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Abstract 

 
In many stated preference settings stakeholders will be uncertain as to their exact willingness-to-
pay for a proposed environmental amenity.  To accommodate this possibility analysts have 
designed elicitation formats with multiple bids and response options that allow for the expression 
of uncertainty.  We argue that the information content flowing from such elicitation has not yet 
been fully and efficiently exploited in existing contributions.  We introduce a Latent Thresholds  
Estimator that focuses on the simultaneous identification of the full set of thresholds that 
delineate an individual's value space in accordance with observed response categories.  Our 
framework provides a more complete picture of the underlying value distribution, the marginal 
effects of regressors, and the impact of bid designs on estimation efficiency.  We show that the 
common practice of re-coding responses to derive point estimate of willingness-to-pay leaves 
useful information untapped and can produce misleading results if thresholds are highly 
correlated. 
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Abstract: 

 

In many stated preference settings stakeholders will be uncertain as to their exact willingness-to-pay 

for a proposed environmental amenity.  To accommodate this possibility analysts have designed 

elicitation formats with multiple bids and response options that allow for the expression of 

uncertainty.  We argue that the information content flowing from such elicitation has not yet been 

fully and efficiently exploited in existing contributions.  We introduce a Latent Thresholds  

Estimator that focuses on the simultaneous identification of the full set of thresholds that delineate 

an individual's value space in accordance with observed response categories.  Our framework 

provides a more complete picture of the underlying value distribution, the marginal effects of 

regressors, and the impact of bid designs on estimation efficiency.  We show that the common 

practice of re-coding responses to derive point estimate of willingness-to-pay leaves useful 

information untapped and can produce misleading results if thresholds are highly correlated.   
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I) Introduction 

In recent decades elicitation formats for Stated Preference surveys have been extended to 

incorporate measures of respondent uncertainty for the payment of hypothetical contributions to 

obtain or preserve an environmental amenity.1  For example, Li and Mattsson [3], Champ et al. [4], 

and Ekstrand and Loomis [5] capture payment uncertainty via numerical scales, while Ready et al. 

[6], Wang [7] , and Ready et al. [8] elicit uncertainty levels via a discrete set of qualitative response 

options ("definitely yes", "yes", "not sure", etc).  Ready et al. [6] deem this latter approach the 

"polychotomous choice" (PC) format.  All of these examples employ their uncertainty scale in 

combination with a single referendum question.   

Welsh and Poe [9] extend this framework by adding additional bid amounts, each of which is 

paired with a polychotomous response choice.  The authors label this approach the "Multiple 

Bounded Discrete Choice" format.  It is also referred to as the "Multiple Bounded Uncertainty 

Choice format ([10]), and the "Multiple Bounded Polychotomous Choice" format ([11]) in 

subsequent applications.  We adopt Evans et al's [10] acronym "MBUC" throughout this text.  

The original rationale for allowing respondents to express uncertainty in contingent 

valuation studies was to lower the number of non-responses and "protest-zeros" that often plague 

generic Discrete Choice (DC) formats (e.g. [6]), and to gain further insights into the reliability and 

interpretation of  responses when participants are constrained to choose between a simple "yes" and 

"no",  as is the case in a basic DC setting (e.g. [4; 6; 8; 12]). Welsh and Poe's [9] primary motivation 

for extending the polychotomous format to an entire range of bids was to combine the benefits of 

the PC format with the efficiency gains that can be expected of multi-bounded elicitation (e.g. [13] ). 

In addition, the authors isolate the two effects via a comparison of the MBUC method with a 

generic payment card approach (multiple bids without the polychotomous choice option) and a 

generic PC format (single bid with polychotomous choice). 
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In this study we argue that the information content flowing from an MBUC elicitation has 

not yet been fully and efficiently exploited in existing contributions.  We propose a new estimator 

that focuses on the simultaneous estimation of multiple decision thresholds rather than a single 

point estimate of willingness-to-pay (WTP), or the mean of the underlying value distribution.  We 

illustrate that this approach operates under less restrictive assumptions than existing estimators, and 

provides a more complete picture of the underlying value distribution and the marginal effects of 

regressors on the location and spread of this distribution.  In addition, our estimator nests several 

existing models and thus allows for a rigorous examination of the underlying assumptions associated 

with these alternative specifications.  We illustrate our framework using data from the first field 

implementation of the MBUC format in the 1994 Glen Canyon Pilot Study ([14]), and a recent 

valuation study on rangeland restoration in the Great Basin Region ([16]). 

In the next section we discuss existing models of uncertain responses and highlight their 

strength and shortcomings. Section III introduces the econometric framework for the Latent 

Thresholds Estimator (LTE).  This is followed by an empirical section that introduces the data and 

discusses estimation results.  Section V concludes. 

 

II) Modeling of Uncertain Responses 

There are important differences in how existing studies have processed the additional 

information collected via numerical or qualitative uncertainty scales.  All of them assume (implicitly 

or explicitly) that a given respondent's true value for the amenity in question is unknown to herself 

and the analyst, but that the respondent, in contrast to the analyst, knows its probability distribution.  

Let vi be the respondent's uncertain value (or WTP) and and its continuous probability 

density function (pdf) and cumulative density function (cdf), respectively.  Further denote the first two 

moments of vi as and , respectively.  As for the distribution, these moments are known to the 

( )i ig v ( )i iG v

iμ
2
iσ
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subject, but not the analyst.  Consider a given bid jb

i

and a response chosen by i from a 

provided uncertainty scale.  For a numerical scale,  might be  "80% certain" or "certainty level 

8 on a scale of 10", while for a polychotomous scale  will be a qualitative answer, such as 

"probably yes" or "definitely no".  

( )i jr b

iv

( )jr b

(ir b )j

Existing estimation strategies can be divided into two general groups: Those that interpret 

the uncertainty-response as an exact probability for the location of relative to a given bid, i.e. as 

, and those that (implicitly or explicitly) interpret the response as a statement  about the 

location of 

( )i jG b

jb relative to specific threshold amounts along the support of that correspond to the 

discrete answer categories.  We label the first set of approaches "probability-based estimators 

(PBEs)", and the second set as "threshold-based estimators (TBEs)".   

iv

 

Probability-based estimators 

Li and Mattsson [3] were the first to propose a PBE for a DC framework with a percentage-

based uncertainty scale (in 5% increments).  They specify a normal distribution for vi with common 

variance for all subjects, i.e.  

( 2~ 0,i i i i τv μ τ τ n σ= + )  (1) 

An observed response of  can then be directly interpreted as a probabilistic statement for the 

location of  within the vi distribution, i.e. 

( )i jr b

jb

( ) ( ) ( ) Φ j i
i j i j i i j

τ

b μ
r b pr v b pr μ τ b

σ

⎛ ⎞⎟⎟⎟⎟⎝ ⎠

−⎜= < = + < = ⎜⎜⎜
 (2) 

where denotes the standard normal cdf.  This, in turn leads to the definition of a standard 

normal variate that is a direct function of the observed probabilistic response, i.e  

( )Φ .
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( )(1 1Φ Φj i j i
i i

τ τ

b μ b μ
z r

σ σ
− −
⎛ ⎞− − ⎟⎜ ⎟= = =⎜ ⎟⎜ ⎟⎜⎝ ⎠

)jb   (3) 

The authors then combine this derived measure with a regression model for the expectation of 

and estimate the model via Maximum Likelihood techniques. iv

 Evans et al. [10] extend this approach to an MBUC setting with choice categories "definitely 

yes" (DY), "probably yes" (PY), "not sure" (NS) , "probably no" (PN), and "definitely no" (DN).  

With guidance from the psychological and psychometric literature they map these responses into 

probabilistic statements regarding the location of relative to a given bid.  For example, their initial 

mapping is given as 

iv

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0, 0.25, 0.5

0.85, 1

i j i j i j i j i j i j

i j i j i j i j

r b DY pr v b r b PY pr v b r b NS pr v b

r b PN pr v b r b DN pr v b

= → < = = → < = = → < =

= → < = = → < =
 (4) 

This, in turn, allows for the derivation of bounded probabilities for a sequence of bids in MBUC 

elicitation.  For example, using the mapping in (4), observing ( )1i jr b NS− =  and implies 

.  

( )i jr b PN=

( ); 1, 1 0.85 0.5 0.35i j j j i jP pr b v b− −= < < = − =

In contrast to [3] the authors leave the subject-specific value distribution unspecified, 

but instead stipulate that the eventual realization of , denoted here as , follows a normal 

distribution across all subjects in the underlying population, i.e. 

( )i ig v

iv *
iv

(* , ~ 0,i i iv )2β ε ε n σ= +   (5) 

Under  a paradigm of quadratic loss minimization the authors then specify an expected log-likelihood 

function.  For an observed sequence of bids 1 2, , , Jb b b…  by individual i, this term is given as 
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( )( ) 11
; ,1 ; 1,

2

; ,

ln , * ln Φ * ln Φ Φ

* ln 1 Φ

i

J
j j

v i i i j j
j

J
i J

b β b βb βE l β σ P P
σ σ

b β
P

σ

−
−∞ −

=

∞

⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎛ ⎞⎛ ⎞− ⎟⎜ ⎟⎟ ⎜ ⎜⎜ ⎟⎜ ⎟⎟ ⎟= + −⎜⎟ ⎜ ⎜⎟⎜ ⎟⎜ ⎟ ⎟⎟ ⎜⎟⎜ ⎜⎟⎜ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎟⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝

⎛ ⎞⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎟−⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

∑ σ
⎟ +⎜ ⎠

)

 (6) 

Note that if i's response to is "DY",  is zero and the first term in 1b (; ,1 1 0i iP pr v b−∞ = −∞< < = (6) 

drops out of the log-likelihood function.  The same holds for the last term if the response to the 

final bid is "DN".  Evans et al. [10] label this model the  "Dual-Uncertainty Decision Estimator" 

(DUDE). 

The main advantage of these PEB approaches is that they lead to estimates of expected 

WTP for the underlying population of stakeholders.  This is an attractive feature as expected WTP is 

an important component in benefit-cost analysis, and an important value to feed into benefit-

transfer applications.  However, this gain comes at the cost of imposing very stringent and likely 

unrealistic model assumptions.  Specifically, while it is reasonable from the analyst's perspective to 

let the expectation of follow a pre-defined density such as the normal distribution, it is highly 

unlikely that every individual's uncertain valuation can be modeled by a common density, let alone a 

density with equal variance (equ. 

iv

(1)).  Given the numerous sources of value uncertainty that have 

been suggested in the literature (e.g. [6; 15; 16]) and the likely heterogeneous fashion in which these 

sources affect a given respondent's value assessment, we consider this assumption of "identical value 

distribution" for all subjects highly restrictive.  Even if the homoskedasticity assumption is relaxed (a 

feasible extension of the Li and Mattsson [3] model), there is still the possibility that a given subject's 

value distribution might be skewed in either direction or even multi-modal.   

Our main concern with Evans et al.'s [10] DUDE estimator is its interpretation and 

performance under "repeated infra-marginal answers" (RIAs).  For example, it is quite possible (and 

frequently observed in practice) that a given subject issues the same non-certainty response for a 

series of sequential bids.  In fact, this situation is virtually unavoidable whenever the number of bids 
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(say M) exceeds the number of response categories (J).  This is the case in most MBUC applications, 

with J ranging from 3 to 5, and M usually lying in the 10-20 range ([9; 16; 17]).  For example, 

consider the following observed sequence of bids and responses:   

1 2 3 4 5 6 7, , , , , ,b DY b PY b PY b PY b NS b PN b DN→ → → → → → →  (7) 

Using the mapping given in (4) this implies that 

. Nothing new is 

learned from the responses to bids three and four, and the corresponding terms in equation 

; ,1 ;1,2 ;2,3 ,3,4 ;4 ,5 ;5,6 ;6,7 ;7,0, 0.25, 0, 0.25, 0.35, 0.15, 0i i i i i i i iP P P P P P P P−∞ ∞= = = = = = =

( )i ig v

=

(6) will 

drop out of the likelihood function.  While this makes intuitive sense mathematically, this observed 

choice sequence implies a rather unrealistic shape for the underlying value distribution.  Specifically, 

is forced to have zero density between bids two and four, while the density is well-defined in 

the immediate vicinity of these boundaries.  Such "density gaps" are implied by any occurrence of 

RIAs in the sample.   Therefore, the DUDE estimator is only well-defined under complete absence 

of RIAs. This is unlikely in most applications.   

An additional limitation of the DUDE approach is its arbitrary mapping of polychotomous 

responses into probabilities.  Even though Evans et al. [10] find their results to be fairly robust to 

different mappings, it is still unlikely that the same mapping applies to all respondents in the sample.  

In summary, we consider neither of these two PBE models as optimal approaches to process MBUC 

data.  We will therefore direct our attention to threshold-based estimators. 

 

Threshold-based estimators 

The decision-threshold interpretation of polychotomous responses was originally proposed 

by Wang [7] for a 3-tiered choice scale ("yes", "don't know", "no"), and a single DC format.  

Alberini et al. [11] extend this approach to the MBUC format with the standard 5-category 

uncertainty scale.  As mentioned above, in the TBE setting  an individual's polychotomous response 
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is interpreted as a statement about the location of the bid in question relative to specific threshold 

amounts. These thresholds are assumed to be fully known to the respondent, but unobserved by the 

researcher. 

This notion is illustrated in Figure 1 for a standard 5-point decision scale.  The survey 

participant will answer DY if the proposed bid lies to the left of the entire distribution of , and 

DN if the payment amount exceeds the upper bound of the support of .  Thus, one can interpret 

thresholds  and as marking the boundaries for the support of .  Any bid between these 

thresholds will trigger an uncertain response.  Specifically, the respondent will answer PY if the bid 

amount falls between  and , NS if the bid lies between and , and PN if the bid is located 

between  and t .  As implied by the "i"-subscript these thresholds will likely be individual-

specific. 

iv

iv

( )i1it

i

4 it

4 i

ig v

3it1it 2it 2it

3t

2 

However, Wang [7] and Alberini et al.'s [11] main focus lies not on the estimation of these 

thresholds, but rather the expectation of .  This is accomplished by re-defining the threshold 

values as limiting distances from 

iv

( )iE v , as depicted in Figure 1.  The identification of the 

expectation requires imposing restrictions on at least one of these distances, such as symmetry (e.g. 

 or ), or fixed ratio (e.g. ).  The authors call this approach the "Random 

Valuation Model" (RVM).  

i ic b=− id =− ia ibαia =

The TBE framework also incorporates models that de facto "remove" respondent 

uncertainty by re-coding uncertain answers into boundary responses (i.e. DY or DN).  This was the 

original approach taken in Welsh and Poe [9] in the MBUC context.  This binary re-mapping is also 

adopted in other applications with discrete-numerical or polychotomous choices, such as Ready et 

al. [6], Champ et al. [4], and Ready et al. [8].  Once a binary mapping is achieved,  standard 

estimation tools for single or double-bounded DC formats can be used to derive an estimate of 
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iv for a given respondent.3  Within our general TBE framework this re-mapping approach is 

equivalent to letting the distribution of collapse to one of the four thresholds.  For example, if all 

responses other than DY are interpreted as DN  the estimate for  will center around the first 

threshold, .  Conversely, if all responses other than DN are recoded to DY, the re-mapping 

approach will produce an estimate of .  Estimates for infra-marginal thresholds can be derived in 

analogous fashion.   

iv

4 i

iv

1it

t

As for the PBE models discussed above, we consider the assumptions required for the 

Random Valuation Approach as overly restrictive.  It imposes stringent constraints on the location 

of ( )i iμ E v=

t

relative to the decision thresholds.  Moreover, these same restrictions must be assumed 

to hold for all individuals in the sample to identify the model.   Consider, for example, the symmetry 

assumption imposed by Wang [7] and Alberini et al. [11] for some of their sub-models, i.e. .  

This implies , or, equivalently, .  This restricts to lie 

precisely between the second and third threshold, and always in the "NS" segment.  This is a rather 

strong assumption in any application.  It suggests that any difference in answer patterns (and thus 

threshold locations ) across respondents is exclusively driven by differences in the shape of , 

and rules out any threshold heterogeneity due to other factors, such as differences in the 

respondent's  interpretation of the qualitative response categories.  Similar concerns arise for 

alternative restrictions of these limiting distances. 

i ic b=−

( )i ig v

2 3,i i i i iμ b t μ b= − = + i ( )3 2 / 2i i ib t t= − iμ

For these reasons our proposed Latent Thresholds Estimator (LTE) abstracts from any 

attempt to estimate ( )iE v . Conceptually, it is most closely related to re-mapping approach of Welsh 

and Poe [9].  However, instead of the independent estimation of a single threshold, we aim for the 

simultaneous estimation of all four thresholds.  Moreover, we ex ante allow these thresholds to be 

jointly distributed via common unobservables (from the researcher's perspective).  Our approach 
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does not require any arbitrary re-mapping of polychotomous answers, and operates under a minimal 

set of assumptions on the distribution of  or the relative location of the thresholds.  As will be 

illustrated in more detail below, the LTE nests the re-mapping estimator and allows for a formal 

examination of threshold restrictions underlying the Random Valuation Estimator. 

( )i ig v

 

III) Econometric Framework 

Consider an MBUC format with bid levels and response categories.  

This implies that there are  decision thresholds, one for each category transition.  Let each 

threshold be a simple linear function of observables and a normally distributed additive error term, 

i.e.  

1j = …

, i N=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1

2

T

β

β

β

# #

J M

.T

1 ~ ,i

#

1m = …

1T M= −

( )2, ~ 0, 1 , 1ti ti ti tt ε ε n σ t′= + =ti tx β … …  (8) 

One advantage of our framework over Alberini et al's [11] Random Valuation Model is that in 

theory all threshold functions are fully identified by the exogenous bids, such that the contents of 

can remain unchanged, and marginal effects can be allowed to vary across thresholds (thus the t-

subscript for ).  At the individual (panel) level the full model with correlated thresholds can be 

written as 

itx

tβ

( )

1 1

2 , , ,

i i

i

Ti Ti

t ε
t ε

n

t ε

= +

⎡ ⎤⎡ ⎤ ⎡ ⎤′
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥′⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥′⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

i i i

1i

2i
i i i

Ti

t X β ε

x 0 0 0

0 x 0 0
t X β ε 0 Σ

0 0 0

0 0 0 x

%
 (9) 

If thresholds were observed, equation (9) would describe a basic Seemingly Unrelated Regression 

(SUR) model.   

 However, instead of the actual thresholds we only observe a series of bid / response 

combinations from each survey participant.  Let ijy be the observed response by individual i when 
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confronted with bid j.  If we sort the response options from most affirmative (usually "DY") to 

most disapproving (usually "DN") and code them as increasing integers we have { }1, 2, ,ijy M∈ " . 

We observe |ij ijy b =

1,m i ij

m  if the cdf of the underlying valuation  at bid  falls between the cdf at the 

preceding and the following threshold, i.e. .  Since we do not wish to 

explicitly specify the value distribution, we re-express this condition directly in terms of the location 

of vis-à-vis the two adjacent thresholds, i.e. 

iv

< <

ijb

)( ) ( ) (1, ,m i ij m iG t G b G t−

ijb

ij if   miy m t t= b− < <   (10) 

For the most affirmative response, the left bound in (10) will generally be negative infinity.  It could 

also be zero if a given sample includes only confirmed program supporters, i.e. individuals who 

would always answer DY to a bid of zero.  This will be the case for our first empirical application.  

For  ijy M=  the upper bound of (10) will usually be infinity.    

Using the entire series of J observed responses for person i , collected in vector iy , it is then 

straightforward to elicit a set of T location restrictions for the thresholds, i.e. 

( ) (

1 ,

2 ,

, ,

Φ , ;

i u

i u
i

Ti u

b
b

pr pr R

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

i iy X β Σ )

1 , 1

2 , 2

i l i

i l i

Ti l Ti

b t
b t

b t

< <
< <

=

< <
#

iX β

  (11) 

where (with slight abuse of notation) denotes the cdf of the truncated multivariate normal 

density with mean , variance matrix , and truncation region Ri implicitly defined by the T 

boundary conditions.   Vector β comprises all T sets of threshold coefficients.  Bids  and  

denote, respectively, the relevant lower and upper bounds for a given threshold.  The relevant bounds 

are the bids closest to a given threshold.  Due to the possibility of repeated infra-marginal answers 

(RIAs, see above), not all bids offered to a given respondents will be relevant.  Furthermore, it is 

possible for several thresholds to share one or both bounds if the observed answer pattern for a 

( )Φ .

Σ

,ti lb ,ti ub
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given individual does not traverse the entire M-dimensional response space, i.e. if one or more 

response categories are skipped.  For those cases we impose the general ranking restriction 

 in our estimation framework.  Examples for the identification of relevant bounds 

under different response scenarios are given in Appendix A.  

1 2i it t t< < <…

( )| , , Φp i iy β Σ

Σ

Ti

)it<

)

The likelihood contribution by person i is thus given as 

( ) ( 1 2, ; i i i TR I t t= < <iX X β Σ "   (12) 

In theory, the model parameters β and Σ could be estimated via Maximum Likelihood techniques.  

We prefer a Bayesian approach primarily for the following two reasons:  (i) The effective sample size 

for threshold identification in one of our applications is relatively small, preempting the 

interpretation of estimation results in the light of classical asymptotic theory, and (ii) while it would 

be computationally challenging to impose the simultaneous threshold boundary and ranking 

conditions in an MLE framework, our Bayesian Gibbs Sampler can handle these restrictions in a 

straightforward fashion.   

A Bayesian approach requires the specification of priors for all model parameters.  We 

choose the standard multivariate normal priors for β  and an inverse Wishart (IW) prior for the 

elements of  , i.e. , where  and  are the degrees of freedom 

and scale matrix, respectively.  The IW density is parameterized such that .  

When combined with the likelihood function, these priors yield tractable conditional posterior 

densities.   We further improve the speed and efficiency of our posterior simulator (Gibbs Sampler) 

by augmenting the model with draws of the unknown thresholds.  A general discussion of the merits 

of this technique of data augmentation is given in Tanner and Wong [18] and van Dyk and Meng [19].  

The augmented posterior distribution will thus be proportional to the priors times the augmented 

likelihood, i.e. 

( ) (0 0~ , , ~mvn IW v0 0β μ V Σ S, 0v 0S

( ) ( ) 1
0 1rE ν k −= − − 0Σ S
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{ }( ) ( ) ( ) { }( ) { }(1 1, , | , | , , , |N N
i ip p p p p= =∝i iβ Σ t y X β Σ t β Σ y X y t )1

N
i=i

)

 (13) 

The Gibbs Sampler draws consecutively and repeatedly from the conditional posterior distributions  

{ }( ) { }( ) { }(1 1 1| , , , , | , , , , and | , , ,N N N
i i ip p p= = =i i iβ Σ t y X Σ β t y X t β Σ y X

( ), | ,p β Σ y X

.  Posterior inference is based on 

the marginals of the joint posterior distribution .  As an additional benefit, our 

algorithm also returns all threshold draws for each respondent.  The detailed steps of the posterior 

simulator and the Matlab code to implement this model are available from the authors upon request. 

 

Empirical Application 

Glen Canyon Pilot Study Data 

Our first application uses data from the 1994 Glen Canyon (GC) Pilot Study.  Details for 

this study are given in Welsh et al. [14].4  The general aim of the GC non-market valuation project 

was to elicit stakeholders' WTP for reducing environmentally harmful fluctuations of water levels of 

the Colorado River due to varying discharges from Glen Canyon Dam. The pilot study used an 

MBUC format with 13 bid amounts ($0.1, $0.5, $1, $5, $10, $20, $30, $40, $50, $75, $100, $150, and 

$200) and a response scale of DY, PY, NS, PN, and DN.5  It was implemented via several versions 

that differed in fluctuation scenario, target population, and the type of information provided to 

respondents.  We combine all data associated with a "seasonally adjusted steady flow" scenario 

(versions 3, 5, 6, 8, and 9), yielding an original sample size of 384 individuals.  After eliminating 

observations with missing bid-responses or other key variables we retain 370 observations, for a 

total of 370 x 13 = 4810 observed bid/response combinations.  Following the original study, all of 

these individuals had been screened to support the environmental program at no cost.  Thus our 

general lower bound for all thresholds is zero.  This bound becomes active for cases where the first 
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threshold is not bounded from below by one of the offered bids, i.e. where a respondent's answer to 

the second lowest bid is not DY. 

A subset (28%) of the data stems from residents living in the market area served by GC-

generated electrical power.  The remaining observations flow from a nation-wide sample.  It was 

hypothesized that market participants would exhibit lower WTP for the environmental benefits of 

reduced flow fluctuations, as they would be exposed to resulting higher energy prices.  We capture 

this sub-segment with an indicator variable "market".  Another subset of participants (20%) from the 

national sample received a truncated information brochure that omitted a listing of the economic 

drawbacks of flow regulation for some stakeholders.  We identify this group via the binary indicator 

"empathy", taking a value of "1" if costs to others were dropped from the information pamphlet.  

Contrary to expectations, the original authors found that WTP decreased significantly for this sub-

group.  Our richer analysis sheds additional light on this issue, as shown below. 

The remaining variables in our GC model are as follows: (i) a standardized knowledge score 

("know") based on respondents' answers to a short quiz at the beginning of the main survey 

instrument that covered the contents of the information brochure, (ii) a standardized factor-

analytical score summarizing participant's relative preference of economic security over 

environmental protection ("econ") , and (iii) annual household income in $1000s.  Table 1 captures 

the salient features of our sample.  From an econometric perspective, the most important 

characteristic of the GC data is that all thresholds and threshold covariances are fully identified via 

reasonably large sub-samples.  For example, there are 276 cases (out of 370) that provide both DY 

and PY answers, thus identifying the first threshold and its variance.  Similarly, there are 204 

individuals that exhibit the full triplet of DY, PY, and NS answers, thus jointly identifying the first 

two thresholds and their covariance (last column of Table 1).  This limits cases where thresholds 

share common bounds,  and thus enhances the efficiency of our estimator.  As depicted in the 
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bottom half of Table 1, knowledge scores range from -3.53 (poor score on the introductory quiz) to 

0.77 (close to perfect score).  Economic security scores cover a range of -1.18 (strong preference for 

environmental health over economic security) to 2.47 (strong preference for economic security over 

environmental health).  The average household income (in 1994 dollars) lies in the mid-50 

thousands.  

 

Rangeland Restoration Pilot Study Data 

 Our second application is a 2005 pilot study on Nevada residents' WTP to reduce the risk of 

wildfires via reseeding and other restoration efforts targeting Great Basin rangelands.  Details are 

given in Kobayashi and Rollins [16].  We focus here on their "obtain gain" scenario, which was 

stipulated to reduce the wildfire risk by 50% throughout the State via a comprehensive vegetation 

management program.  We further restrict our attention to the subset of respondents that received a 

9-bid MBUC elicitation format (128 valid observations).  After eliminating cases with deficiencies in 

key variables we obtain a final sample of 113 individuals (1017 observed bid-responses) suitable for 

this analysis.  The MBUC bids are $0, $1, $12, $31, $52, $83, $114, $157, and $282.  The wording of 

the MBUC question and the response categories are the same as for the GC study.  Contrary to the 

GC applications, retained individuals had not been identified as conditional (zero-cost) program 

supporters.  Therefore, it is possible for this sample to issue a response other than DY for the zero-

bid.  As a consequence, the general lower bound for all thresholds not bounded by an actual bid is 

negative infinity.  This is an important deviation from the GC case.  As our results will show, the 

distribution of all identified thresholds enter the negative domain for a substantial proportion of the 

underlying population.   

 The main characteristics of the Rangeland Restoration (RR) sample are given in Table 2.  

Contrary to the GC case, not all thresholds are identified for the RR data set.  Specifically, nobody in 
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the sample transitioned from NS to PY, or from PY to DN.6  This forced us to combine the 

inframarginal response categories into a single group and settle for the estimation of the two outer 

thresholds.  As can be seen from the Table, the identifying sample sizes for these two thresholds are 

relatively small (62 and 38 cases, respectively).  The covariance is only identified by 31 observations.  

However, in our Bayesian estimation framework these relevant sample sizes are sufficient to induce 

substantial posterior learning for this application.   

 Due to the sparse structure of our data we limit the number of regressors in the threshold 

equations to three (in addition to a constant term).  These explanatory variables are (i) a factor-

analytically derived preference score for rangeland "quality " (higher score = stronger preferences for 

environmentally healthy rangelands), (ii) a 0/1 indicator for the sub-sample of respondents (close to 

40%) that received a survey booklet with additional information on the detrimental impacts of 

wildfires and the causes of the intensifying wildfire cycle in the great Basin ("info"), and (iii) annual 

household income in units of one thousand 2005 dollars.   

 

Relevant Bounds and Threshold Identification 

 Table 3 provides a closer look at the distribution of observations across relevant bounds for 

each threshold for the GC application.  The first three columns list the lower bound, upper bound, 

and inter-bound range for each set of relevant bounds observed in the data.  Each possible 

consecutive bid interval figures as relevant bound for the first three thresholds.  For the fourth 

threshold (T4) there are no observations that falls within the lowest two bid segments.  As has been 

standard practice in MBUC applications, inter-bid ranges increase substantially over the entire set of 

bids, here from $0.1 for the lowest bracket to $50 for the highest two brackets.  As we will discuss in 

more detail below, this common practice, likely driven by the traditional focus on the first or 

"certainty" threshold (T1), can impede the efficient estimation of higher thresholds.  
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For each threshold and relevant bound the Table depicts the number of fully identified cases 

("fi" column), the number of not fully identified cases ("nfi"), and the total number of observations 

for which a given pair of bids forms the relevant bound.  The "nfi" cases include both observations 

for which a given bound is shared by two or more other thresholds for the same individual, and 

observations for which one or both bounds are infinite.  For example, looking at the first row in the 

T1 triplet of columns, there are 22 individuals in our sample that respond with DY to a bid of $0 

and PY to a bid of $0.1.  Consequently, the $0 / $0.1 pair becomes the relevant set of bounds for T1 

for these cases.  For three individuals in this group other thresholds in addition to T1 also fall into 

the same relevant bracket.  This implies that these individuals skipped the PY and perhaps additional 

higher response categories, i.e. they answered DY to $0, and NS , PN, or DN to $0.1.  As a result, 

T1, T2 and perhaps even higher thresholds all fall within the $0 / $0.1 relevant bracket.  The total 

number of fully identified cases for each thresholds also corresponds to the respective entry in the 

third-to-last column of Table 1.  

Perhaps the most striking feature of Table 3 is the wide spread of observations across 

virtually the entire set of relevant bounds for all four thresholds.  For example, focusing again on 

T1, a given individual might switch from DY to PY at virtually any point between $0.1, and $100, 

although the bulk of switches occur in the $1 - $30 range.  Similar patterns can be observed for T2 

through T4.  This highlights the pronounced heterogeneity in the range (and likely shape) of the 

underlying value distribution across individuals.  From an estimation perspective this both desirable, 

as it aids in the identification of marginal effects of regressors, and problematic, as the unobservable 

effects in the threshold equations (8) and therefore threshold variances can be expected to be large 

given our rather sparse set of observables.   

The second most important feature of Table 2 is the relatively large share of observations 

that fall into the $200 – to – infinity category, especially for T3 and T4 (96 and 164 cases, 
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respectively).  As our results will show this both inflates threshold variances and decreases the 

posterior efficiency for parameters related to these thresholds.  In retrospect, a few additional bids at 

the upper end of the spectrum would have likely been extremely beneficial for this application.  As 

we will show below, our LTE estimator can also be used for guidance in bid design.   

Table 4 captures analogous sample statistics for the RR application.  In general, the 

distributional pattern of thresholds across relevant bid brackets is similar to the one observed for the 

GC application.  As in the former case, a substantial proportion of individuals issued a more 

affirmative response than DY even at the highest bid.  This leaves the upper bound for T4 

undefined for 64 of 113 cases.  It should be noted, however, that the two highest relevant bins with 

finite bounds are only sparsely populated.  This suggests a strong dichotomy in this sample, with 

approximately 50% of participants switching to DN by $114, and the other half reluctant to declare 

certain rejection along the entire bid range.  We will revisit these bid design issues in our discussion 

of results and in the concluding section. 

 

Estimation Results 

We estimate all models using the following vague but proper parameter settings for our 

priors:   and .00, =10, 2,v T= =0 0μ V +

cify 

=
r0 kS I 7  For each application we also estimate a version 

with independent thresholds, where Σ is restricted to a diagnonal matrix.  For these cases we spe

inverse-gamma (ig) priors for the T variance terms with shape and scale parameters set to ½.  We 

first test all models using simulated data to assure the accuracy of our computational algorithm.  For 

all actual estimation runs we discard the first 2000 draws generated by the Gibbs Sampler as "burn-

ins", and retain the following 1000 draws for posterior inference.  We evaluate the performance of 

the posterior simulator using Geweke's [20] convergence diagnostics (CD), and inefficiency (IEF) 

scores as described in Chib [21].  The CD scores clearly indicate convergence for all our models.  
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The IEF scores, which convey the degree of (undesirable) autocorrelation in the series of posterior 

draws, range from the single digits (i.e. near-independence) for most slope coefficients and variance 

terms to 20-40 for the somewhat less clearly identified variances and covariances associated with 

higher thresholds.8   

Table 5 summarizes results for the GC application.  The left half of the Table shows 

posterior means and standard deviation for threshold coefficients, while the right half depicts 

posterior results for the elements of in terms of standard deviations and correlations.  Within each 

half the first two columns pertain to the fully correlated model and the last two columns to the 

model with independent error terms.  The estimates for the first threshold (T1) flowing from the 

independent model can be interpreted as those that would be obtained from a binary estimation 

framework that treats all responses other than DY as DN. 

Σ

We can immediately realize that the error terms in the full model exhibit close to perfect 

correlation for all six threshold pairs.  Moreover, these correlation terms are estimated with very 

high precision as indicated by the negligible magnitudes of the respective posterior standard 

deviations.  This casts serious doubt on the legitimacy of the independent model.  To allow for a 

more rigorous comparison we compute the marginal likelihood for each case using the simulation 

method outlined in Chib [22].  These terms are given in log form toward the bottom of the right half 

of Table 5.  The difference between the marginal likelihood of the full model and the independent 

model yields a logged Bayes Factor (BF) of 760.4 (last row of the Table).  Using the interpretation 

thresholds for BFs given in Kass and Raftery [23] this result provides "decisive" evidence in favor of 

the full model.  It is also evident from the Table that the independent model produces higher 

posterior standard deviations for virtually all slope coefficients.  The full model, with its ability to 

exploit threshold linkages via unobservable effects, uses the data more efficiently.  It is thus better 
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suited to update model priors and reduce posterior uncertainty.  We will henceforth focus on the full 

model in our examination of posterior results. 

Not surprisingly given our discussion of bid ranges and relevant bounds above the posterior 

means of estimated threshold standard deviations increase from the lowest threshold (57.44) to the 

highest (244.08).  The posterior standard deviations for threshold coefficients follow the same 

pattern, suggesting a general trend of decreasing posterior precision as one moves from the lowest 

to the highest threshold.  However, some slope coefficients, such as those corresponding to income 

and the economic security score (econ) are estimated with relatively high precision across all four 

cases. 

Since the set of regressors is held constant across all thresholds we can distinguish between 

variables that exert an even shift on the entire value distribution from those that have varying effects 

across thresholds.  Logically, the former can be interpreted as regressors that primarily affect the 

expectation of the value distribution, while the latter are likely to affect both the expectation and 

variance.  In our case virtually all explanatory variables exhibit noticeable changes in posterior means 

across thresholds.  For example, the empathy indicator shifts the lower thresholds to the left and the 

highest threshold to the right by comparable magnitude.  Thus, omitting reminders of costs to 

others in a survey version does not necessarily lead to lower expected WTP (the puzzling conclusion 

reached by the original authors), but rather increases the spread of the value distribution. This subtle 

but important difference in inference becomes only apparent when all four thresholds are estimated.  

A similar finding holds for the market indicator – participants from the market area served by GC 

power have lower estimates for T1 and T2 (i.e. switch from DY to PY and from PY to NS at lower 

bids), but are also more reluctant to enter the DN category.  Thus, market participants exhibit a 

wider spread in underlying valuation than non-market respondents.  In contrast, the direction of 

marginal effects remains unchanged across thresholds for the knowledge score (know), the economic 
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security score (econ) and income.  A better understanding of GC power generation and related 

environmental issues, as measured by know, shifts the entire value distribution to the right, with a 

slightly increasing trend across thresholds.  On the other hand, individuals with high preference for 

economic security over environmental conservation, i.e. a high econ score, can be associated with 

both a strong leftward shift of their value distribution, and a tighter overall distribution.  The latter 

insight stems from the fact that the leftward shift for the highest threshold (-17.22) is substantially 

larger than the leftward shift for the lowest threshold (-5.76).  This reduces the overall range of the 

underlying valuation.  As expected, income exhibits an efficiently estimated positive effect on all 

thresholds.  Since its marginal effect also increases from lowest to highest  threshold, we can infer 

that higher income also translates into higher variability of underlying valuation.   

Table 6 summarizes estimation results for the RR application.  In this case, the posterior 

mean for error correlation between T1 and T4 is essentially zero.  This is not all that surprising given 

our recoding of all infra-marginal responses into a single "slush category", which likely weakened any 

existing correlation patterns.  A decisive Bayes Factor of 32.7 lends formal support to the 

independent specification.  Given the near-zero error correlation, the full and independent models 

generate very similar results for coefficient estimates.  The income effect is perfectly analogous to 

the one discussed for the GC case.  Interestingly, a high score on the preference ladder for rangeland 

environmental health, as measured by the quality indicator, translates into a dramatic rightward shift 

for T1, but has a comparatively smaller positive effect on T4.  Thus, individuals with strong 

environmental preferences for the rangeland ecosystem have a much tighter value distribution and 

likely a much higher expected value than others.  Perhaps the most important result for this 

application is the effect of providing more detailed information, measured by the info indicator.  

Contrary to expectations, the added information does not shift the entire value distribution to the 

right, but rather leads to an increased variability in values.  This illustrates how the LTE framework 
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can be employed to test if information provision or other design treatments have the desired or 

expected effect on the underlying value distribution. In this case, it appears that the added 

information either confused some respondents or, more likely, split them into separate camps with 

respect to their preferences for the proposed vegetation management plan.   

 Aside from marginal effects of explanatory variables, the predicted location of thresholds will 

be of central interest in most applications.  We generate posterior predictive distributions (PPDs) for 

some combinations of regressors by combining the corresponding settings for with parameter 

draws flowing from the Gibbs Sampler.  For details on the derivation and interpretation of PPDs 

see for example [24; 25].  Table 7 captures the posterior means and standard deviations for these 

PPDs for both the full and independent model of the GC application.   

iX

The posterior means for T1 and T2 generated by the independent model correspond closely 

to the authors' original estimates for WTP under different recoding approaches ([14], p. C-11).  The 

most important result captured in Table 7 is the pronounced difference in posterior means between 

the full and the independent model.  Specifically, the independent model tends to over-predict the 

lowest threshold and severely under-predicts the highest threshold.  The latter shortcoming could 

have serious implications in policy applications where a conservative estimate of welfare losses is 

sought, which would logically shift the inferential focus to the upper end of the value distribution.   

 Figure 2 depicts PPDs for both applications and all thresholds for baseline regressor 

settings, with preference scores and income held at the sample mean.  The Figure largely confirms 

the numerical results discussed above: Threshold variances increase from lowest to highest 

threshold, and all threshold distributions cover a relatively wide range of the underlying value 

distribution.  The predictive expectations (vertical lines) for the first and last threshold describe the 

expected range of WTP for an individual with these baseline characteristics.    In the GC case, the 

value distribution for a prototypical stakeholder can be expected to lie between $50, the predictive 
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expectation of the lowest threshold and an upper bound of approximately $220, the predictive mean 

of the highest threshold.  Similarly, for the RR application the WTP distribution for a baseline 

consumer type is expected to lie between $40 and $300.  For both applications it is clear from the 

PPD of threshold four that the upper end of the value distribution may be substantially higher for 

some baseline individuals, perhaps as high as $500 in the GC case, and $800-900 for the RR case.  

For the RR application, a substantial segment of baseline individuals may have pronounced negative 

WTP for the proposed rangeland improvements, as is evident from the lower tail of the PPD for 

threshold one.   

 

A Test for Threshold Symmetry 

 Our modeling framework also allows for an examination of the maintained assumption in 

Alberini et al.'s [11] primary Random Valuation Model that both inner and outer thresholds are 

equidistant to the expectation of the value distribution.  We can cast this assumption as a linear 

model restriction, i.e  or, equivalently, a linear parameter restriction, i.e. ( ) ( )( 4 3 2 1 0i i i iE t t t t− − − =)

( ) ( )− − −4 3 2 1β β β β = 0 .  Based on Figure 1, such dual symmetry seems unlikely.  We also perform a  

formal model comparison, which produces a logged Bayes Factor of 104.7 in favor of the 

unrestricted specification.9  Therefore, this dual-symmetry assumption is not supported by the 

observed data for our application.  A Random Valuation Model based on such an assumption would 

be mis-specified.   

 

Conclusion 

 We propose a new estimator for MBUC data that utilizes all observed response patterns for 

the simultaneous estimation of the full set of underlying decision thresholds.  Our Latent Threshold 

Estimator has several advantages over existing approaches that process MBUC data, or - more 
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generally - data from value elicitation with uncertain response options.  It does not require stringent 

ex ante restrictions on value distributions or threshold locations, and handles repeated infra-marginal 

responses in a straightforward manner.  By allowing thresholds to be fully correlated our framework 

exploits linkages across thresholds via unobservable effects.  This can produce measurable efficiency 

gains, as evidenced by our GC application.   

More importantly, the LTE framework provides insights into the marginal effect of 

regressors that would remain undiscovered using other estimation strategies.   It clearly highlights if 

a given regressor primarily shifts the entire value distribution (and thus its expectation), or if it also 

affects the spread of the distribution.  This can be exploited to examine the impact of changes in 

survey format, such as the provision of additional information, or altering the scope or scale of a 

proposed policy intervention.   

Furthermore, by returning the full distribution of the outer thresholds, the LTE approach 

provides clear and explicit guidance as to the variability in the range of underlying values that can be 

expected for a given stakeholder population.  This can be very helpful in devising  efficient bid 

designs for final survey versions.  Importantly, it opens the door for MBUC designs aimed at the 

accurate estimation of the upper decision threshold.  This, in turn, broadens the applicability of the 

MBUC format to environmental policy scenarios with a primary focus on loss prevention or damage 

assessment.   

 Naturally, important caveats remain.  Our modeling framework is fully anchored in the 

assumption that individuals are truly unable to assign a point value estimate to a given non-market 

amenity or service due to latent and potentially permanent uncertain factors.  Thus, we rule out the 

possibility that respondents are unwilling to exert sufficient effort to zoom in on a single value, a 

concern raised by Alberini et al. [11].  Neither do we address the issue of bid ordering effects on 
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measured values examined in that study, although our LTE framework could potentially be useful in 

identifying and controlling for such effects.   

In general, our modeling assumptions appear reasonable and are certainly less stringent than 

those required for alternative estimation strategies.  We believe that the LTE approach is a natural 

and to date overlooked extension of the MBUC framework.  It has the potential to substantially 

broaden the applicability of this elicitation approach.   We also conclude that the common practice 

of using MBUC data solely to derive an estimate for a single threshold, interpreted as point estimate 

of WTP, leaves useful information untapped and can produce misleading results if thresholds are 

highly correlated.   
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Appendix A: Relevant and shared bounds in the LTE framework 

Case 1: Full threshold identification  

This marks the ideal scenario in which all possible answer categories are observed for a given 

respondent.  It leads to finite and unique lower and upper bounds for each threshold.  For example, 

consider again the response pattern used previously in the discussion of [10]'s DUDE estimator: 

1 2 3 4 5 6 7, , , , , ,b DY b PY b PY b PY b NS b PN b DN→ → → → → → →  (A1) 

This implies the following boundary conditions for thresholds: 

1 1 2 4 2 5 5 3 6 6 4, , ,b t b b t b b t b b t b< < < < < < < < 7

i

7

 (A2) 

Bid  contributes no new information to the identification of threshold locations and becomes 

irrelevant.  Also, the general ranking condition  is automatically assured through 

the increasing bid amounts. 

3b

1 2 3 4i i it t t t< < <

Case 2: Partial threshold identification 

Now consider the following response pattern: 

1 2 3 4 5 6 7, , , , , ,b DY b PY b PY b PY b PN b PN b DN→ → → → → → →  (A3) 

Compared to the previous case, the NS category has been skipped.  The resulting boundary 

conditions are: 

1 1 2 4 2 5 4 3 5 6 4, , ,b t b b t b b t b b t b< < < < < < < <  (A4) 

Thresholds two and three share the same upper and lower bounds.  In our computational algorithm 

we handle this case by drawing such partially identified thresholds simultaneously from their shared 

interval, and imposing the relevant ranking condition ex post. 
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Notes:

 
1 A general discussions of why such uncertainty may arise is given i.a. in [1] and [2].  

2 In this study we follow [7], [10], and [11] and interpret NS as a response that describes an 

underlying value segment that is wedged between the segments for PY and PN.  

3 In the standard case, the re-mapping is imposed uniformly for the entire sample (e.g. all PYs are 

recoded to DYs, etc).  More recent contributions aim at a subject-specific recoding (e.g. [12], [16]).  

4 We thank Mary Evans and V. Kerry Smith for providing this data set and all accompanying 

documentation. 

5 The exact wording of the MBUC question was: "How would you vote on this proposal if passage 

of the proposal would cost your household these amounts every year for the foreseeable future?" 

6 The main reason for this phenomenon is probably that the response table listed the NS category in 

the last column as opposed to a column wedged between the PY and PN options.  Once a 

respondent "jumped" to that column, she did not return to the other categories in the Table. A 

detailed discussion of this and other possible MBUC formatting effects is beyond the scope of this 

study. 

7 "Proper" prior distributions are those that integrate to one over their entire range. This 

characteristic is required for the derivation of Bayes Factors for model comparison, an important 

consideration in our case.  "Vague" refers to the fact that the distribution has a relatively large 

variance, which preempts substantial prior density mass for any specific segment of the distribution 

range.  This reflects the absence of any existing information to aid in the construction of priors. 

8 Detailed performance scores for all models are available from the authors upon request. 

9 We can derive this Bayes Factor of via the Savage-Dickey Density Ration (SDDR) .  Details of 

these computations are available upon request.  
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Table 1: Descriptive Statistics for the GC Application 
Response Statistics 

identification 

response category obs 
share of 

total   thresholds obs covariances   

DY 2349 0.49 t1 276 t1/t2 204
PY 638 0.13 t2 204 t1/t3 302
NS 469 0.10 t3 173 t1/t4 304
PN 458 0.10 t4 152 t2/t3 147
DN 896 0.19 t2/t4 254

t3/t4 122
Total 4810 1 

Sample Statistics 

  mean std min max % "1"   obs.

empathy indicator - - - - 20.00% 370
market indicator - - - - 28.11% 370
knowledge score 0 1 -3.53 0.77 370

econ security score 0 0.79 -1.18 2.47 370
income ($1000) 55.02 31.31 10 150 370
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Table 2: Descriptive Statistics for the RR Application 

Response Statistics 
identification 

response category obs. share of 
total  thresholds obs. covariances obs.

DY 367 0.36 t1 62 t1 & t4 31 
PY/NS/PN 458 0.45 t4 38 

DN 192 0.19 

Total 1017 1 

Sample Statistics 

mean std min max % "1" obs.

quality score 0 0.94 -3.5 0.77 113
information version - - - - 39.82% 113

income ($1000) 73.38 60.55 8 250 113
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Table 3: Threshold Identification for the GC Application 

relevant bounds T1(DY->PY) T2(PY->NS) 
lower upper range   fi nfi total   fi nfi total 

0 0.1 0.1 19 3 22 0 3 3 
0.1 0.5 0.4 10 0 10 1 0 1 
0.5 1 0.5 10 1 11 4 2 6 
1 5 4 26 11 37 11 17 28 
5 10 5 28 4 32 12 6 18 
10 20 10 42 11 53 19 16 35 
20 30 10 34 11 45 29 18 47 
30 40 10 32 3 35 15 7 22 
40 50 10 13 3 16 28 6 34 
50 75 25 25 9 34 32 14 46 
75 100 25 15 3 18 21 10 31 
100 150 50 19 8 27 22 10 32 
150 200 50 3 0 3 10 2 12 
200    Inf Inf 0 27 27 0 55 55 

column total 276 94 370 204 166 370 
% of sample 75% 25% 100% 55% 45% 100% 

relevant bounds T3(NS->PN) T4(PN->DN) 
lower upper     fi nfi total   fi nfi total 

0 0.1 0.1 0 1 1 0 0 0 
0.1 0.5 0.4 1 0 1 0 0 0 
0.5 1 0.5 0 1 1 0 1 1 
1 5 4 2 13 15 0 9 9 
5 10 5 3 5 8 2 4 6 
10 20 10 15 13 28 4 8 12 
20 30 10 22 14 36 9 5 14 
30 40 10 13 7 20 22 4 26 
40 50 10 16 7 23 14 3 17 
50 75 25 26 13 39 20 5 25 
75 100 25 35 10 45 31 4 35 
100 150 50 25 12 37 32 8 40 
150 200 50 15 5 20 18 3 21 
200    Inf Inf 0 96 96 0 164 164 

column total 173 197 370 152 218 370 
% of sample 47% 53% 100% 41% 59% 100% 

 

fi = fully identified (no other threshold shares same bounds for a given individual) 
nfi = not fully identified (threshold shares bounds with other thresholds for a given individual or bounds are not finite) 
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Table 4: Threshold Identification for the RR Application 

relevant bounds T1(DY->PY/NS/PN) T4(PY/NS/PN->DN) 
lower upper range   fi nfi total  fi nfi total 

  -Inf 0 Inf 0 34 34 0 0 0 
0 1 1 4 0 4 0 0 0 
1 12 11 6 1 7 0 1 1 
12 31 19 11 3 14 5 3 8 
31 52 21 16 2 18 6 2 8 
52 83 31 8 2 10 9 2 11 
83 114 31 9 3 12 10 3 13 
114 157 43 5 0 5 6 0 6 
157 282 125 3 0 3 2 0 2 
282    Inf Inf 0 6 6 0 64 64 

column total 62 51 113 38 75 113 
% of sample 55% 45% 100% 34% 66% 100% 

fi = fully identified (no other threshold shares same bounds for a given individual) 
nfi = not fully identified (threshold shares bounds with other thresholds for a given individual or bounds are not finite) 
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Table 5: Estimation Results for the GC Application 

Full Independent Full Independent

coeff.   
post. 
mean 

post. 
std   

post. 
mean 

post. 
std 

standard 
deviations / 
correlations  

post. 
mean

post. 
std   

post. 
mean 

post. 
std

T1: T1 57.44 2.40 52.45 1.99
constant 0.24 3.27 20.42 4.80 T1/T2 0.96 0.01 - - 
empathy -6.13 3.70 -11.78 5.70 T2 96.64 4.70 66.34 2.59
market -2.67 3.46 -7.56 5.40 T1/T3 0.91 0.01 - - 
know 2.26 2.01 6.03 2.73 T2/T3 0.97 0.01 - - 
econ -5.76 2.30 -17.89 3.42 T3 151.08 9.50 83.41 3.59

income 0.76 0.06 0.53 0.07 T1/T4 0.87 0.02 - - 
T2: T2/T4 0.95 0.01 - - 

constant 3.06 4.23 33.82 5.57 T3/T4 0.98 0.00 - - 
empathy -8.18 4.48 -10.09 6.87 T4 244.08 20.89 125.79 6.98
market -2.57 4.22 -4.66 6.44
know 4.73 2.94 8.26 3.38
econ -8.69 3.23 -24.10 4.14

income 1.32 0.10 0.74 0.08
T3: 

constant 6.11 5.54 45.95 6.43
empathy -1.76 5.69 -5.08 7.56
market -0.81 5.56 -2.59 7.07
know 4.42 4.26 5.86 4.17
econ -10.92 4.61 -27.33 5.05

income 2.10 0.17 1.06 0.10
T4: 

constant 16.88 8.32 46.94 8.31
empathy 5.54 8.42 2.20 8.64
market 4.02 7.99 5.62 8.28 Model comparison 
know 6.60 6.65 4.14 5.96
econ -17.22 7.29 -28.20 6.77 log mL 3373.19 4133.58 

income 3.45 0.32 2.01 0.17 log BF 760.39

post. mean = posterior mean / post. std. = posterior standard deviation / coeff. = coefficients 
log mL = logged marginal likelihood / log BF = logged Bayes Factor 
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Table 6: Estimation Results for the RR Application 

Full Independent Full Independent

coeff.   
post. 
mean 

post. 
std   

post. 
mean

post. 
std 

standard 
deviations / 
correlations  

post. 
mean

post. 
std   

post. 
mean

post. 
std 

T1: T1 87.09 8.08 89.01 8.29
constant -5.94 8.64 -5.00 7.97 T1/T4 0.05 0.15 - - 
quality 13.06 6.92 13.43 6.95 T4 272.23 32.53 288.26 37.48
info -1.22 8.45 -1.57 8.38

income 0.62 0.12 0.60 0.11

T4: 
constant 11.93 9.84 11.99 9.80
quality 3.10 9.35 2.42 10.00 Model comparison 
info 2.06 9.75 1.75 9.98 log mL -529.22 -496.55

income 3.19 0.44 3.30 0.46 logBF 32.67

post. mean = posterior mean / post. std. = posterior standard deviation / coeff. = coefficients 
log mL = logged marginal likelihood / log BF = logged Bayes Factor 
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Table 7: Posterior Predictive Results for the GC Application 

full model independent model 

type description mean std mean std 

1 
empathy, no market, 
mean know, mean 
econ, mean income 

T1 48.16 31.80 50.79 34.87 
T2 84.81 49.97 67.14 46.45 
T3 130.90 79.43 88.75 58.05 
T4 215.91 134.02 119.70 85.28 

2 
empathy, market, 
mean know, mean 
econ, mean income 

T1 47.77 32.40 49.18 35.12 
T2 86.36 54.02 64.55 44.74 
T3 137.88 86.23 88.59 60.41 
T4 230.45 140.49 121.32 83.98 

3 

no empathy, no 
market, mean know, 

mean econ, mean 
income 

T1 43.91 31.13 46.23 34.19 
T2 79.05 50.97 63.01 43.94 
T3 131.55 81.43 88.06 58.60 
T4 226.74 136.98 120.56 84.95 

4 
empathy, no market, 

mean know, high 
econ, mean income 

T1 43.88 30.29 47.02 33.56 
T2 79.68 49.59 60.73 45.39 
T3 126.41 79.28 78.24 56.79 
T4 207.60 133.07 116.37 82.13 
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Figure 1: Decision Thresholds for Polychotomous Responses and 

the Random Valuation Model 
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Figure 2: Posterior Predictive Densities for Baseline Types 
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Thresholds means are indicated with vertical lines. 
Regressor settings for GC application:  
empathy = 0 (standard survey version highlighting costs to others); market = 0 (national sample); mean know score 
(approx. 0), mean econ score (approx. 0), mean income (approx. $55,000, 1994 dollars) 
Regressor settings for RR application:  
mean qualituy score (approx. 0), no extra info, mean income (approx. $73,500, 2005 dollars) 
 




