, we consider the finite sample power of the tests, reporting results for
nominal 0.05-level tests using a sample size of T' = 300. We use the same four specifications
for the number and timings of breaks as in the asymptotic power simulations, and again
we consider m = {0.10,0.15,0.20,0.25,0.30}. In contrast to the settings for the asymptotic
simulations, we here also report results for m = 0.30 in the case of three breaks, and
m = 0.25 and m = 0.30 in the case of four breaks. Given our chosen dates for the breaks
in the DGP, these settings violate our assumption that no more than one break can occur
within any |mT'| observations, but we include these results to evaluate the behaviour of our
proposed tests in such circumstances. The entries in the table for these cases are italicized,
so as to distinguish them from the cases where our assumption is upheld.

The data are generated according to (1) and (2), with a = 0, u; = &, and g = 5,
generated as ITDN(0,1). We consider p = {1.00,0.95,0.90,0.70,0.50} and set a common
break magnitude v across all breaks and DGPs. Note that break magnitudes are held
constant across both the /(1) and I(0) DGPs that we consider, rather than scaling the
magnitudes according to the order of integration (as in our asymptotic analysis); this is
done so as to provide some consistency across different values of p.

Tables 7 and 8 about here

In Table 7 we show the results for v = 10. This value is selected so that power for
Sp is around 0.50 when p = 1 and m = 0.10 in the single break case, aiding comparison
with our asymptotic results. In fact, across p = 1 the overall pattern of results for S;, S
and U bears a close resemblance to the asymptotic case (see the I(1), ¢ = 0 rows of Table
3). In the cases where p < 1, Sy behaves in the same manner as in the asymptotic case,
i.e. power increases as the series becomes less persistent, and also broadly as m increases.
However, in contrast to the asymptotic results, we now observe that while the power of
S1 generally falls when p changes from 1 to 0.95 and to 0.90, it then starts to increase as
the level of persistence falls further. This arises because for the smaller values of p, the
asymptotic results for 7(0) errors are not really applicable, since here the break magnitude
is held common across I(1) and 7(0) DGPs, unlike in the asymptotic model where the break
magnitude is assumed to be an order 7" smaller in the I(0) case. Although S; often has
non-negligible power for the I(0) DGPs considered, it is observed that Sy is more powerful
than S; when p < 0.95, in many cases quite substantially so.

As regards the performance of U, it is clear that, across all values of p, it displays power
close to the maximum of S} and Sy. In fact, for m = 0.10 its power often exceeds the higher
of both S7 and Sp; although, for larger values of m, U displays power slightly lower than the
better of S; and Sy, due to the effect of the larger critical values adjustment factors needed
here. The robust performance of U seen in the asymptotic results therefore translates
directly to finite samples, strengthening the case for its use in practical applications.

In the cases where our assumption that no more than one break can occur within any
|mT'| observations does not hold (the italicized entries), we see that Si, Sy and therefore
U have very low levels of power. This arises partly because M, 7| now often straddles
two level breaks while only allowing for one, but chiefly because the long run variance
estimators &2 and &7 are now calculated from data for which not all of the level breaks
have been purged. Predictably, these variance estimators become inflated, relative to their
fully purged counterparts, and the values of S7 and Sy are consequently forced closer towards
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zero. In an empirical context, however, if one suspects a non-rejection of the null hypothesis
might be due to adopting too large a value m for the spacing of breaks, this can always be
replaced by a smaller value, since the corresponding test would obviously be less susceptible
to this potential problem.

Table 8 repeats the analysis using v = 5. Not surprisingly, the powers are somewhat
lower than in Table 8, particularly for the larger values of p. Otherwise, the same comments
broadly apply, with the power of U again being fairly close to the maximum of S} and Sy,
particularly for the smaller values of m. Tables 7 and 8 additionally report the power
of the KP procedure. This is seen to be often substantially more powerful than U, most
noticeably in those cases where p is close to one. High power when p = 1 is only to be
expected, since, as noted above, KP is here detecting outliers in the first differenced data
while (correctly) assuming normal errors. The price to be paid for these power gains is, of
course, the very poor size control demonstrated when the errors are in fact non-normal.

Having established the finite sample properties of our proposed tests, we are now in
a position to provide some comments as regards the choice of m. From an asymptotic
perspective, the tests for all choices of m are never over-sized, while the results of Table 3
show that there is no setting for m that unambiguously provides the highest asymptotic
power for U in all circumstances. However, additional considerations that may have some
bearing on the decision are as follows. In the presence of non-normal innovations, upward
finite sample size distortions are less pronounced for larger values of m, while smaller values
of m allow more flexibility in terms of the maximum number of breaks that are assumed to
be present in the data (i.e. nya.x), and also provide greater insurance against the possibility
of more than one break occurring within any |m7'| observations. Using a smaller value of
m also has some theoretical appeal in that it involves less adjustment to the critical values
in the union of rejections (i.e. is closer to performing a raw unadjusted union of rejections).
Overall, then, it would seem that a choice of m = 0.10 or m = 0.15 might be appealing in
practice, provided the sample size is not too small.

6 Determining the Number and Timing of Breaks

A rejection by any of the test procedures outlined in section 4.2 informs us that at least
one level break is present (subject to Type 1 error). We now discuss how one can proceed
to detect and date possibly multiple breaks in level.

Suppose first that it is the case that S, := max;ea, Siy|mr| > cvgl, such that S is
significant at the ¢-level. We then assume that there is a (first) level break at #; :=
arg maxXuep, O14,|mr)- Given that we exclude the possibility of more than one break in the
interval [t; — |[mT| +1,#; + |[mT| — 1] =: A, 7, we next examine the possibility of a further
break occurring in the remaining portion of Ar, not excluded by A;r, ie. Ap — Ay,
Then, if maxien, A, S1t,m7| < cv% we terminate the algorithm and conclude that only
one level break is present. Otherwise, if maxen,—a, » Sit,mr| > cvgl, we then record a
second level break at f, := arg maXeA— A, 7 O1t,|m7)- Next, we exclude the dates in the
interval [ty — |[mT |+ 1,15+ |mT | —1] =: Ay 7, and consider whether a further break can be
detected in the range Ap— Ay 7 — Ao, ie. if maxien, A, 7 Ay r S1tmr) < cvé, we terminate
and conclude that two level breaks are present, while if maxyen,—a, p—Ayp S1t,(mr] > CUE
we then record a third level break at t5 := arg max;c Ar—Arr—Aor S1,t,|mr)- This sequential
detection and dating procedure continues until there are no further significant level breaks
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or the search set is null.

Entirely analogous procedures for detecting and dating multiple breaks using So,(m7
can also be implemented, but must obviously be based on significance testing using the
critical value, cvg. Now let the number of significant breaks detected on the basis of
Sit,imr| and Soy |7 be denoted by ny and ng, respectively. Since we can write Sy, |7 =
d);ld)aTSl,t’LmTJ, i.e. for a given T, So |mr| is simply a constant multiple of S |7, it
follows that if n; > ng, then in terms of their locations, the ny breaks are simply a subset
of the n; breaks, with both sets of break locations being identical if ny = ng. Similarly, if
n1 < ng, then the locations of the n; breaks are simply a subset of those of the ng breaks.

A corresponding approach based around the union of rejections decision rule, U, can
also be developed in a straightforward way. Here, we first consider the detection and dating
of breaks according to Sy |mr) and So |mr| separately, using the procedure outlined above,
only with both critical values adjusted by the scaling factor k¢, i.e. we replace cvg with
/@50'051 in the above procedure for detection based on S 7|, and replace cvg with /ﬁgcvg in
for detection based on Sy 7. Let the number of significant breaks detected according to
these procedures be denoted by n} and nj, respectively.” The number of breaks associated
with the sequential procedure based on U is then simply max(n},ng) := ny.

In Table 9 we present finite sample simulation results for the number of breaks detected
by this sequential procedure. We focus on the case of three breaks in the DGP (71, 73,73 =
0.25,0.50,0.75). The data are generated in exactly the same way as for the simulations
reported in Tables 7-8, except that for the common break magnitude v we now consider
three different values: 5, 10 and 15. The table reports the frequency with which one, two,
three or more than three breaks are detected by Sy, Sy and U, when conducting these tests
at the nominal 0.05-level using m = {0.10,0.15,0.20,0.25}.9 The sum of the frequencies is
the total power of the test (for v = 10 and v = 5 these totals are the same as those powers
given in Panel C of Tables 7 and 8, respectively, other than for rounding errors).

Table 9 about here

Other things equal, we see that the higher is the power of a given test, the more
frequently the corresponding number of identified significant breaks is equal to the true
value of three. Also, as the magnitude of the breaks increases, a migration towards detecting
three breaks is clearly evident. Conversely, when a test has very low power, it is seen to
detect three breaks only very infrequently. Given this relationship between the power of the
test of the null hypothesis of no breaks and the frequency with which the correct number of
breaks is identified, it is clear that break detection based on the U approach has inherent
advantages in terms of identifying multiple breaks in level, in addition to the superior power
properties of U when simply rejecting the null of no breaks.

7 Allowing for Linear Trends

In this section we briefly discuss how the procedures outlined thus far can be extended to
accommodate a linear trend in the underlying DGP. In order to do so, we need to augment

5Note that due to the critical value adjustment factor K¢, it must be true that nj <np and ngj < ng.
6We omit results for m = 0.30 since, given our chosen dates for the breaks in the DGP, this setting of
m would violate our assumption that no more than one break can occur within any |mT| observations.
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the observation equation in (1) with a linear trend term, viz,

yo=oa+Bt+ > i DU(|7T]) +w, t=1,..,T (12)
i=1
In order to retain pivotal inference procedures in the presence of the additional linear trend
term, (t, in (12) we must proceed as follows. First, let 3 denote the estimator of the trend
coefficient, 3, from the OLS regression of y; on (1,¢), t = 1,....,7. We then define the
corresponding de-trended fluctuation measure (which is exact invariant to both « and )

MthmTJ = My |mr) — BlmT/2]

and the corresponding maximum (in absolute value) of the sequence of such fluctuation
measures, taken over all possible break points in Ar:
fi= M .
M ?elj%;d t,LmTJ|
Next, in the com[%utation of &2, we re-define f{ 1= (arg maxeq, [Ay; — B|) — 1 where
B = (T —1)"'3,_, Ay and similarly re-define s, ...,t;. We now calculate d)? using the
OLS residuals from (6) augmented to include a constant term in the regression. Similarly,
we also calculate &2 from the OLS residuals from (8) now augmented to include a linear
time trend in the regression (and using the re-defined ¢y, ..., t5).
The time-trend adjusted analogues of the statistics in (10) and (11) are then given by

St =o' TP M (13)
and

Sp = o TP M (14)
respectively. In Lemma 2 we detail the large sample behaviour of these statistics in both
I(1) and I(0) environments.
Lemma 2 Let the conditions of Theorem 1 hold. Then,

(a) Under Assumption I(1),
.. x W Sub.ep|La(rm,c)+K (rym,7,y)+ L} (m,c)+K*(m,T,y)
(ZZ) SO - €A| - Q*1/2(c,d,7~') - | .

(b) Under Assumption 1(0),
(Z) ST = Op(l);
(i3) Sg = sup,cp |Lo(r,m) + K (r,m, T,7) + Lj(m, c) + K*(m, T,7)|.

where Ly(r,m,c), Lo(r,m) and K(r,m,T,~) are as defined in Theorem 1, and

Li(m,c) = —Gm{/olch(s)ds—%/OIWC(S)ds},
Li(m,c) = —6m{/01 de(s)—%W(l)},
K*(m,7,7) = —3m§%7i(1—7i)7

{J H*(r,c,d, 7)%dr}?

(c,d,T) = ; —
o ) {fo H*(r,c,d, 7)dW,(r)}?
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with H*(r, ¢, d, T) is a continuous time residual from the projection of W.(r) onto the space
spanned by {1,7,1(r > 71), 1(r > 7o), ..., 1(r > 75)} with 7; :=limg_ . T ';, i = 1,2,...,7n
and T :=[T1,T, .., Thl-

Asymptotic and finite sample null critical values for the tests based on the ST and S§
statistics are given in Tables 10 and 11 respectively. These were obtained using the same
settings as were outlined for Tables 1 and 4, respectively.

Tables 10 and 11 about here

Given the trend-modified statistics ST and Sj, a union of rejections procedure, say U”,
that allows for trending behaviour can be formed as detailed in section 4.2, replacing the
original statistics Sy and Sy with the trend-modified variants S} and S of (13) and (14)
respectively. An adjustment factor, x7 say, is once more required to control the size of the
U* procedure. Asymptotic and finite sample values of i are also reported in Tables 10
and 11; we see that these are again very modest, particularly for the smaller values of m.

8 Conclusion

In this paper we have discussed procedures, based on generalized fluctuation measures, for
testing for the presence and location of multiple levels breaks (possibly around a constant
linear trend) in autocorrelated time series processes. In contrast to the extant literature,
our proposed union of rejections based procedure is robust as to whether the data are
I(1) or I(0) and to distributional assumptions on the underlying errors. We have provided
representations for and critical values from the asymptotic distributions of our proposed
statistics (those appropriate for the I(0) and /(1) environments and the union of rejections
approach) under the null hypothesis of no level breaks, together with representations for
and numerical evaluation of their asymptotic local power functions under both 7(0) and /(1)
environments. Associated estimators of the level break fractions, based on the statistics ap-
propriate for the I(0) and /(1) environments, were also provided and evaluated numerically.
Monte Carlo simulations were also reported which suggested that our proposed methods
perform well in small samples, regardless of the (unknown) order of integration of the data.
Our proposed tests and level break detection procedure require a choice of window width
which in turn impacts on the maximum number of breaks allowable. A detailed numerical
examination of the impact of the choice of window width on both the asymptotic and finite
sample performance of our approach was reported, with a choice of m = 0.10 or m = 0.15
appearing to deliver the greatest flexibility, obviously provided the sample size involved is
not too small. Overall, the robust tests that we propose should prove useful in practical
applications, particularly when dealing with long spans of macroeconomic or financial data
where multiple level breaks are an important consideration, and where uncertainty exists
as to the order of integration properties of the data.
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Appendix

Proof of Theorem 1
(a) Under Assumption I(1)

5T 5T
Zi:21 U|rT |45 — 21:21 UrT|—i+1
157

T_l/zMLrTJ,LmTJ = T_1/2 + wEK(rv m,T, 7)

noting that M|,7| |7 is invariant to the intercept term « and to any level breaks that occur
prior to the earliest time period spanned by M|, 1| 7|, and where K (r,m, T,7) is as given

in the statement of Theorem 1. Then, since we have the FCLT, TV2u 7| = w.W.(r), it
follows from the Continuous Mapping Theorem [CMT] that

r

—m/2

r4+m/2
T2 Myr) )~ 2m ™ w, {/ We(s)ds — / Wc(s)ds} +wK(r,m,7,7).

This result combined with the CMT delivers the stated result in (a).

(b) Under Assumption 1(0)

5T L5T]
i=1  W|rT|4+i = 2ui=1 UYrT]—i+1
T1/2M7"T T :Tl/ZZ 1 L —
[7T|,|mT] LETJ

+ w K (r,m,1,7).

Then, since we now have the FCLT, T-Y2 32y, % o W (r), it follows from the CMT
that

T Y2 My )~ 2m ™ w, AW (r +m/2) — 2W (r) + W(r — m/2)} + w, K (r,m, T,7).
This result combined with the CMT delivers the stated result in (b).

Proof of Theorem 2

(a) (i) This part of the proof follows the approach of Perron and Zhu (2005, Theorem 3.1).
Writing (1) in first differences we have that

Aye =Y YirDi([7iT]) + Auy. (A1)
=1

Now, it should be obvious that #; := (arg max,cq, |Ay,|) — 1 is identical to the estimator

T
in 71 24
{arg min ;ﬂ(]) }

where f;(j) are the OLS residuals from a regression of Ay, on Dy(|j7T|). As a consequence,
denoting the sum of squared residuals from a regression of Ay, on Dy(|.|) as SSR(.), we
find

SSR(t,) — SSR(|7.T)) < 0. (A.2)
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Next, let £ € Qp — 1. Then,

0 7?: LTITJ
T HSSR(t) — SSR(|m1T|)} =w?{ 72—~ +0,(1) t=|nT], i=2,...,n (A.3)
71+ 0,(1) otherwise.

This follows since, from (A.1),

T 'SSR(t) = T! Z {Zn:fszDt(LTiTj)—i—Aut}

t#£i4+1 Li=1
T n 2 7T .
_ 1Y t# 7T, i=1,..n
= 71! Au? + o 1+w2{z%—1% ~ a0 (A4
; v+ op(1) € Zj:17j¢i7§ t=|nT], i = ,...,n( )
from which we have that
T n
T'SSR(INT]) =T Auj +0,(1) +w? > 77 (A.5)
t=1 =2

Subtracting (A.5) from (A.4) establishes (A.3).

Now define IT := {t : |t— |7,T]| > 0}; we find that limy_ ., mingeg T H{SSR(f) —
SSR(|TT])} >0, as 2 > 0 and 72 — 42 > 0 for i = 2,...,n. Hence, asymptotically, {; ¢
IT as this leads to a contradiction of (A.2). Therefore limy_.o, Pr(f; — 717 ] = 0) = 1; that
is, £, — |71 7] %2 0, which implies £, — |7,7] % 0.

To show that t, — [ 75T | 2,0, we simply repeat the above argument, replacing Q7 with
Q7 — Qi 7, and noting that the interval Q r = [f; — [dT'| +2, %, + |dT'|] contains [ 7,7 |, but
excludes |7,T| almost surely. The results for s, ..., , follow in entirely analogous fashion.

Finally, if €, # @, the procedure will continue to determine break points until
Qs1110 = ; it follows, therefore, that n > n as T' — oo.

(a) (i1) Using (A.1), if the n break points |7,7], i = 1, ...,n, were known, we would regress
Ay, on the Dy(|7;7]) and obtain the residuals

gt = Ay, — Z Ay Dy(|7:T])

=1

= Au— Y AuDy(|7iT))

i=1

and then construct the long run variance based on g, rather than &, of equation (7). De-
noting such an estimator d)?(g), this would consistently estimate w? since we have simply
removed a finite number n of the Aw,, replacing each with zero, which has no asymptotic
impact.

From (6), we find

& = Ay — Z AytDt(fi)

= g+ Z Ay Dy([7iT|) — Dul(fi)} — Z Ay, Dy(t:).
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Now, forz=1,....n

}Ayt{Dt(LTiTJ) - Dt(fz)}l < {23}; | Ay ?61%;( ‘Dt(LTiTJ) - Dt(tAi)

= {wT"2 | + Op(1)}0,(1)
= Op(Tl/z)

2 0 uniformly in i, which in

where the 0,(1) term arises since maxyeq, |Di(|7:T]) — Dy(t;)
turn arises because ¢; — [7;7| “> 0 uniformly in 4. Also, for i > n, Ay, Dy(f;) = Ay; = Au;.
which is of O,(1). As a consequence, &, is identical to ¢; apart from at a finite number
n of indices 7. At such points the difference between &, and ¢; is bounded by an op(Tl/ 2)
random variable. Since 7 is not increasing in 7, it then follows that &Z— &?(g) = 0, and
therefore @? % w?. This consistency result also holds if n = 0, since here &, is identical to
Awuy; apart from at a finite number of points, n, which are stochastically distributed on Qr;
at these n points, Awu, is simply replaced by zero, which has no impact on the asymptotic
behaviour of &2.

(b) Consider first a simple example, where we define the series z; := An,, with 7, as in
Assumption LP, i.e. I1D(0, 0727). Suppose we estimate the OLS regression

Zt = X/Zt,k: + ht (A6)

where z;; = [21-1,2t—2,.., zt—k). Then, defining the k x 1 vector i := [1,1,...,1) we
construct

T -1 T
WA = Y (77! E Z4 k2 ), 71 E Zt k2t

t=k+1 t=k+1
= k4 [02A + 0,(1)] " [02b + 0,(1)]

where A is the k x k matrix

2 -1 0 0 0 0

-1 2 -1 0 0 0

0O -1 2 -1 0 0
A = ]

0 o 0 -1 2 -1

0 o o0 0 -1 2

and b is the k x 1 vector [—1,0,...,0]". Next, observe that

W [02A 4+ 0,(1)] ' [02b +0,(1)] = k7Y [0,2A7 +0,(1)] [02b + 0,(1)]
= kWA b+ kto,(1)
= kWA b+ 0,(1)

where the inverse term in the first line follows from a matrix version of a Taylor series

expansion of the form (a+o0) ' =a!' —a20+a30* — ...
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Now, it can be shown that the first column of A~! is given by [f- &=L k—}rl]' and,

Tl kD
hence, A='b = [k+1’]12+}" - ) o that

k
. 1
FYA b=—— S =2
' k(k+ 1) ;Z

Consequently, kA = — % + 0,(1). Next,

T T T T -1 T
52 . -1 2 _ -1 2 -1 / -1 / -1
oy, =T g hy = T E zp =T E 2z, | T E Zt K2y, T E Zy %t
t=k+1 t=k+1 t=k+1 t=k+1
_ 2 217 A —1
= 20, —0,b'A7"b +0,(1)

= 20, -0, + 0,(1).

k
Tk +1

Then, given that k& — oo, as T' — oo it follows that 7! ZthkH h? L 0. An estimate of

the long run variance of z; based on (A.6) is then given by

o2 o _ o+ 0y(1) _ 0,52,

C(-Th )2 Oy (k2)

Note that an identical expression for &? is obtained as

>

o
Q>

SN

&
Il
>
)

where 7 is estimated from the OLS regression

k—1
Azp =21+ Y Az j+h

J=1

It follows that & = O,(k~2) on noting that replacing the over-differenced noise z, = An,
with a more general I(—1) process, such as Ae; where ¢; is as in Assumption LP, will not
affect the rate of convergence to zero. Similarly, using A&, in place of z;, where &, are the
residuals from (6), will also leave this rate of convergence unchanged.

Proof of Theorem 3

(a) For r € A, straightforward extensions of results in Perron and Vogelsang (1992) yield
the result that T_l/QﬁVTJ 2 w.H(r,d,c,7), where H(r,d, c,#) is a continuous time residual
from the projection of W.(r) onto the space spanned by {1,1(r > 71),1(r > 72),..., 1(r >
Fa)} with 7; := limp_o T, i = 1,2,...,n and ¥ =[F1, 79, ...,7s]. Then, from (9) we
obtain, using the CMT, that

Tﬁwg"fo (rye,d, 7)dW.(r)
We fo (r,c,d,T)%dr
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2

;» We therefore obtain that

2
and, since & 2o

[\V]

(T7)?
w 2 {3 H(r,c,d, 7)%dr}?
: {fo H(r,c,d, 7)dW,(r)}?

2,2
T Wy, =

= wQ(c,d, T)

as required.

Now, from Theorem 2 (a) (i), we have that as T — oo, #; — [ 77| 2 0,4 =1,...,n, and
nzn Thusif n=n, 7 =71, T2, .., Tn] = [T1, T2, .., 7o) + 0,(T~1), confirming case (i).

To show case (ii), recognize that since n = 0, t; = argmaxcq, |Au] — 1. Now
t; is (marginally) distributed uniformly on Qp whatever the distribution of Au, or its
covariance structure E(Aug, Auy_g), s # 0; this is because no position on Qp is any
more likely to yield the maximum of |Aw,| than is any other.” Next, the distribution of
ts = (arg maxyeq,—o, , |Aw|)—1 where Qy 7 := [t;— |dT'|+2,,+|dT]], while clearly depen-
dent on 71, still does not depend on the distribution of Aw,, nor on its covariance structure as
maxeq, |Auy| and maxeq, o, , |Auy| are asymptotically independent under Assumption
LP for &, since they are separated by at least |mT'| observations.®® Continuing on like this,
we find that {3 = (arg maxieo,—o, 70, » |Aw|) — 1 where Qo7 1= [ty — [ dT'] +2, & + | dT]],
is dependent on #; and t,, but not on the distribution of Awu,, nor on its covariance struc-
ture, and so on. We therefore find that ¥ :=[71,7T9,...,T5] is a vector of n dependent
random variables, whose length is also stochastic but satisfies (5), whose distribution is
the same for all ¢, satisfying Assumption LP. Thus, T is a stochastic argument of H. No-
tice also that the distribution of 7 is independent of W,(r). This is because each of the
(finite) 7 random variables maxycq, |[Auy|, maXien,—, ; [Auy|, ... becomes independent of
T2 (upr) —wy) = T~V Ay, as T — oo.

Finally, case (iii) is a hybrid of those in (i) and (ii) above. We have [Ty, Ta, ..., Ty =
[T1, T2, oy Tn) + 0p(T7). So ¥ =[T1,7T2, ., Tn, Tnt1s ---» Tn) has n non-stochastic elements
and n — n stochastic terms (n again being stochastic, but satisfying (5)). The stochastic
terms, while dependent, have a distribution that does not depend on the distribution of
Auwuy, nor on its covariance structure, and are independent of W.(r).

(b) As regards @i, the level breaks v, = w,T71%7;, i = 1,2,..,n, have no asymptotic
effect under Assumption I(0). Thus in (8) we are simply introducing a finite number, 7,
of asymptotically irrelevant level break regressors. Furthermore, in (9) an additional nk
one-time dummy variable regressors are introduced. Although nk — oo as T — oo, since
nk = o(T"/?) the effect of these dummy variables is again asymptotically negligible. Hence
&2 behaves asymptotically as if calculated directly from wu;, and therefore &2 2, w2,

Proof of Lemma 1

(a) The result in (i) follows directly from Theorem 1 (a) and Theorem 2 (a) (ii). In (ii) the
result follows from Theorem 1 (a) and Theorem 3 (a), along with application of the CMT.

(b) The result in (i) follows directly from Theorem 1 (b) and Theorem 2 (b). In (ii) the
result follows from Theorem 1 (b) and Theorem 3 (b).

"This is not saying that max;cq,. |Auy| is uniform, only its positioning on Q7.
8This holds regardless of whether ¢ = 0 or ¢ > 0.
9We might consider 5 as being conditionally (marginally) distributed across the interval Qp — Q; 7.
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Proof of Lemma 2

(a) First note that M i |mr) 18 Invariant to (3, so we may set (3 equal to zero without loss of
generality in what follows. Then

T M iy = T My gy — (m/2)T"? (A7)

and so the limit of the first term in the right member of (A.7) is w.{ L1 (r,m, ¢)+K (r,m, T,7)},
cf. Theorem 1 (a). Asregards the second term in the right member of (A.7), straightforward
but tedious algebra shows that

1 1 n
TV23 2 . {12/ sWe(s)ds — 6/ We(s)ds + 6 Z v;Ti(1 — TZ)}
0 0

i=1
and, hence, by the CMT
T 2M; iy wel L, m, €) 4+ K rym, 7, ) 4 Li(m, ) + K (m, 7,7)}.

The other results required to establish the results in (a), which concern the large sample
behaviour of the long run variance estimators &> and &2, are all entirely routine general-

u?

izations of the corresponding results in the non-trend case.

(b) The results follow along similar lines to those in (a) and in Lemma 1.
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Table 5. Finite sample sizes of nominal 0.05-level tests: normal and non-normal innovations

Panel A. T = 150

U
m=010 m=015 m=020 m=0.25 m=0.30 KP
N(0,1) p=1.0 0.050 0.050 0.050 0.050 0.050 0.089
p=0.0 0.040 0.025 0.016 0.012 0.008 0.076
t(5) p=1.0 0.157 0.112 0.096 0.087 0.080 0.482
p=0.0 0.074 0.041 0.026 0.018 0.012 0.085
X2(3) p=1.0 0.148 0.092 0.074 0.065 0.060 0.664
p=20.0 0.080 0.048 0.029 0.021 0.013 0.066
Panel B. T = 300
U
m=010 m=0.15 m=020 m=025 m=0.30 KP
N(0,1) p=1.0 0.050 0.050 0.050 0.050 0.050 0.059
p=20.0 0.041 0.035 0.024 0.016 0.011 0.056
t(5) p=1.0 0.114 0.091 0.080 0.074 0.070 0.611
p=20.0 0.066 0.048 0.031 0.021 0.014 0.058
x2(3) p=1.0 0.103 0.078 0.066 0.061 0.057 0.800
p=20.0 0.073 0.053 0.034 0.024 0.015 0.051
Panel C. T' = 600
U
m=010 m=015 m=020 m=0.25 m=0.30 KP
N(0,1) p=1.0 0.050 0.050 0.050 0.050 0.050 0.063
p=0.0 0.045 0.038 0.030 0.021 0.017 0.055
t(5) p=1.0 0.092 0.079 0.075 0.070 0.067 0.803
p=20.0 0.063 0.047 0.036 0.025 0.018 0.046
X2(3) p=1.0 0.082 0.068 0.061 0.058 0.057 0.910
p=0.0 0.064 0.050 0.038 0.027 0.019 0.053
Panel D. T'= 1200
U
m=010 m=0.15 m=020 m=025 m=0.30 KP
N(0,1) p=1.0 0.050 0.050 0.050 0.050 0.050 0.056
p=20.0 0.048 0.041 0.032 0.024 0.018 0.052
t(5) p=1.0 0.075 0.071 0.066 0.062 0.064 0.936
p=20.0 0.060 0.046 0.034 0.024 0.019 0.047
x2(3) p=1.0 0.069 0.063 0.058 0.056 0.056 0.975
p=20.0 0.059 0.048 0.037 0.026 0.021 0.031
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Table 6. Finite sample sizes of nominal 0.05-level U tests: ARMA errors

Panel A. T = 150

P 0 m=010 m=0.15 m=020 m=025 m=0.30

1.00 0.00 0.050 0.050 0.050 0.050 0.050
0.50 0.048 0.084 0.095 0.095 0.096

—0.50 0.062 0.078 0.080 0.079 0.081

0.95 0.00 0.032 0.033 0.032 0.031 0.028
0.50 0.060 0.100 0.109 0.106 0.097

—0.50 0.077 0.088 0.082 0.070 0.063

0.90 0.00 0.024 0.024 0.021 0.019 0.016
0.50 0.060 0.099 0.106 0.100 0.087

—0.50 0.083 0.083 0.065 0.055 0.044

0.70 0.00 0.019 0.012 0.010 0.007 0.005
0.50 0.052 0.058 0.050 0.043 0.032

—0.50 0.090 0.059 0.039 0.028 0.020

0.00 0.00 0.040 0.025 0.016 0.012 0.008
0.50 0.131 0.061 0.031 0.020 0.010

—0.50 0.064 0.037 0.023 0.016 0.010

Panel B. T' = 300
p 0 m=010 m=0.15 m=020 m=025 m=0.30

1.00 0.00 0.050 0.050 0.050 0.050 0.050
0.50 0.031 0.044 0.059 0.066 0.072

—0.50 0.060 0.063 0.066 0.064 0.064

0.95 0.00 0.013 0.014 0.016 0.015 0.013
0.50 0.057 0.059 0.063 0.059 0.053

—0.50 0.043 0.037 0.035 0.029 0.025

0.90 0.00 0.010 0.010 0.009 0.008 0.007
0.50 0.083 0.079 0.072 0.059 0.048

—0.50 0.040 0.031 0.025 0.020 0.015

0.70 0.00 0.011 0.009 0.008 0.006 0.004
0.50 0.120 0.116 0.093 0.074 0.055

—0.50 0.048 0.032 0.022 0.016 0.011

0.00 0.00 0.041 0.035 0.024 0.016 0.011
0.50 0.094 0.052 0.027 0.015 0.008

—0.50 0.060 0.046 0.032 0.022 0.015
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