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Abstract

Three important issues surround testing for a unit root in practice: uncertainty as

to whether or not a linear deterministic trend is present in the data, uncertainty as to

whether the initial condition of the process is (asymptotically) negligible or not, and un-

certainly over the possible presence, and if so form, of nonstationary volatility in the data.

Assuming homoskedasticity, Harvey, Leybourne and Taylor (2010, Journal of Economet-

rics, forthcoming) propose decision rules based on a four-way union of rejections of QD

and OLS detrended tests, both with and without a linear trend, to deal with the first

two problems. In this paper we first discuss, again under homoskedasticity, how these

union tests may be validly bootstrapped using the sieve bootstrap principle combined

with either the i.i.d. or wild bootstrap resampling schemes. This serves to highlight the

complications that arise when attempting to bootstrap the union tests. We then demon-

strate that in the presence of nonstationary volatility the union test statistics have limit

distributions which depend on the form of the volatility process, making tests based on

the standard asymptotic critical values or, indeed, the i.i.d. bootstrap principle invalid.

We show that wild bootstrap union of rejections test are, however, asymptotically valid

in the presence of nonstationary volatility. The wild bootstrap union tests therefore allow

for a joint treatment of all three of the aforementioned problems.

Keywords: Unit root; local trend; initial condition; asymptotic power; union of rejections

decision rule; nonstationary volatility; sieve bootstrap; wild bootstrap.

JEL Classification: C22.

1 Introduction

It is well known that the performance of unit root tests depends on a number of factors not

observable by the practitioner applying the tests. Two such factors that have a profound
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impact on the power of these unit root tests, and in particular the popular (augmented)

Dickey-Fuller [DF] tests, are that of deterministic trends and the initial condition.

In many economic applications it is important to allow for the presence of a linear trend.

If a linear trend is present in the data, but not accounted for in the test, power will decrease

dramatically, such that even for a fairly small trend, the unit root tests will never reject, even

asymptotically. On the other hand, if a trend is absent from the data, but is accounted for

in computing the test, then power also drops relative to the test which does not allow for a

trend. To deal with this issue, Harvey, Leybourne, and Taylor (2009a) [HLT] construct a new

test that is formed as a union of rejections of unit root tests with and without deterministic

trend. They show that this union test can maintain high power irrespective of the true value

of the trend. Moreover, by adjusting the critical values used to determine the individual

rejections, the union test also maintains correct asymptotic size.

Similarly, the initial condition (defined as the deviation of the initial observation from

the deterministic components) is also known to have a major impact on the power of unit

root tests. As investigated by Müller and Elliott (2003), among others, the DF test with OLS

detrending, denoted here as DF-OLS, suffers from low power relative to the DF test with quasi-

differenced (QD) or GLS detrending, denoted as DF-QD, if the initial condition is small; while

the opposite occurs if the initial condition is large. Moreover, as with the deterministic trend,

the initial condition is not observed, thus leaving the practitioner without proper knowledge

of which test to apply. HLT again propose a test based on a union of rejections, this time from

the DF-OLS and DF-QD tests, to deal with this situation, and show that this test maintains

good size and power across different values of the initial condition as well.

In practice these two factors cannot realistically be viewed in isolation of each other. This

motivated Harvey, Leybourne, and Taylor (2010) [HLTb] to extend the analysis of HLT, by

considering the impact of both factors simultaneously. They propose a four-way union of

rejections of DF-QD and DF-OLS tests, both with and without trend. A modified version

that involves (inconsistent) pre-testing for both the initial condition and the linear trend is

also proposed and shown to improve the power of the basic four-way union in certain cases.

In this paper we discuss how the union tests of HLTb can be extended to a bootstrap

setting, outlining our approach for both the i.i.d. and wild bootstrap re-sampling schemes,

that can both be combined with a sieve regression. We show that two major complications

arise in doing this, however. First, simply applying the bootstrap to the individual tests

underlying the union does not control size. We therefore show how to combine the individual

tests in a union in a valid way using the bootstrap, an idea that is not dissimilar in spirit

to the use of the bootstrap in multiple testing problems (cf. White, 2000; Romano and Wolf,

2005). Bayer and Hanck (2009) also use the bootstrap for combining tests for co-integration,

although they use a different approach from the one we take here. The second complication

arises because of the uncertainty which exists regarding the deterministic trend. We show
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that since incorporating an estimate of the local trend into the bootstrap DGP presents both

some interesting problems and opportunities.

A third factor is the possible presence of nonstationary volatility in the innovations. A

number of recent applied studies have suggested time-varying behaviour, in particular a gen-

eral decline, in unconditional volatility in the shocks driving macroeconomic time-series over

the past twenty years or so is a relatively common phenomenon; see, inter alia, Kim and

Nelson (1999), McConnell and Perez Quiros (2000), Van Dijk, Osborn, and Sensier (2002),

Sensier and Van Dijk (2004) and references therein. Sensier and Van Dijk (2004), for example,

report that over 80% of the real and price variables in the Stock and Watson (1999) data-

set reject the null of constant unconditional innovation variance against the alternative of a

one-time change in variance. Nonstationary volatility effects can greatly influence the size

of standard unit root tests, even asymptotically, as has been shown by Cavaliere and Taylor

(2007, 2008), among others. A solution to this problem is analyzed by Cavaliere and Taylor

(2008, 2009a), who employ the wild bootstrap to capture the nonstationary volatility within

the re-sampled data. They show that the wild bootstrap correctly reproduces the first-order

limiting null distribution under nonstationary volatility, thereby allowing for the construction

of asymptotically valid (pivotal) bootstrap tests. They also show that these bootstrap tests

perform well in finite samples.

As a consequence, just as one cannot in practice view uncertainty over the deterministic

trend and the initial condition in isolation from one another, it is also very difficult to argue,

given empirical evidence, that uncertainty over these two factors can be analysed separately

from nonstationary volatility. Indeed, as we will show in this paper, the union tests of HLTb

suffer in just the same way that any “standard” asymptotic test does in the presence of

nonstationary volatility. The key contribution of our paper is to show that a joint treatment

which simultaneously deals with uncertainty regarding the deterministic trend, the initial

condition and nonstationary volatility is possible using our proposed wild bootstrap variant

of the union tests of HLTb. Computer code which allows practitioners to run the bootstrap

union tests is available from http://www.personeel.unimaas.nl/s.smeekes/research.htm

The structure of the paper is as follows. In Section 2 the bootstrap union tests are

introduced under the assumption of homoskedasticity, allowing us to focus initially on the

complications that arise from introducing the bootstrap in this setting. Here bootstrap tests

based on the sieve combined with both i.i.d. and wild bootstrap re-sampling schemes are

discussed. The (wild) bootstrap union tests in the presence of nonstationary volatility are

subsequently investigated in Section 3. Section 4 offers some conclusions. All proofs are

contained in the Appendix.

A word on notation. ⌊x⌋ is the largest integer less than or equal to x. ‘x := y’ (‘x =: y’)

indicates that x is defined by y (y is defined by x). Convergence in distribution (probability) is

denoted by
d
−→ (

p
−→). As is usual, bootstrap quantities (conditional on the original sample) are
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indicated by appending a superscript ∗ to the standard notation. Convergence in distribution

(probability) of bootstrap statistics is denoted
d∗
−→ (

p∗
−→), where this convergence is taken to

take place in probability. W (r) denotes a univariate standard Brownian motion. Finally,

D = D[0, 1] denotes the space of right continuous with left limit (càdlàg) processes.

2 Bootstrap Union Tests in Homoskedastic Models

In this section we introduce bootstrap union tests under the assumption of homoskedasticity.

This allows us to focus on the complications arising from the bootstrap, while being able to

work with asymptotically pivotal statistics. First, the model is introduced. Next, the DF-

QD and DF-OLS unit root tests and their bootstrap counterparts are discussed. Finally, a

bootstrap union test is derived and its properties are examined.

2.1 The Model

We consider the following data generating process (DGP).

yt = xt + µ+ βT t, t = 0, 1, . . . , T,

xt = ρTxt−1 + ut, t = 1, . . . , T

ut =

∞
∑

j=0

ψjεt−j =: ψ(L)εt, (ψ0 = 1)

(1)

where ρT := 1 − c/T . We wish to test whether or not yt contains a unit root; that is, our

interest focuses on testing H0 : c = 0 against H1 : c > 0. The stochastic process ψ(L)εt is

assumed to satisfy the following (standard) linear process condition.

Assumption 1. (i) Let εt be i.i.d. with E εt = 0, E ε2t = σ2 and E |εt|
4+δ <∞ for some δ > 0;

(ii) ψ(z) 6= 0 for all |z| ≤ 1, and
∑∞

j=0 j|ψj | <∞. Also define ω2
u := limT→∞ T−1 E(

∑T
t=1 ut)

2

= σ2ψ(1)2.

Assumption 1(i) will be relaxed subsequently when we allow for nonstationary volatility.

The next assumption specifies the behaviour of the coefficient on the linear trend term in (1),

providing an appropriate Pitman (local) drift for our subsequent asymptotic analyses. This

assumption coincides with that employed in HLT and HLTb.

Assumption 2. The trend coefficient βT in (1) satisfies βT := T−1/2ωuκ.

As argued in HLT, it is appropriate to consider a local trend model in order that the sub-

sequent asymptotic analysis reflects the uncertainty that exists in finite samples over whether

a linear trend is present in the data or not. Finally, for the second source of uncertainty, the

initial condition, we again follow HLT and HLTb and assume the following.
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Assumption 3. The initial condition, x0, is generated by x0 = ξ, where ξ := α
√

ω2
u(1 − ρT )−1,

for ρT = 1 − c/T , c > 0, and for c = 0 we set ξ = 0 without loss of generality.

In Assumption 3, α controls the magnitude of x0 relative to the magnitude of the standard

deviation of a stationary AR(1) process with parameter ρT and innovation long-run variance

ω2
u. The form given for ξ is also consistent with the analysis of Müller and Elliott (2003) and

Elliott and Müller (2006).

2.2 Unit Root Tests and their Bootstrap Analogues

As in HLT and HLTb, we consider the OLS- and QD-detrended DF unit root tests. Both

tests involve an initial step of detrending to obtain the detrended series x̂δ
t,γ as

x̂δ
t,γ := yt − θ̂′γz

δ
t (2)

θ̂γ :=

(

T
∑

t=0

zδ
c̄,γ,tz

δ′
c̄,γ,t

)−1( T
∑

t=0

zδ
c̄,γ,tyc̄,γ,t

)

. (3)

Here γ = QD and γ = OLS for QD and OLS detrending, respectively; hence,

zδ
c̄,γ,t :=

{

zδ
t − (1 − c̄T−1)zδ

t−1 if γ = QD,

zδ
t if γ = OLS,

t ≥ 1,

while zδ
c̄,γ,0 := zδ

0. The series yc̄,γ,t is defined analogously to zδ
c̄,γ,t. Furthermore, δ = µ, τ ,

where zµ
t = 1 if just an intercept is included in the regression and zτ

t = (1, t)′ if both an

intercept and a linear trend are included. For QD detrending we take c̄ = 7 and c̄ = 13.5 if

δ = µ and δ = τ respectively, as recommended by Elliott, Rothenberg, and Stock (1996).

The DF t-statistic, denoted DF −γδ, is then the usual regression t-statistic of significance

on λ in the augmented DF regression

∆x̂δ
t,γ = λx̂δ

t−1,γ +

p
∑

j=1

φp,j∆x̂
δ
t−j + εp,t, t = p+ 1, . . . , T. (4)

We make the following (standard) assumption concerning the lag length, p in (4).

Assumption 4. Let p→ ∞ and p = o(T 1/3) as T → ∞.

The limit distributions of the DF statistics under local alternatives are well known and

documented in HLT and HLTb. For completeness we reproduce these results in Lemma 1.

Lemma 1. Let yt be generated according to (1) and let Assumptions 1, 2, 3 and 4 hold.

Then, as T → ∞,

DF − γδ d
−→

Kδ
c,γ(1, κ)2 −Kδ

c,γ(0, κ)2 − 1

2
(

∫ 1
0 K

δ
c,γ(r, κ)2dr

)1/2
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where

Kµ
c,QD(r, κ) := Kc(r) + rκ, Kµ

c,OLS(r, κ) := Kc(r) −

∫ 1

0
Kc(s)ds + (r −

1

2
)κ

Kτ
c,QD(r, κ) := Kc(r) − r(1 + c̄+

1

3
c̄2)−1

[

(1 + c̄)Kc(1) + c̄2
∫ 1

0
sKc(s)ds

]

Kτ
c,OLS(r, κ) := Kc(r) − (4 − 6r)

∫ 1

0
Kc(s)ds − (12r − 6)

∫ 1

0
sKc(s)ds

and, defining Wc(r) :=
∫ r
0 e

−(r−s)cdW (s),

Kc(r) :=

{

W (r) if c = 0,

α(e−rc − 1)(2c)−1/2 +Wc(r) if c > 0.

Remark 1: Observe that the limiting distributions of DF − γτ , γ = OLS,QD, do not

depend on the local trend coefficient, κ, as would be expected given the exact invariance of

these statistics to the trend parameter. In contrast, the limiting distributions of DF − γµ,

γ = OLS,QD, depend on κ both under the unit root null hypothesis, c = 0, and under the

alternative, c > 0. The limiting distributions of all four statistics depend on α, the initial

condition magnitude, when c > 0.

Various bootstrap versions of the above tests have been proposed; see Palm, Smeekes, and

Urbain (2008) for a selective overview. Here we focus on DF tests using the i.i.d. bootstrap

(Park, 2002; Chang and Park, 2003; Smeekes, 2009) and the wild bootstrap (Cavaliere and

Taylor, 2008, 2009a,b), in each case using a sieve regression to account for stationary serial

correlation. It should be clear however that the same arguments hold for any other bootstrap

method that delivers an asymptotically valid bootstrap test, such as the different forms of

the block bootstrap (Paparoditis and Politis, 2003; Swensen, 2003; Parker, Paparoditis, and

Politis, 2006). We start by describing our bootstrap algorithm.

Algorithm 1.

1. Calculate x̂τ
t,γ̃ := yt − θ̂′γ̃z

τ
t , where θ̂γ̃ is defined as in (3) with γ̃ = QD,OLS. It is not

necessary that γ̃ is equal to γ, the detrending method used to obtain the test statistic.

2. Estimate an augmented DF regression of order q for x̂τ
t,γ̃ by OLS and calculate the

residuals

ε̂τq,t := ∆x̂τ
t,γ̃ − λ̂x̂τ

t−1,γ̃ −

q
∑

j=1

φ̂q,j∆x̂
τ
t−j,γ̃ , t = q + 1, . . . , T. (5)

3. Construct bootstrap errors ε∗t in one of the two following ways:
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(i) (i.i.d. bootstrap) Resample with replacement from the recentered residuals
(

ε̂τq,t −
¯̂ετq,t

)

.

(ii) (wild bootstrap) Let ε∗t = ξ∗t ε̂
τ
q,t, where ξ∗t satisfies E∗ ξ∗t = 0 and E∗ ξ∗2t = 1.1

4. Build u∗t recursively as u∗t =
∑q

j=1 φ̂q,ju
∗
t−j + ε∗t , using the estimated parameters φ̂q,j

from Step 2, and build x∗t as x∗t = x∗t−1 + u∗t , initialised at x∗0 = 0. Finally let

y∗t = x∗t + θ∗′zt, t = 0, 1, . . . , T,

where, either: A: θ∗ = 0, or B: θ∗ = θ̂γ̃ .

5. Using the bootstrap sample y∗t , apply the same method of detrending γ as applied to

the original sample to obtain the detrended bootstrap series x̂δ∗
t,γ := y∗t − θ̂∗γz

δ
t , where θ̂∗γ

is defined analogously as in (3), but with the bootstrap data. Calculate the bootstrap

augmented DF statistic, denoted DF − γδ∗
γ̃ , from the regression

∆x̂δ∗
t,γ = λ∗x̂δ∗

t−1,γ +

p∗
∑

j=1

φp∗,j∆x̂
δ∗
t−j + ε∗p∗,t, t = p∗ + 1, . . . , T.

6. Repeat Steps 3 to 5 N times, obtaining bootstrap test statistics DF − γδ∗
b for b =

1, . . . , N , and select the bootstrap critical value cδ∗γ,γ̃(π) as

cδ∗γ,γ̃(π) := max{c : N−1
N
∑

b=1

I(DF − γδ∗
γ̃,b < c) ≤ π}

or, equivalently, as the π-quantile of the ordered DF − γδ∗
γ̃,b statistics. Reject the null of

a unit root if DF − γδ is smaller than cδ∗γ,γ̃(π), where π is the nominal level of the test.

�

A crucial aspect of Algorithm 1 surrounds the choice of θ∗. If δ = τ , then the bootstrap

tests are invariant to the value of θ∗, but just as with the asymptotic tests, they are not

if δ = µ. We will denote by DF − γδ∗
γ̃ (A) and DF − γδ∗

γ̃ (B) the bootstrap DF statistics

calculated using option A and B, respectively, in step 4 of Algorithm 1.

We also require the following assumptions on the lag lengths p∗ and q in Algorithm 1.

Assumption 5. (i) Let q → ∞ and q = o((T/ ln T )1/3) as n → ∞; (ii) Let p∗ satisfy

Assumption 4 and let p∗/q → ν > 1 as T → ∞, where ν may be infinite.

Remark 2: The first part of Assumption 5 bounds q, while the second part essentially states

that, for large T , p∗ should be at least as large as q. Often the lag length p and q will be

1In this paper we take ξ∗t to be standard normal. Other choices are also possible, although Cavaliere and
Taylor (2008, Remark 6) mention that this has almost no impact on finite sample behaviour.
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identical (it is important to let p∗ differ though). However, we do not want to impose this, a

priori, for two reasons. First, as can be seen from Assumptions 4 and 5(i), the assumptions on

the rates are not the same.2 Second, and more importantly, the sieve regression in (5) might

be based on a different specification than the test regression; in particular, if the test is based

on demeaned data, then it is sensible to base the sieve regression on the detrended series in

order to avoid any mis-specification. Indeed, we already advise to do just that in Algorithm

1. Later on, when we combine these tests in a union, this will become particularly important.

In such cases it is not clear why the lag length with demeaning and detrending should be

identical; hence, from the start, we allow for a different lag length in the two regressions.

We now detail the limit distributions of the bootstrap tests from Algorithm 1 in the

following theorem.

Theorem 1. Let yt be generated according to (1) and let Assumptions 1, 2, 3, 4 and 5 hold.

Then the bootstrap augmented DF t-statistics from Algorithm 1 satisfy, as T → ∞,

(i) If either step 4.A or 4.B is used

DF − γτ∗
γ̃ (A,B)

d∗
−→

Kτ
0,γ(1, κ)2 −Kτ

0,γ(0, κ)2 − 1

2
(

∫ 1
0 K

τ
0,γ(r, κ)2dr

)1/2
in probability.

(ii) If step 4.A is used

DF − γµ∗
γ̃ (A)

d∗
−→

Kµ
0,γ(1, 0)2 −Kµ

0,γ(0, 0)2 − 1

2
(

∫ 1
0 K

µ
0,γ(r, 0)2dr

)1/2
in probability.

(iii) If step 4.B is used

DF − γµ∗
γ̃ (B)

d∗
−→

Kµ∗
c,γ,γ̃(1, κ)

2 −Kµ∗
c,γ,γ̃(0, κ)

2 − 1

2
(

∫ 1
0 K

µ∗
c,γ,γ̃(r, κ)2dr

)1/2
in probability,

where

Kµ∗
c,QD,γ̃(r, κ) := W (r) + r(κ+Bc,γ̃),

Kµ∗
c,OLS,γ̃(r, κ) := W (r) −

∫ 1

0
W (s)ds+ (r −

1

2
)(κ +Bc,γ̃),

2The lag polynomial serves a different purpose in the augmented DF regression and the sieve regression; in
the first case it should just eliminate the serial correlation, while in the second case it should not just eliminate
it but also correctly replicate it (and, hence, consistently estimate it at a specified rate). Compare with the
rates required for DF t-test and coefficient test in Chang and Park (2002); stronger assumptions on the lag
length are needed for the coefficient test for the same reasons as above.
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and

Bc,QD := (1 + c̄+
1

3
c̄2)−1

[

(1 + c̄)Kc(1) + c̄2
∫ 1

0
sKc(s)ds

]

,

Bc,OLS := −6

∫ 1

0
Kc(s)ds + 12

∫ 1

0
sKc(s)ds.

Remark 3: The result in part (i) of Theorem 1 establishes that the bootstrap DF − γτ∗
γ̃

statistics attain the same first-order limiting null distribution as the corresponding DF − γτ
γ̃

statistics, regardless of whether scheme A or B is used in step 4 of Algorithm 1. This result is,

of course, expected given the invariance properties of the statistics based on detrended data

(Remark 1).

Remark 4: The results in parts (ii) and (iii) of Theorem 1 show that the choice between

scheme A and B in step 4 makes a difference, even asymptotically, when considering the

statistics based on demeaned data. Under scheme A, where θ∗ = 0 (i.e. where no estimated

deterministic component is added to the bootstrap sample data), it is seen from part (b) that

the bootstrap DF−γµ∗
γ̃ statistics attain the same first-order limiting null (c = 0) distributions

as the corresponding DF − γµ
γ̃ statistics when κ = 0. Consequently, bootstrap tests based on

DF − γµ∗
γ̃ (A) are asymptotically valid owing to the fact that the asymptotic tests based on

DF − γµ
γ̃ are based on the asymptotic critical value relevant for κ = 0. Both the asymptotic

tests and the bootstrap analogue tests under scheme A will therefore be conservative when

κ 6= 0; see HLT. In contrast, under scheme B where the estimated deterministic component

is added to the bootstrap data, we see from part (c) that the bootstrap tests based on the

DF − γµ
γ̃ (B) statistics are asymptotically invalid. This is caused by the fact that κ cannot be

estimated consistently and instead converges (when scaled) to the random limit, Bc,γ̃ whose

form depends on whether QD or OLS demeaning is used and on the value of c but3 not on

κ. As a consequence the bootstrap statistics do not replicate the limiting null distribution of

the demeaned DF statistics.

While the estimate of κ is not consistent we might still expect, however, that it will pro-

vide some information about the true value of κ.4 This is especially so since in the bootstrap

limit distribution κ shows up in the same way as in the original limit distribution, while as

noted above the term causing the invalidity, Bc,γ , does not depend on κ. For this reason we

now investigate how large the influence of the term Bc,γ is on the limit distributions in part

(c) of Theorem 1. To this end we now graph the asymptotic critical values of DF −QDµ and

DF −OLSµ (these will, of course, coincide for κ = 0 with those for their bootstrap analogues

3The dependence on c will clearly have some impact on power (cf. Paparoditis and Politis, 2003, 2005).
However, unreported simulations show that the influence of c on the limiting distributions is very small, and
therefore power is hardly compromised.

4A similar argument is given for the use of inconsistent pre-tests in HLTb.
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calculated under scheme A), together with the corresponding asymptotic bootstrap critical

values for scheme B at a 0.05 nominal level for varying κ in Figure 1. The asymptotic critical

values, as well as all other asymptotic results in the paper, were obtained by direct simula-

tion of the relevant limiting representations, approximating the standard Brownian motion

using i.i.d. N(0, 1) random variables, and with the integrals approximated by normalized

sums of 1,000 steps. All simulations were performed in Gauss 8.0 using 50,000 Monte Carlo

replications.

Insert Figure 1 about here

It is seen from Figure 1 that the bootstrap critical values under scheme B clearly deviate

from the asymptotic critical values, demonstrating the invalidity of the bootstrap. However,

the deviation is not very large, and more importantly, the bootstrap limit distributions follow

the same tendency to shift to the right as κ increases as is seen in the limiting distributions

of the demeaned DF statistics. Therefore, even though the bootstrap tests are invalid, they

still mimic the distribution of the demeaned DF statistics to a reasonable degree. Hence, we

will not discard these invalid tests at this stage, but still consider them as a potential option

in forming union tests. Moreover, because in the union multiple tests are combined, the error

made by the bootstrap under scheme B may be smoothed out.

Remark 5: It is straightforward to show that under a fixed trend, i.e. βT = ωuκ, the

bootstrap test DF −γµ∗
γ̃ (B) is asymptotically valid, contrary to the local trend case discussed

above (a similar result is found in Parker et al., 2006). However, one could argue that the

framework of a fixed trend is not the most appropriate to analyze trend uncertainty; a fixed

trend can be picked up consistently by pre-tests, thus rendering union tests obsolete.

2.3 Bootstrap Union Tests

HLTb extend the work of HLT and propose a four-way union of rejections ofDF−QDµ, DF−

QDτ , DF − OLSµ and DF − OLSτ , thereby simultaneously dealing both with uncertainty

about the trend and the initial condition. They also provide a scaling constant, τπ, with which

to multiply the critical values of the four individual tests in order to control the asymptotic

size of the union test. Let cδγ(π) denote the asymptotic critical value of DF − γδ at nominal

level π. Then we can denote the rejection rule by

Reject H0 if
{

DF −QDµ < τπc
µ
QD(π) or DF −QDτ < τπc

τ
QD(π)

or DF −OLSµ < τπc
µ
OLS(π) or DF −OLSτ < τπc

τ
OLS(π)

}

.
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Alternatively, we may write as in Harvey, Leybourne, and Taylor (2009b)

Reject H0 if min

(

DF −QDµ,

(

cµQD(π)

cτQD(π)

)

DF −QDτ ,

(

cµQD(π)

cµOLS(π)

)

DF −OLSµ,

(

cµQD(π)

cτOLS(π)

)

DF −OLSτ

)

< τπc
µ
QD,

in which case we can denote the test statistic as

UR4(π) = min

(

DF −QDµ,

(

cµQD(π)

cτQD(π)

)

DF −QDτ ,

(

cµQD(π)

cµOLS(π)

)

DF −OLSµ,

(

cµQD(π)

cτOLS(π)

)

DF −OLSτ

)

.

(6)

This last form proves particularly useful when setting up the bootstrap; the statistic is now in

the form of a minimum over four numbers, which can easily be calculated in each bootstrap

iteration. It should also be immediately clear that by bootstrapping this statistic, the boot-

strap critical value will automatically incorporate the scaling constant τπ needed to achieve

the correct size. This form of bootstrap test statistic closely corresponds to the maximum

based bootstrap statistics employed in White (2000) for the purpose of multiple testing.

Remark 6: In (6) the statistic has been scaled with respect to the distribution of DF −QDµ

but this is obviously an arbitrary choice. In fact, we may write the statistic as

UR4(π) := min

((

x

cµQD(π)

)

DF −QDµ,

(

x

cτQD(π)

)

DF −QDτ ,

(

x

cµOLS(π)

)

DF −OLSµ,

(

x

cτOLS(π)

)

DF −OLSτ

)

,

for any x < 0. In that case the criterion for rejection would be ‘Reject H0 if UR4(π) < τπx’.

It is clear then that (6) follows by setting x = cµQD(π).

Remark 7: HLTb also consider a modified union test, which in some situations has higher

power than UR4. It consists of performing “pre-tests” for a large initial condition and a

deterministic trend. These are not true pre-tests, as the initial condition and local trend

cannot be consistently estimated, but do provide information on the magnitude of the initial

condition and trend. If the initial condition test rejects, only the union of DF − OLSµ and

DF − OLSτ is used. If the test for a trend is rejected, only the union of DF − QDτ and

DF − OLSτ is used. If both are rejected, only DF − OLSτ is used. The exact procedure

with scaling constants can be found in HLTb. We refer to this procedure as URm
4 .
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We now proceed with the bootstrap version of HLTb’s UR4(π) test. To that end, consider

the following slightly modified union test statistic:

UR4(π) := min

(

DF −QDµ,

(

cµ∗QD(π)

cτ∗QD(π)

)

DF −QDτ ,

(

cµ∗QD(π)

cµ∗OLS(π)

)

DF −OLSµ,

(

cµ∗QD(π)

cτ∗OLS(π)

)

DF −OLSτ

)

.

The difference with the previous definition of UR4 is that the critical values cδγ(π) have been

replaced by the values cδ∗γ (π), which may come from a bootstrap procedure (but do not have

to be, as discussed in Remark 9 below). We now give the bootstrap algorithm.

Algorithm 2. Perform steps 1 to 4 of Algorithm 1 to obtain a bootstrap sample y∗t .

5. Calculate DF−QDµ∗
γ̃ , DF−QDτ∗

γ̃ , DF −OLSµ∗
γ̃ and DF −OLSτ∗

γ̃ using the bootstrap

sample y∗t . Next calculate UR∗
4,γ̃(π) as

UR∗
4,γ̃(π) = min

(

DF −QDµ∗
γ̃ ,

(

cµ∗QD(π)

cτ∗QD(π)

)

DF −QDτ∗
γ̃ ,

(

cµ∗QD(π)

cµ∗OLS(π)

)

DF −OLSµ∗
γ̃ ,

(

cµ∗QD(π)

cτ∗OLS(π)

)

DF −OLSτ∗
γ̃

)

.

6. Repeat Steps 3 to 5 N times, obtaining bootstrap test statistics UR∗
4,γ̃,b(π) for b =

1, . . . , N , and select the bootstrap critical value as

c∗UR,γ̃(π) = max{c : N−1
N
∑

b=1

I(UR∗
4,γ̃,b(π) < c) ≤ π}

or equivalently as the π-quantile of the ordered UR∗
4,γ̃,b(π) statistics. Reject the null of

a unit root if UR4(π) is smaller than c∗UR,γ̃(π).

We discern between UR∗
4,γ̃,A, constructed using DF − γµ∗

γ̃ (A) with θ∗ = 0, and UR∗
4,γ̃,B ,

constructed using DF − γµ∗
γ̃ (B) with θ∗ = θ̂γ̃ . �

Remark 8: It is important to construct just one bootstrap process from which to calculate

all four statistics, and not construct four different bootstrap processes, in order to correctly

replicate the distribution of the union; the original union statistic is also based on just one

sample.

From now on we will ease notation by no longer indexing the UR∗ tests with respect to

γ̃. As can be seen in Figure 1, it matters only very slightly whether γ̃ = QD or γ̃ = OLS

12



is used. This remains the same for the union tests we consider, therefore in the following we

will always take γ̃ = OLS and simply refer to the bootstrap union tests as UR∗
4,A or UR∗

4,B .

The limit distributions of the UR4 and UR∗
4 statistics follow directly from the continuous

mapping theorem and the limit distributions of the individual (bootstrap) DF statistics (cf.

White, 2000, Proposition 2.2). It is therefore clear that UR∗
4,A is asymptotically valid, having

the same first-order limit null distribution as UR4 when κ = 0, while UR∗
4,B is invalid because

the underlying tests are invalid; cf. Remark 4.

Remark 9: There are two options for the choice of cδ∗γ (π); one can take the asymptotic

critical value, or one can take the bootstrap critical value from bootstrapping the individual

DF statistics. Asymptotically these are equivalent. However, in finite samples the bootstrap

critical value may be preferable as it will usually be a better approximation of the true critical

value than the asymptotic one. While it seems that using the bootstrap critical value might

involve an additional bootstrap step to determine it, it can in fact be determined in the same

bootstrap procedure as the calculation of UR∗
4 is done, as the individual DF statistics must

be calculated anyway; hence no additional bootstrap iterations are necessary. One should

further note that, if bootstrap critical values are used, cµ∗γ should be based on the demeaned

statistics from scheme A of step 4 the algorithm; that is, with θ∗ = 0. If they are based on

scheme B, with θ∗ = θ̂γ̃ , too much weight is given to the DF − γµ statistics for large κ, thus

having a detrimental effect on power.

We will next analyse the asymptotic properties of the union test. We focus on the com-

parison of the asymptotic UR4 test (and its bootstrap equivalent UR∗
4,A) with the bootstrap

UR∗
4,B test. We also add the URm

4 test of HLTb.

Figure 2 gives the asymptotic size for varying κ. The invalidity of the UR∗
4,B test can

be seen as the asymptotic size is above the nominal level of 0.05 for small κ. However,

surprisingly the size does not rise above 0.06, making the size distortion rather modest. For

large κ the UR∗
4,B test is not as conservative as the UR4 and URm

4 tests, and its size appears

to converge to the nominal level, which is as expected given Remark 5. This might lead to

the test having higher power for larger κ.

Insert Figure 2 about here

Figures 3 to 8 show the asymptotic (uncorrected) power of the tests. For small κ the

power of UR∗
4,B is very close to that of UR4 and, hence, also to UR∗

4,A. From κ = 1 on the

power difference between UR∗
4,B and UR4 is noticeable, however the power of URm

4 is still

higher for κ = 1. κ has to increase to 2 that the power of UR∗
4,B is higher than that of URm

4

(depending on the initial condition). For even larger κ, the power advantage of the UR∗
4,B

becomes greater, by virtue of the convergence of the size towards the nominal level. However,

such a large κ can effectively be considered as a fixed trend, and therefore this is arguably
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not the most relevant range to apply the union test to.

The impact of the magnitude of the initial condition on the power of the tests is somewhat

more varied. In general the UR4 and UR∗
4,B tests tend to be relatively more powerful in

comparison with the URm
4 test for a small initial condition (in absolute sense), while the

opposite occurs for a large initial condition. Notice that the effect of the initial condition is

not symmetrical around zero, as can clearly be seen from Figure 4 and 5 for κ = 0.25 and

κ = 0.5. Moreover, there seems to be an interaction with κ; intermediate values of κ show

different patterns across the values of the initial condition than small and large values of κ.

Insert Figures 3-8 about here

To investigate if the finite sample performance of the individual bootstrap unit root tests

discussed earlier carries over to the bootstrap union test, we perform a short Monte Carlo

experiment for a small sample size. We only consider size here; we use DGP (1) with c = 0

and ut = ϕut−1 + εt + ϑεt−1, with εt ∼ N(0, 1). We take T = 50 and T = 100 and consider

the UR∗
4,A, UR∗

4,B and URm
4 tests, where we apply the i.i.d. scheme for the bootstrap tests.5

Lag length selection (also within the bootstrap) is done by MAIC (Ng and Perron, 2001)

with a maximum lag length of 12(T/100)1/4 ; as recommended by Perron and Qu (2007) we

apply MAIC only to the OLS demeaned and detrended series. The sieve bootstrap regression

is based on OLS detrended series (with lag length again selected by MAIC). We consider 5

combinations of ϕ = {−0.4, 0, 0.4} and ϑ = {−0.4, 0, 0.4}. We take 0.05 as nominal level of

the tests. Results are based on 2000 simulations and 499 bootstrap replications. Simulations

were programmed in Gauss 8.0.

Insert Figures 9 and 10 about here

The results are given in Figures 9 and 10. The results for the model without serial

correlation closely resemble the asymptotic results. If there is serial correlation, the bootstrap

tests, as expected, have size closer to the nominal level than the asymptotic URm
4 test.

Remarkably, the size correction not only occurs if the asymptotic test is oversized, but also if

it undersized. These results are in line with the results for the individual bootstrap unit root

tests (cf. Chang and Park, 2003; Smeekes, 2009). It is also noticeable that the UR∗
4,A test in

general has somewhat better size properties than UR∗
4,B.

Concluding, the bootstrap UR∗
4,B test can indeed mimic the effect of the local trend,

although at the cost of invalidity. As expected its power is higher than that of the conservative

UR4 test for larger values of κ. However the power difference only becomes noticeable for

quite large values of κ, in particular in comparison to HLTb’s URm
4 test. One can therefore

raise the question of how much, at least asymptotically, the bootstrap UR∗
4,B test, improves

on the asymptotic tests, in particular as the price of invalidity has to be paid. In finite samples

5The wild bootstrap gives virtually identical results here.
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it may still have all the benefits over the asymptotic tests that all bootstrap tests have, but

the same holds for the UR∗
4,A test.

We will therefore now move on to a setting where the bootstrap test does have a large

asymptotic advantage: the setting of nonstationary volatility.

3 Wild Bootstrap Union Tests with Nonstationary Volatility

3.1 Unit Root Testing in Models with Nonstationary Volatility

Cavaliere and Taylor (2008) and Cavaliere and Taylor (2009b) consider testing for unit roots

in settings where the volatility exhibits nonstationary behaviour. They show that standard

unit root tests are asymptotically not correctly sized for such volatility processes. Therefore,

they propose wild bootstrap tests that are robust to nonstationary volatility; not only are

these tests asymptotically valid, they are also shown to perform very well in finite samples.

The issues of uncertainty about the presence of a trend and the initial condition cannot

realistically be seen in isolation from the possible presence of nonstationary volatility. How-

ever, the asymptotic tests developed in HLTb can no longer be applied in the presence of

nonstationary volatility, as the asymptotic unit root tests underlying the union are no longer

correctly sized, even asymptotically. Moreover, it is impossible to find asymptotic scaling

constants to control the asymptotic size of the union tests as these will depend on the form

of the nonstationary volatility.

The bootstrap tests discussed in the previous section, however, do not suffer from these

problems and retain their validity, provided the wild bootstrap variant is used. The i.i.d. boot-

strap is not valid in this setting. Hence, the bootstrap tests we consider here are robust to

nonstationary volatility, trend uncertainty, and uncertainty about the initial condition. It

is important to note that the scaling constants cδ∗γ (π) must now chosen using the bootstrap

critical values. The asymptotic critical values are no longer valid, and, moreover, the value

of the critical values depends on the form of the volatility. It still holds that the bootstrap

critical values should be based on the bootstrap samples generated with θ∗ = 0.

In this paper we will follow the framework of Cavaliere and Taylor (2008), and use the

following assumption concerning the form of nonstationary volatility allowed in the innova-

tions.

Assumption 1′. (i) Let ut = ψ(L)et, where et = σtεt, and let ψ(z) and εt satisfy Assumption

1 (with E ε2t = 1); (ii) The volatility term σt satisfies σ⌊Tr⌋ = ω(r) for all r ∈ [0, 1], where

ω(·) ∈ D is nonstochastic and strictly positive. For t < 0, σt ≤ σ̄ <∞.

This assumption allows for a wide variety of volatility processes, as the innovation variance

is only required to be nonstochastic, bounded and to display a finite number of jumps. As

discussed in detail by Cavaliere and Taylor (2008), this class includes variance with single

15



abrupt break, multiple volatility shifts, polynomially trending volatility and smooth transition

variance breaks.

As in Cavaliere and Taylor (2008) we define the variance profile η(r) as

η(r) :=

(∫ 1

0
ω(s)2ds

)−1(∫ r

0
ω(s)2ds

)

.

Furthermore we define ω̄2 :=
∫ 1
0 ω(s)2ds, which equals the limit of T−1

∑T
t=1 σ

2
t and may

therefore be interpreted as the asymptotic average variance. Note that Assumptions 2 and 3

remain unchanged, although now ω2
u = ω̄2ψ(1)2.

We now state the limiting distributions of the DF − γδ statistics, the proof of which is a

simple adaptation of the proof of Theorem 1 of Cavaliere and Taylor (2007).

Lemma 2. Let yt be generated according to (1) and let Assumptions 1′, 2, 3 and 4 hold.

Then, as T → ∞, we have that

DF − γδ d
−→

Kδ
η,c,γ(1, κ)2 −Kδ

η,c,γ(0, κ)2 − 1

2
(

∫ 1
0 K

δ
η,c,γ(r, κ)2dr

)1/2
,

where

Kµ
η,c,QD(r, κ) := Kη,c(r) + rκ,

Kµ
η,c,OLS(r, κ) := Kη,c(r) −

∫ 1

0
Kη,c(s)ds + (r −

1

2
)κ,

Kτ
η,c,QD(r, κ) := Kη,c(r) − r(1 + c̄+

1

3
c̄2)−1

[

(1 + c̄)Kη,c(1) + c̄2
∫ 1

0
sKη,c(s)ds

]

,

Kτ
η,c,OLS(r, κ) := Kη,c(r) − (4 − 6r)

∫ 1

0
Kη,c(s)ds− (12r − 6)

∫ 1

0
sKη,c(s)ds,

and

Kη,c(r) :=

{

Wη,0(r) if c = 0,

α(e−rc − 1)(2c)−1/2 +Wη,c(r) if c > 0,

where Wη,c(r) :=
∫ r
0 e

−(r−s)cdW (η(s)).

We next present the limiting distributions of the bootstrap DF test statistics. As noted

previously, the bootstrap tests as described in the previous section remain valid, provided the

wild bootstrap is used in Step 3 of Bootstrap Algorithm 1. In what follows we therefore make

reference only to the wild bootstrap version of Algorithm 1.

Theorem 2. Let yt be generated according to (1) and let Assumptions 1′, 2, 3, 4 and 5

hold. Let DF − γδ∗
γ̃ denote the bootstrap augmented DF t-statistics from Algorithm 1 with
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γ, γ̃ = QD,OLS and δ = µ, τ . Then, as T → ∞, we have that

(i) If either step 4.A or 4.B is used

DF − γτ∗
γ̃ (A,B)

d∗
−→

Kτ
η,0,γ(1, κ)2 −Kτ

η,0,γ(0, κ)2 − 1

2
(

∫ 1
0 K

τ
η,0,γ(r, κ)2dr

)1/2
in probability.

(ii) If step 4.A is used

DF − γµ∗
γ̃ (A)

d∗
−→

Kµ
η,0,γ(1, 0)2 −Kµ

η,0,γ(0, 0)2 − 1

2
(

∫ 1
0 K

µ
η,0,γ(r, 0)2dr

)1/2
in probability.

(iii) If step 4.B is used

DF − γµ∗
γ̃ (B)

d∗
−→

Kµ∗
η,c,γ,γ̃(1, κ)2 −Kµ∗

η,c,γ,γ̃(0, κ)2 − 1

2
(

∫ 1
0 K

µ∗
η,c,γ,γ̃(r, κ)2dr

)1/2
in probability,

where

Kµ∗
η,c,QD,γ̃(r, κ) := Wη,0(r) + r(κ+Bη,c,γ̃),

Kµ∗
η,c,OLS,γ̃(r, κ) := Wη,0(r) −

∫ 1

0
Wη,0(s)ds + (r −

1

2
)(κ +Bη,c,γ̃),

and

Bη,c,QD := (1 + c̄+
1

3
c̄2)−1

[

(1 + c̄)Kη,c(1) + c̄2
∫ 1

0
sKη,c(s)ds

]

,

Bη,c,OLS := −6

∫ 1

0
Kη,c(s)ds + 12

∫ 1

0
sKη,c(s)ds.

Remark 10: The implications of the results in Theorem 2 are qualitatively similar to those

from the results in Theorem 1 for the constant volatility case. Principally, the detrended wild

bootstrap DF statistics attain the same first-order limit null distribution as the corresponding

detrended DF statistics. This result has already been established in Cavaliere and Taylor

(2008). For the bootstrap demeaned DF statistics, again the choice between schemes A and

B in step 4 of Algorithm 1 is crucial. Asymptotically valid bootstrap tests are again obtained

under scheme A, but not under scheme B. Notice that under scheme B, the additional random

term in the limit distribution, Bη,c,γ̃ now also depends on the form of the nonstationary

volatility.

Remark 11: As demonstrated in Cavaliere and Taylor (2008), usually one does not need

Assumption 5 when applying the wild bootstrap, and it suffices to assume that q ≤ p∗,
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where neither is required to increase with the sample size. This is also true in our setting

for deriving the limit distributions of DF − γτ∗ and DF − γµ∗(A), but it is not true for

the limit distributions of DF − γµ∗(B). For this test the nuisance parameters arising from

the estimation of θ∗ (i.e. ωu) imply that these must also be correctly reproduced within the

bootstrap for them to cancel out in the limiting distribution.

Remark 12: Given the results in Cavaliere and Taylor (2009b), it would be possible to

extend the framework to allow for a wider class of volatility processes, including nonstationary

stochastic volatility and GARCH processes. Nothing would change in the set up of the tests,

only the theory would become more involved. We do not consider this further here for

expositional simplicity.

3.2 Wild Bootstrap Union Tests

The asymptotic and bootstrap distributions of the UR∗
4 tests follow directly from the continu-

ous mapping theorem. Therefore, we expect the bootstrap union tests to be able to reproduce

the impact of the volatility on the asymptotic distribution, unlike the asymptotic union tests.

To investigate this, we simulate the asymptotic distributions of UR4, UR
∗
4,A and UR∗

4,B for a

number of different models for the volatility. In particular, we consider the following settings

that correspond to the models used in the small sample simulations in Cavaliere and Taylor

(2008):

1. Single break in volatility: σ2
t = σ2

0 + (σ2
1 − σ2

0)I(t > ⌊τT ⌋).

2. Double break in volatility: σ2
t = σ2

0 + (σ2
1 − σ2

0)I(⌊τT ⌋ < t < ⌊(1 − τ)T ⌋).

3. Trending volatility: σt = σ0 + (σ1 − σ0)t.

Figure 11 gives the results for size of these models. The asymptotic union test UR4 is,

as expected, not correctly sized, and in some situations it is quite severely oversized. The

bootstrap tests behave in exactly the same way as in the i.i.d. case; UR∗
4,A is conservative,

its size decreases as κ increases, while UR∗
4,B is slightly oversized for small κ but correctly

sized when κ increases. The fact that the behaviour of the bootstrap tests is the same over

all combinations considered here is very encouraging, as it indicates that the bootstrap tests

are highly robust to nonstationary volatility, and we may therefore generalize the conclusions

drawn from the i.i.d. case.

Insert Figure 11 about here

We now turn to a consideration of the power properties of these tests. We also add

the DF − OLS∗τ test to the graphs, for the same reason as HLTb do: this test is the

only one of the four individual tests considered that does not have trivial power for any
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parameter combination. Moreover, since it is based on the wild bootstrap, it is also feasible

and asymptotically valid. To be of practical value, therefore, the bootstrap union tests should

provide power advantages over this test for at least a reasonable part of the parameter space.

As the size of the asymptotic test UR4 is often far from the nominal level, we size-correct the

power at κ = 0. Hence, the power is corrected for the nonstationary volatility, but not for

the trend.

Insert Figures 12-23 about here

Power graphs are presented in Figures 12 to 23. Given the amount of space needed to

display the graphs, we only report results for a subset of the models considered for size.

This subset is representative of the remaining unreported cases.6 The union tests are seen

to be substantially more powerful than the DF − OLSτ∗ test for a significant subset of the

parameter combinations, mostly those consisting of small κ and small α, while the power loss

with respect to the DF −OLSτ∗ test for the other combinations is relatively minor in most

cases. Thus, the union tests are able to deal with the trend and initial condition uncertainty,

just as in the homoskedastic case analysed by HLT and HLTb. Moreover, the bootstrap tests

are also highly robust to the presence of nonstationary volatility in the innovations.

It is worth noting that the power properties of the tests can considerably differ in specific

models. This can for example be seen for the trending volatility model, where the union

test also offers (unexpected) power gains on the DF − OLS∗τ test for large |α|. This can

be explained by the fact that the nonstationary volatility also has a direct effect on the

size-corrected local power function, a point also noted by Cavaliere and Taylor (2008, p. 8).

Therefore, as is also clear from the shape of the power curves for the double break model, it

should not be expected that the power curves, and hence also the relations between the tests,

are exactly the same as in the i.i.d. case.

Comparing the two bootstrap union tests, we see that as in the homoskedastic case, the

UR∗
4,B test is somewhat more powerful than the UR∗

4,A for κ > 0, but the power difference

only becomes substantial for large κ. It is therefore doubtful if this relatively minor power

gain makes it worthwhile using a test that is invalid.7

We next consider the finite sample properties of the bootstrap union tests. We perform a

small Monte Carlo experiment for sample sizes T = 50 and T = 100. We use DGP (1) with

ut = σtεt. For the size results we consider the same specifications for σt as we did for the

asymptotic analysis. Power is investigated only for the single-break model considered above.

The tests applied are UR∗
4,A, UR∗

4,B, UR4 and DF -OLSτ∗. We apply the wild bootstrap and

set all lag lengths to zero. Results are again based on 2000 Monte Carlo replications, 499

bootstrap replications, and with the nominal level set to 0.05.

6The full set of graphs is available from the authors upon request.
7Even though the distribution of UR∗

4,A is only identical to the asymptotic distribution of the union test
for κ = 0, it is valid in the sense that it is a size π test, whereas UR∗

4,B clearly is not; cf. Remarks 4 and 10.
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Insert Figures 24–27 about here

The results for size are given in Figures 24 and 25. The finite sample size distortions of

the UR4 test are seen to be worse the smaller the sample size. For T = 50 the size of UR4

at κ = 0 is above 0.1 for all models considered here. The size distortion of the bootstrap

tests is minimal. The UR∗
4,A test displays the same conservative behaviour as found in the

asymptotic analysis. It is quite noticeable that the size distortions of the asymptotically

invalid UR∗
4,B test are also very small; size is rarely more than 0.07. Moreover, the test does

not display the undersize found for the UR∗
4,A test. As expected, the DF -OLSτ∗ test has

good size properties.

Power curves for the single break model are given in Figures 26 and 27. Again the power

curves of UR4 are size-corrected at κ = 0. The power curves show the same patterns as the

asymptotic power curves. The bootstrap union tests are more powerful than the DF -OLSτ∗

test for small κ and α, and somewhat less powerful for large κ and α. It does seem that, for

T = 50 in particular, the power loss at κ = 1 of the bootstrap union tests with respect to

the DF -OLSτ∗ test is less than that seen in the asymptotic results. The notable difference

between the power curves of UR4 and UR∗
4,A is present in small samples as well.

Given the results presented here, the bootstrap union tests proposed in this paper would

appear to constitute a valuable option if one needs to deal simultaneously with uncertainty

regarding the trend, the initial condition and the presence of nonstationary volatility. Extant

tests in the literature cannot perform satisfactorily in this situation, with the possible excep-

tion of the wild bootstrap DF −OLSτ∗ test. However, as shown in this section, the bootstrap

union tests have a clear power advantage over this test for those combinations of κ and α

that will indeed lead to uncertainty about their values, while for the other combinations of

these parameters the power loss is quite modest.

4 Conclusions

In this paper we have developed bootstrap tests, based on both the i.i.d. and wild bootstrap

approaches combined with the sieve principle to account for stationary serial correlation,

designed to be robust over uncertainty about the presence of a deterministic trend and un-

certainty about the initial condition, thereby extending the union tests of HLT and HLTb to

a bootstrap setting. Moreover, provided we employ the wild bootstrap variant, our proposed

bootstrap tests were also shown to be robust to the presence of nonstationary volatility in

the innovations.

We considered two bootstrap union tests, UR∗
4,A and UR∗

4,B, the first is a valid (conser-

vative) test, the second is an invalid test, although its size does not appear to deviate to any

great degree from the nominal level and it is somewhat more powerful. In the setting of ho-

moskedasticity the first test is asymptotically equivalent to the asymptotic UR4 test of HLTb,
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while the second closely resembles it. Despite not offering any asymptotic improvements under

homoskedasticity, simulation evidence demonstrated that the proposed bootstrap tests can

still deliver an improvement in finite sample performance over the asymptotic union tests.

In cases where the volatility of the innovations is nonstationary, the asymptotic union

tests of HLTb fail, just as regular asymptotic tests do. Here the wild bootstrap is used

as in Cavaliere and Taylor (2008, 2009b) for making our bootstrap union tests asymptoti-

cally robust to nonstationary volatility. The power properties of the bootstrap union test

in relation to the trend and initial condition remain similar to those which pertain in the

homoskedastic case. Hence, in this setting the bootstrap union tests clearly provides clear

advantages over the existing tests both asymptotically and in finite samples, as was demon-

strated through simulation evidence. Computer programs, written in Gauss, which enable

practitioners to run the bootstrap union tests developed in this paper on real data are available

from http://www.personeel.unimaas.nl/s.smeekes/research.htm.
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It follows from results in, among others, Park (2002), that under Assumptions 1 and 5,

T−1/2

⌊Tr⌋
∑

t=1

u∗t
d∗
−→ ωuW (r) in probability.

The results in (i) and (ii) then follow as in Smeekes (2009). We now focus on (iii). Let

θ∗ := (µ∗, β∗)′ and note that for OLS detrending

x̂µ∗
t,OLS = y∗t − T−1

T
∑

t=1

y∗t = x∗t − T−1
T
∑

t=1

x∗t + β∗t−
1

2
(T + 1)β∗.

Then

T−1/2x̂µ∗
⌊Tr⌋,OLS = T−1/2(x∗⌊Tr⌋ − T−1

T
∑

t=1

x∗t ) + T 1/2(
⌊Tr⌋

T
−

1

2
)βT

+ T 1/2(
⌊Tr⌋

T
−

1

2
)(β∗ − βT ) + o∗p(1)

d∗
−→ ωu

[

W (r) −

∫ 1

0
W (r)dr + (r −

1

2
)(κ+Bc,γ̃)

]

in probability,

as

T 1/2(β∗ − βT ) = T 1/2(β̂γ̃ − βT )
d
−→ Bc,γ̃,

which can easily be derived from standard results (cf. Stock, 1994; Elliott et al., 1996). For

QD detrending we can derive in a similar way that

T−1/2x̂µ∗
⌊Tr⌋,QD = T−1/2x∗⌊Tr⌋ + T 1/2 ⌊Tr⌋

T
β + T 1/2 ⌊Tr⌋

T
(β∗ − β) + o∗p(1)

d∗
−→ ωu [W (r) + r(κ+Bc,γ̃)] in probability,

Result (iii) then follows in the same way as (i) and (ii).

Proof of Lemma 2. For c = 0 it follows from Cavaliere and Taylor (2007, Theorem 1) that

T−1/2x⌊Tr⌋
d
−→ ω̄ψ(1)Wη,0(r),
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while for c > 0 we can write

T−1/2x⌊Tr⌋ = T−1/2

⌊Tr⌋
∑

t=1

∆xt + T−1/2x0

= T−1/2

⌊Tr⌋
∑

t=1

∆xt + T−1/2α
√

ω2
u(1 − ρT )−1

d
−→ ω̄ψ(1)

[

Wη,c(r) + α(e−rc − 1)(2c)−1/2
]

.

Furthermore, by Lemma 2 in Cavaliere and Taylor (2008) we have that the residual variance

estimator σ̂2 p
−→ ω̄2. Cavaliere and Taylor (2007, Theorem 1) and Cavaliere and Taylor

(2008, Lemma 2) show that
∥

∥

∥Φ̂p − Φp

∥

∥

∥ = op(p
−1/2), where Φ̂p := (φ̂p,1, . . . , φ̂p,p)

′ and Φp :=

(φ1, . . . , φp)
′, using which the lag augmentation can be handled as in Chang and Park (2002,

Lemma 3.1 and Lemma 3.2) and Smeekes (2009, Lemma 1). The result then follows.

Proof of Theorem 2. The invariance principle for ε∗t ,

T−1/2

⌊Tr⌋
∑

t=1

ε∗t
d∗
−→ ω̄Wη,0(r) in probability,

follows directly from the proof of Theorem 2, Equation (A.4), of Cavaliere and Taylor (2008).

We next show that

T−1/2

⌊Tr⌋
∑

t=1

u∗t
d∗
−→ ω̄ψ(1)Wη,0(r) in probability. (7)

Letting Φ̂(L) := 1−
∑q

j=1 φ̂q,jL
j and Ψ̂(1) := Φ̂(1)−1, we can write using the Beveridge-Nelson

decomposition

T−1/2

⌊Tr⌋
∑

t=1

u∗t = T−1/2

⌊Tr⌋
∑

t=1

Ψ̂(1)ε∗t + T−1/2(ū∗0 − ū∗⌊Tr⌋),

where ū∗t := Ψ̂(1)
∑q

i=1(
∑q

j=i Φ̂j)u
∗
t−i+1. As

∥

∥

∥
Φ̂q − Φq

∥

∥

∥
= op(q

−1/2), it follows directly that

Ψ̂(1)
p
−→ Ψ(1). Then (7) follows if we can show that P∗

{

max0≤t≤T |T−1/2ū∗t | > ǫ
}

= op(1). As

in Cavaliere and Taylor (2007, Eq. (14)), by the Bonferroni and Markov inequality we have

for some δ > 0,

P∗

{

max
0≤t≤T

∣

∣

∣
T−1/2ū∗t

∣

∣

∣
> ǫ

}

≤
T
∑

t=0

P∗
{

|ū∗t | > ǫT 1/2
}

≤
T
∑

t=0

E∗ |ū∗t |
4+δ

ǫ4+δT 2+δ/2
.

In similar spirit as Park (2002, eq. (31)), we may write, for large T , that u∗t =
∑∞

j=0 ψ
∗
j ε

∗
t−j ,
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using that for large T the estimated lag polynomial will be invertible. Furthermore, ū∗t =
∑∞

j=0 ψ̄
∗
j ε

∗
t−j , where ψ̄∗

j :=
∑∞

i=j+1 ψ
∗
i . Then, as ε∗t = ε̂τq,tξ

∗
t , by the Marcinkiewicz-Zygmund

inequality and Minkowski’s inequality we have that

E∗ |ū∗t |
4+δ = E∗

∣

∣

∣

∣

∣

∣

∞
∑

j=0

ψ̄∗
j ε

∗
t−j

∣

∣

∣

∣

∣

∣

4+δ

≤ cE∗





∞
∑

j=0

ψ̄∗2
j ε

∗2
t−j





2+δ/2

≤ c







∞
∑

j=0

(

E∗[ψ̄∗2
j ε

∗2
t−j ]

2+δ/2
)1/(2+δ/2)







2+δ/2

≤ c







∞
∑

j=0

ψ̄∗2
j

[

E∗
∣

∣ε∗t−j

∣

∣

4+δ
]1/(2+δ/2)







2+δ/2

= c







∞
∑

j=0

ψ̄∗2
j

[

E∗
∣

∣ξ∗t ε̂
τ
q,t−j

∣

∣

4+δ
]1/(2+δ/2)







2+δ/2

≤ c′





∞
∑

j=0

ψ̄∗2
j

∣

∣ε̂τq,t−j

∣

∣

2





2+δ/2

,

where c and c′ are constants not depending on T . Now

P∗

{

max
0≤t≤T

∣

∣

∣T−1/2ū∗t

∣

∣

∣ > ǫ

}

≤

T
∑

t=0

E∗ |ū∗t |
4+δ

ǫ4+δT 2+δ/2
≤ sup

t

E∗ |ū∗t |
4+δ

ǫ4+δT 1+δ/2

≤ c′T−1−δ/2 sup
t

∣

∣ε̂τq,t

∣

∣

4+δ





∞
∑

j=0

ψ̄∗2
j





2

.

It follows from Phillips and Solo (1992, p. 973) that
∑∞

j=0 ψ̄
∗2
j = Op(1) if

∑∞
j=0 j

1/2
∣

∣

∣ψ∗
j

∣

∣

∣ =

Op(1). This in turn follows if
∑q

j=1 j
1/2
∣

∣

∣
φ̂q,j

∣

∣

∣
= Op(1) (cf. Hannan and Kavalieris, 1986,

p. 30). This holds as

q
∑

j=1

j1/2
∣

∣

∣
φ̂q,j

∣

∣

∣
≤

q
∑

j=1

j1/2
∣

∣

∣
φ̂q,j − φj

∣

∣

∣
+

q
∑

j=1

j1/2 |φj | ,

while

q
∑

j=1

j1/2
∣

∣

∣φ̂q,j − φj

∣

∣

∣ ≤ q1/2
q
∑

j=1

∣

∣

∣φ̂q,j − φj

∣

∣

∣ ≤ q1/2
∥

∥

∥Φ̂q − Φq

∥

∥

∥ = q1/2op(q
−1/2) = op(1)

and
∑q

j=1 j
1/2 |φj| = O(1) by Assumption 1(i).

Therefore if we can show that T−1 supt

∣

∣ε̂τq,t

∣

∣

4+δ
= Op(1), the result follows. For expositional

simplicity we assume that the residuals ε̂τq,t are obtained while imposing the null hypothesis

and in absence of detrending. The argument we present below can straightforwardly, but
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tediously, be extended to allow for the inclusion of the lagged level in the regression and OLS

or QD-detrending; cf. Smeekes (2009) for the homoskedastic case. Our proof is an adaptation

of Park (2002, Proof of Lemma 3.2). Note that

T−1 sup
t

∣

∣ε̂τq,t

∣

∣

4+δ
≤ T−1

T
∑

t=1

∣

∣ε̂τq,t−j

∣

∣

4+δ
= T−1

T
∑

t=1

∣

∣ε̂τq,t − εq,t + εq,t − εt + εt
∣

∣

4+δ

≤ 33+δT−1
T
∑

t=1

{

∣

∣ε̂τq,t − εq,t

∣

∣

4+δ
+ |εq,t − εt|

4+δ + |εt|
4+δ
}

=: 33+δ(AT +BT + CT )

where AT , BT and CT are implicitly defined. Note that εq,t is defined as

εq,t = ut −

q
∑

j=1

φjut−j = εt +

∞
∑

j=q+1

φjut−j .

We first look at AT . We can write

ε̂τq,t − εq,t = −

q
∑

j=1

(φ̂q,j − φj)ut−j .

Then, applying Cauchy’s inequality we have

AT = T−1
T
∑

t=1

∣

∣

∣

∣

∣

∣

q
∑

j=1

(φ̂q,j − φj)ut−j

∣

∣

∣

∣

∣

∣

4+δ

≤ T−1
T
∑

t=1





q
∑

j=1

(

φ̂q,j − φj

)2





(4+δ)/2 



q
∑

j=1

u2
t−j





(4+δ)/2

=
∥

∥

∥
Φ̂q − Φq

∥

∥

∥

4+δ
T−1

T
∑

t=1





q
∑

j=1

u2
t−j





(4+δ)/2

= op(q
−(4+δ)/2)Op(q

(4+δ)/2) = op(1).

For BT we can apply the Markov inequality to obtain

P (BT > ǫ) = P

(

T−1
T
∑

t=1

|εq,t − εt|
4+δ > ǫ

)

≤ ǫ−1T−1
T
∑

t=1

E |εq,t − εt|
4+δ .

Note that we may write

εq,t − εt =
∞
∑

j=q+1

φjut−j =
∞
∑

j=q+1

φj

(

∞
∑

k=0

ψjεt−j−k

)

=
∞
∑

j=q+1

πq,jεt−j ,
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where πq,j =
∑j

k=q+1 φkψj−k and

∞
∑

j=q+1

|πq,j| =
∞
∑

j=q+1

∣

∣

∣

∣

∣

∣

j
∑

k=q+1

φkψj−k

∣

∣

∣

∣

∣

∣

≤
∞
∑

j=q+1

j
∑

k=q+1

|φk| |ψj−k|

≤

∞
∑

l=q+1

∞
∑

m=0

|φl| |ψm| =





∞
∑

l=q+1

|φl|





(

∞
∑

m=0

|ψm|

)

= o(q−1)O(1) = o(q−1),

as Assumption 1 implies that
∑∞

j=q+1 |φj | = o(q−1). Then

E |εq,t − εt|
4+δ = E

∣

∣

∣

∣

∣

∣

∞
∑

j=q+1

φjut−j

∣

∣

∣

∣

∣

∣

4+δ

= E

∣

∣

∣

∣

∣

∣

∞
∑

j=q+1

πq,jεt−j

∣

∣

∣

∣

∣

∣

4+δ

≤





∞
∑

j=q+1

[

E |πq,jεt−j |
4+δ
]1/(4+δ)





4+δ

≤





∞
∑

j=q+1

|πq,j|
[

E |εt−j |
4+δ
]1/(4+δ)





4+δ

≤





∞
∑

j=q+1

|πq,j|
[

max
t

|σt|
4+δ E |et−j |

4+δ
]1/(4+δ)





4+δ

= max
t

|σt|
4+δ E |et|

4+δ





∞
∑

j=q+1

|πq,j|





4+δ

= o(q−(4+δ)),

from which it follows that BT = op(1).

It follows straightforwardly that CT = Op(1) as T−1
∑T

t=1 |εt|
4+δ ≤ maxt |σt|

4+δ T−1
∑T

t=1 |et|
4+δ =

Op(1), by Assumption 1 and 1′.

Putting these results together we find that T−1 supt

∣

∣ε̂τq,t

∣

∣

4+δ
= Op(1), which in turn shows

that P∗
{

max0≤t≤T |T−1/2ū∗t | > ǫ
}

= op(1). Therefore we can conclude that (7) holds.

It then follows straightforwardly for cases (i) and (ii) that

T−1/2x̂δ∗
⌊Tr⌋,γ

d∗
−→ Kδ

η,0,γ(r) in probability,

while for case (iii) it follows along the same lines as in the proof of Theorem 1 that

T−1/2x̂µ∗
⌊Tr⌋,γ

d∗
−→ Kµ∗

η,c,γ,γ̃(r) in probability.

Finally, the lag augmentation can again be handled as in Chang and Park (2003, Theorem 2)

and Smeekes (2009, Lemma 5) to find the limiting distributions of the DF−γδ∗ statistics.
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(a) DF-QD (b) DF-OLS

Figure 1: Critical values of DF tests for varying κ
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Figure 2: Asymptotic size
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 3: Asymptotic power for κ = 0
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 4: Asymptotic power for κ = 0.25
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 5: Asymptotic power for κ = 0.5
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 6: Asymptotic power for κ = 1
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 7: Asymptotic power for κ = 2
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 8: Asymptotic power for κ = 4
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(a) ϕ = 0 and ϑ = 0

(b) ϕ = 0.4 and ϑ = 0 (c) ϕ = −0.4 and ϑ = 0

(d) ϕ = 0 and ϑ = 0.4 (e) ϕ = 0 and ϑ = −0.4

Figure 9: Small sample size UR tests for varying κ for T = 50
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(a) ϕ = 0 and ϑ = 0

(b) ϕ = 0.4 and ϑ = 0 (c) ϕ = −0.4 and ϑ = 0

(d) ϕ = 0 and ϑ = 0.4 (e) ϕ = 0 and ϑ = −0.4

Figure 10: Small sample size UR tests for varying κ for T = 100
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(a) Single break: σ2

0/σ2

1 = 0.2 and τ = 0.9 (b) Single break: σ2

0/σ2

1 = 5 and τ = 0.1

(c) Double break: σ2

0/σ2

1 = 0.2 and τ = 0.45 (d) Double break: σ2

0/σ2

1 = 5 and τ = 0.05

(e) Trending: σ0/σ1 = 0.2 (f) Trending: σ0/σ1 = 5

Figure 11: Asymptotic size UR tests for varying κ
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 12: Asymptotic power for κ = 0; Single break: σ2
0/σ

2
1 = 0.2 and τ = 0.9
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 13: Asymptotic power for κ = 0.25; Single break: σ2
0/σ

2
1 = 0.2 and τ = 0.9
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 14: Asymptotic power for κ = 0.5; Single break: σ2
0/σ

2
1 = 0.2 and τ = 0.9
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 15: Asymptotic power for κ = 1; Single break: σ2
0/σ

2
1 = 0.2 and τ = 0.9
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 16: Asymptotic power for κ = 0; Double break: σ2
0/σ

2
1 = 5 and τ = 0.05
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 17: Asymptotic power for κ = 0.25; Double break: σ2
0/σ

2
1 = 5 and τ = 0.05
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 18: Asymptotic power for κ = 0.5; Double break: σ2
0/σ

2
1 = 5 and τ = 0.05
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 19: Asymptotic power for κ = 1; Double break: σ2
0/σ

2
1 = 5 and τ = 0.05

47



(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 20: Asymptotic power for κ = 0; Trending: σ0/σ1 = 0.2
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 21: Asymptotic power for κ = 0.25; Trending: σ0/σ1 = 0.2
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 22: Asymptotic power for κ = 0.5; Trending: σ0/σ1 = 0.2
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(a) α = −2 (b) α = −1

(c) α = 0 (d) α = 1

(e) α = 2 (f) α = 4

Figure 23: Asymptotic power for κ = 1; Trending: σ0/σ1 = 0.2
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(a) Single break: σ2

0/σ2

1 = 0.2 and τ = 0.9 (b) Single break: σ2

0/σ2

1 = 5 and τ = 0.1

(c) Double break: σ2

0/σ2

1 = 0.2 and τ = 0.45 (d) Double break: σ2

0/σ2

1 = 5 and τ = 0.05

(e) Trending: σ0/σ1 = 0.2 (f) Trending: σ0/σ1 = 5

Figure 24: Empirical size of UR tests for T = 50
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(a) Single break: σ2

0/σ2

1 = 0.2 and τ = 0.9 (b) Single break: σ2

0/σ2

1 = 5 and τ = 0.1

(c) Double break: σ2

0/σ2

1 = 0.2 and τ = 0.45 (d) Double break: σ2

0/σ2

1 = 5 and τ = 0.05

(e) Trending: σ0/σ1 = 0.2 (f) Trending: σ0/σ1 = 5

Figure 25: Empirical size of UR tests for T = 100
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(a) α = −2, κ = 0 (b) α = 0, κ = 0 (c) α = 2, κ = 0

(d) α = −2, κ = 0.5 (e) α = 0, κ = 0.5 (f) α = 2, κ = 0.5

(g) α = −2, κ = 1 (h) α = 0, κ = 1 (i) α = 2, κ = 1

Figure 26: Empirical power of UR tests for T = 50; Single break: σ2
0/σ

2
1 = 0.2 and τ = 0.9
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(a) α = −2, κ = 0 (b) α = 0, κ = 0 (c) α = 2, κ = 0

(d) α = −2, κ = 0.5 (e) α = 0, κ = 0.5 (f) α = 2, κ = 0.5

(g) α = −2, κ = 1 (h) α = 0, κ = 1 (i) α = 2, κ = 1

Figure 27: Empirical power of UR tests for T = 100; Single break: σ2
0/σ

2
1 = 0.2 and τ = 0.9
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