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Non-Technical Summary

This paper analyses the efficiency of Italy’s local electricity distributors according to two
different measurement techniques. Distribution zones belonging to the national monopolist
(ENEL) are compared with municipally-owned utilities (MUNIs) which serve individual
towns and are usually owned by City Councils (with a few of them currently undergoing
privatisation). ENEL-MUNI comparisons are displayed subject to a number of caveats, and
statistical techniques are used in order to cross-check the results stemming from different
methodologies.

The paper’s main finding is that comparative efficiency analysis failed to spot any
systematic efficiency superiority of ENEL’s local units over municipal utilities. Overall
efficiency comparison outcomes were mixed, thus suggesting that a case-by-case approach
should be adopted by Italy’s regulatory and governmental authorities when dealing with the
territorial reform of electricity distribution. Similarly, any ownership transfers and/or mergers
involving ENEL’s units and MUNIs should depend on the varied efficiency records which
were detected according to different regional and economic scenarios.
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1. Introduction

This paper analyses technical efficiency of local electricity distribution in Italy (1994,
1996) by using both econometric (deterministic frontier, stochastic frontier) and linear
programming (Data Envelopment Analysis) tools. Cross-sectional data were examined with
respect to

(a) ENEL - the Italian electricity monopolist whose restructuring and privatisation is
now under way - and its local distribution branches;

(b) municipal authorities (MUNIs), i.e. town-based electric utilities which sometimes
hold franchises for electricity distribution within city limits.

Estimation results highlighted non-exhaustion of scale economies at sample-mean
values. Efficiency score series stemming from both econometric and linear programming
techniques showed that Southern distributors were relatively under-represented among top
units even after allowing for several exogenous environmental variables. The external effects
which proved to influence technical efficiency in electricity distribution were consumer
density, the percentage of industrial customers, the geographical nature of areas served
(metropolitan areas, mountains, etc.), and the interaction between ENEL’s units and
municipal utilities in those towns featuring ENEL and MUNIs bordering each other.

Pooled ENEL-MUNI analysis failed to spot any systematic superiority of ENEL’s units
over municipalities. Generalisation on the ENEL-MUNI efficiency dispute was then
discarded, in favour of case-by-case comparison. Paired-samples statistical testing (both
parametric and non-parametric) showed limited agreement between Stochastic Frontier
Estimation (SFE) and Data Envelopment Analysis (DEA) efficiency outcomes. Statistical
concordance was more often found when comparing SFE and DEA models sharing the same
input-output specification. Again, no apparent superiority of ENEL over MUNIs was detected
by DEA linear programs. One-to-one comparisons confirmed that the outcomes were mixed,
with ENEL’s local branches outperforming MUNIs in metropolitan and (sometimes) rural
areas, and MUNIs faring better in medium-sized, Po Valley towns (Northern Italy). Results
were not clear-cut for Alpine and rural distributors. The latter - however - should be
considered on a separate basis in that they will probably need permanent subsidies to meet
universal service obligations, irrespective of the future structure of electricity distribution in
Italy. Comparable (e.g., urban) units might - on the other hand - be subject to yardstick
regulation based upon DEA’s ‘efficient peer’ outcomes.

 2. Stochastic Frontier Estimation

This Section is concerned with the efficiency analysis of Italy’s local distributors (ENEL)
in 1996. As clarified later on, stochastic frontier methods are able to separate inefficiency
effects from random noise/measurement error, by assuming specific statistical distribution
functions for the random disturbance term. Modern computer packages are also able to
calculate - in addition to standard numerical estimates - some interesting efficiency rankings
of firms in the sample. Such rankings, albeit elegant and easy to use for policy-making
purposes, strongly depend upon the variables which are chosen as cost determinants by the
econometrician. We shall show how efficiency outcomes are sensitive to model specification
issues by running alternative regressions featuring different environmental variables. In
particular, the purpose of this Section is to highlight to what extent Southern local electricity
units are really less efficient than their Northern counterparts. The analysis will allow for
those external variables which are generally regarded as ‘peculiar exogenous features’, thus
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putting Southern ENEL distributing areas to a substantial disadvantage when compared to
Northern distributors.

Deterministic frontier analyses have been most used in the Sixties and early Seventies2.
The need for separating efficiency errors - i.e., those due to the firm erroneously shifting
within its production possibilities set - from purely random noise led theoretical researchers
in production econometrics to devise a brand-new framework which was capable of dealing
with ‘efficiency errors’ (one-sided), as separated from either noise or imperfect information3.

The stochastic frontier production function was independently proposed by Aigner,
Lovell, and Schmidt (1977), and Meeusen and van den Broeck (1977). The original
specification involved a production function for cross-sectional analysis, featuring an error
term which had two components, the first one to account for random effects (a traditional,
two-sided disturbance term), with the second one accounting for technical inefficiency (a one-
sided error). This model can be expressed in the following form:
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The two-sided random error (v) is assumed to be identically and independently
distributed as a normal, with zero mean and constant variance. In particular, such a
traditional two-sided random disturbance is independent of u, which is assumed to be a non-
positive random variable accounting for technical inefficiency in production. The ‘efficiency

u is often assumed to have a truncated normal, half-normal, gamma, or exponential
distribution4. If a cost function is used instead of a production relationship, the one-sided
error will be non-negative, thus reflecting efficiency errors leading the firm to shift above its
cost-minimising contour.

The original stochastic frontier specification has been used in a vast number of empirical
applications over the past two decades. The above, standard specification has also been
altered and extended in a number of ways. These extensions include the specification of more
general distributional assumptions for the efficiency error (u), such as the two-parameter
gamma distribution; the consideration of panel data and time-varying technical efficiencies;
the extension of the methodology to cost functions and also to the estimation of equation
systems. A number of comprehensive reviews of this literature are available, such as those
proposed by Forsund, Lovell, and Schmidt (1980), Schmidt (1986), Bauer (1990), and Greene
(1993).

Battese and Coelli (1995) proposed the ‘Technical Efficiency Effects’ (TEE) model, which
will be used here. Their stochastic frontier specification is equivalent to the Kumbhakar,

                                                     

2 Nerlove (1963); Christensen and Greene (1976).

3 Hebden (1983); McElroy (1987).

4 See also Greene (1990).
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Ghosh, and McGuckin (1991) proposal, with the exceptions that allocative efficiency is
imposed ex ante - so that all firms in the sample may only be technically inefficient - and that
panel data estimation is permitted. The Battese and Coelli (1995) model specification may be
expressed as follows:

  ).( normal truncated a as ddistribute iswhich  error, efficiency positive-non a =
of tindependen ,0 a as i.i.d. iswhich  e,disturbanc random a 

data); panel eaccommodat to subscript time a(with  earlier defined as are ,,

,,...,1   ;,...,1      ),(

2

Tit

it

itit

itititit

Nu

),N(v

XY

where

TtNiuvXY

σ

β

β

=

==++=

The novelty of this model is that the non-positive (non-negative) efficiency errors are
intended to account for technical inefficiency in production (cost), while being assumed to be
distributed according to a particular truncated normal. The truncated normal distribution for
the efficiency errors is intended to incorporate external effects (‘cost drivers’) which might
influence a firm’s efficiency, even though they are not controllable by the DMU. In other
words, such external effects coincide with the ‘second-stage’ variables outlined by Lovell
(1993). Technically, the incorporation of environmental variables in the stochastic frontier
model - which allows the investigator to skip a second-stage (censored) regression of
efficiency scores, thus gaining in terms of estimation efficiency - takes place by devising the
following normal distribution (to be truncated at zero) for the efficiency error u:
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Therefore, the efficiency error’s distribution is truncated at zero, but its mean is neither a
constant nor zero itself. On the contrary, environmental effects are ‘internalised’ in the
efficiency error’s distribution by centring the truncated normal function on a value which
results from the contemporaneous, auxiliary regression of the distribution’s mean (m) on
those external effects (socio-economic variables) which are not directly controllable by the
decision-making unit. A single-stage estimation procedure featuring an auxiliary regression
on environmental effects being ‘nested’ in the efficiency error’s distribution function will
(ceteris paribus) deliver more reliable parameter/efficiency estimates than those that would
have been obtained by using a two-stage estimation procedure. The above model, then, allows
for the dependence of the inefficiency effects in the two estimation steps.

The above specifications have been expressed in terms of a production function, with the
u efficiency errors being interpreted as technical (in)efficiency effects which cause the firm to
erroneously shift below its stochastic production frontier. However, if we wish to specify a
dual stochastic-frontier cost function, we should only alter the error term’s specification by
imposing that u is non-negative, thus meaning that the firm is now erroneously shifting above
its total cost contour (or, alternatively, above its average cost curve). For example, such a
change would give rise to a stochastic total cost function of the type defined below5:

                                                     

5 Recall Uzawa (1964), and Shephard (1970) on duality theory.
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Of course, it is always ε = v + u, and all the assumptions about the peculiar nature of the
efficiency error’s statistical distribution are the same as those previously discussed for the
Technical Efficiency Effects (TEE) model. Within a cost function framework, the u element
obviously defines how far the firm operates above the cost frontier. If allocative efficiency is
postulated ex ante, then the efficiency error will be closely related to the cost of technical
inefficiency. On the other hand, if this assumption is not made, the interpretation of u in a cost
function will be less clear, with both technical and input-allocative6 inefficiencies being
possibly involved. If one uses the TEE model - which assumes allocative efficiency as an a
priori condition - then the interpretation of u within a cost analysis will always be in the sense
of ‘technical’ efficiency7. The stochastic cost frontier proposed above is identical to the one put
forward by Schmidt and Lovell (1979), who also present a log-likelihood function for the cost
model. These two authors note that the log-likelihood function for the cost frontier is the same
as that of the production frontier, except for a few sign changes. The log-likelihood function
for the cost-function analogue of the TEE (production) model was also found to differ from
the production-based version for a few simple sign changes8.

The TEE model being estimated here will instruct the computer program to follow a
three-step procedure in recovering Maximum Likelihood (ML) estimates of a stochastic
translog total cost function for ENEL’s 147 local distribution zones. The three steps being
taken to obtain final ML estimates of the translog parameters, leading to the computation of
estimated efficiency scores (EFFs), are the following:

(a) Ordinary Least Squares (OLS) estimates of the translog total cost function are
obtained. All β estimators, with the exception of the intercept, will be unbiased;

(b) a two-phase grid search over the γ parameter space is conducted, with the
β parameters (except for the constant) being set to their OLS values, and both the constant and
variance (σ−squared) terms being adjusted according to the Corrected Ordinary Least Squares
(COLS) formula presented in Coelli (1995). Any other parameters - such as those relating to
environmental effects, or Zs - are set to zero in this grid search;

                                                     

6 Unless differently stated, throughout this paper we shall assume that ‘allocative’ inefficiency relates to the
optimal choice of inputs according to their relative prices. This ‘input-allocative’ version of inefficiency is the
one used in production theory (Koopmans, 1951; Farrell, 1957), and will also be employed in the DEA section.

8 See Coelli (1996a).
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(c) the values selected in the grid search sub (b) are used as starting values9 in an
iterative procedure (which makes use of the Davidon-Fletcher-Powell Quasi-Newton
algorithm), so as to obtain final Maximum Likelihood (ML) estimates - and subsequent
efficiency scores (EFFs) - for each firm in the sample. Productivity indices10 might also be
worked out by using efficiency ratios from one period to another. The model described above
is capable of handling cross-sectional, time-series, and panel data analyses.

The main output of our analysis will be made up of standard ML parameter estimates -
resulting from the three-step procedure outlined above – plus scale economies statistics.

We worked on 147 ENEL local distribution zones (1996) and instrumented a translog
total cost function within a stochastic frontier framework. The first, most general model was
devised as follows:
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Each zone within ENEL is concerned with both electricity distribution and supply. We
gained access to distribution data as separated from supply figures. With respect to ENEL’s
sample of 147 local distribution zones for the financial year ending 31 December 1996, we
were interested in computing the following values, to be inserted in our total cost model.

(a) total distribution cost (TDC), which is the dependent variable in the translog cost
function; it is made up of capital and labour costs, plus materials (goods and services supplied
by third parties), which are seen as ‘residual’ cost components;

                                                     

9 Of course, if starting values are specified ex ante by the econometrician, the computer program will automatically
skip the first two steps of the above procedure.

10 Cf. Törnqvist (1936), and Malmquist (1953).
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(b) price of labour (pl), being obtained as the ratio between labour cost (LC) and average
number of employees (N) at 31 December 1996. Data on part-time employees are not released
by ENEL. However, part-time jobs are not particularly common in the Italian electricity
sector, so that one is led to suppose that such values would not have altered the labour price
figure considerably. Therefore,

;/NLCpl =

(c) price of capital (pk), being computed as the ratio between capital costs and the length
of distribution lines. This is clearly a proxy value for the ‘user cost’ of capital. With ENEL’s
zones not being separately floated on the stock market, this was the only concrete possibility
of calculating the unit cost of capital, given that financially-based measures such as those
resulting from the CAPM method had to be ruled out. Within a cross-sectional analysis, no
correction for either depreciation or real interest rates is needed. More generally, the (unit)
user cost of capital should be calculated as
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This formula is a simplified version of the Christensen and Jorgenson (1969) expression
reported in Atkinson and Halvorsen (1980). It is intended to represent the rental price of
capital, which includes an arbitrary depreciation charge. Whereas for power stations the
expected economic life ranges from 20 to 30 years depending on technology, distribution
networks have a longer expected life, due to slower technological progress. For example, it
would be reasonable to suppose that the depreciation charge per year for electricity
distribution is in the neighbourhood of 2.5%, thus reflecting the implicit assumption that a
distribution network’s expected economic life is around 40 years. Looking at Italy, the real
interest rate from 1993 to 1996 has gradually fallen as a result of decreasing nominal rates and
pretty stable inflation rates. If we had a time series to work on, it would not be unfair to
assume a 7% nominal interest rate on risk-free assets (Italian Treasury Bonds) from 1992-93 to
1995 and 2.5% per-year inflation over the same period, leading to r = 4.5% on a yearly basis.
This would imply

(r + δ) = 7% = 0.07.

Of course, within a cross-sectional analysis such a correction factor for the user cost of
capital would simply re-scale the main figures. However, since we are preparing to receive
further data from ENEL in the future, we applied the ‘rental price of capital’ correction to our
figures. If one considers the re-scaling factor, our actual expression for the user cost of capital
- which will be regarded as the ‘price’ of capital in our following econometric analysis - is
given by
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where COSTMTBT is total cost of capital at each zone (constructed as the sum of costs
relating to both medium-voltage and low-voltage plants) and LINES is the length of
distribution networks (in kilometres), again including both medium-voltage and low-voltage
lines, plus some high-voltage connections being used by local units in order to reinforce the
network11;

(d) price of materials (pm), being computed as the ratio between total cost of third-party
deliveries and the number of transformers. Such proxy variable is aimed at capturing the
effect of external inputs on total distribution cost. Since materials are generally included in
third-party works by ENEL, we used those costs as the numerator for our proxy price.
Moreover, as materials are especially used in specific plants such as substations and
capacitors, we expressed the materials price in terms of transforming units (substations).
Therefore,

p THIRDPT TRANSm = / .

Materials will be used as a residual input in the cost function. Total cost normalisation -
to be imposed in order to deal with degree-one homogeneity in input prices – has been
usefully carried out by using materials as the ‘numeraire’ input;

(e) traditional output (Y), being viewed as total GWh12 delivered to final customers by
each local distributor in 1996. It includes energy sold to industrial customers, to publicly-
owned enterprises such as Ferrovie dello Stato (Italian Railways), and to residential users in
both urban and rural contexts;

(f) following Neuberg (1977), it should be noticed that energy delivered to final
customers is not always really exogenous. With special reference to non-regulated public
utilities such as Italian ones, exogeneity of output might be dubious, in the light of
considerable freedom being conferred upon ENEL in planning its output deliveries. In other
words, differently from American-style utilities, ENEL is not compelled by the regulator to
provide its customers with whatever quantities they desire at given (regulated) prices.
Therefore, an alternative definition of output which should be really exogenous to the utility
is the one considering total customers (CUST). Since total customers cannot be controlled by
utilities as everybody has the statutory right to buy electricity from the national operator13, the
‘total customers’ variable has been successfully used in the recent literature14 as a really
exogenous proxy for output. We thus introduce total customers as a second definition of
output within our multiple input-multiple output translog total cost function.

Apart from the standard input-price and output measures to be inserted in the translog
cost function15, a number of ‘environmental’ variables were also specified, in order to capture

                                                     

11 As for ‘fully meshed’ distribution systems with overlapping peripheral high-voltage lines, see Berrie (1983), and
Burns and Weyman-Jones (1994a).

12 Recall that 1 MWh = 1,000 kWh, 1 GWh = 1,000 MWh, and 1 TWh = 1,000 GWh.

13 Total customers are exogenously given by Nature at a certain moment in time.

14 E.g., see Pollitt (1995).

15 This provides for it to be a valid dual representation of a traditional production relationship.
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external factors which might influence the efficiency performance of local ENEL zones, while
being not directly controllable by the single decision-making unit (DMU). These
environmental variables, or ‘external cost drivers’, are listed below:

(i) customer density (DENS), expressed as the ratio between total customers and areas
served by each local distributor within ENEL. This should capture the effect of demographic
features on electricity distribution costs;

(ii) percentage of energy delivered to industrial customers (INDY) on total energy
deliveries: this aims at capturing the (positive) effect of more industrialised environments on
local distribution costs;

(iii) percentage of third-party services - in terms of ‘live’ costs incurred by the utility - on
total distribution cost (THIRD): this is a way of testing the statement that ‘buy’ might be better
than ‘make’ for some rural ENEL zones, and the expected effect of this variable is uncertain;

(iv) percentage of industrial customers on total customers (INDCUS), which is the
counterpart of INDY when ‘total customers’ is assumed to be a proxy for output, and should
have a positive effect on efficiency;

(v) percentage of medium-voltage lines on total lines (INDLIN): this is a proxy for the
percentage of lines being directed to industrial customers on total kilometres of line, and
should also indicate that industrial areas exogenously boost efficiency performances;

(vi) percentage of overhead medium-voltage lines on total medium-voltage lines
(AIRMT). This should capture the effect on costs of building overhead systems instead of
underground cables, the ex ante assumption being that the former should be less costly;

(vii) percentage of overhead low-voltage lines on total low-voltage lines (AIRBT), where
the ex ante assumption is reversed. That is, overhead cables for low-voltage deliveries to
residential customers - especially within crowded urban contexts - should be more expensive
than conventional underground low-voltage wires;

(viii) percentage of primary substations on total transforming substations (PTP). Primary
substations are those carrying out the first and most important transformation task, by scaling
down electricity voltage from high (transmission) to medium. More powerful primary
substations tend to minimise electricity losses (ceteris paribus), even though such stations
might have a negative effect upon short-run technical efficiency because they constitute an
additional burden in terms of capital assets within a short-term setting;

(ix) a series of dummy variables capturing other environmental effects: landscape
features (MOUNTD = 1 if the local zone is made up of more than 50% mountains higher than
700m, capturing the expected cost disadvantage of mountain distribution; SEAD = 1 if the
zone includes coastal areas, capturing higher operating and maintenance costs stemming
from the peculiar nature and weather of most Italian coastline districts), geographical
peculiarities (SOUD = 1 if the distribution zone is located in Southern Italy, which is
commonly perceived as an efficiency handicap; METRD = 1 if the zone is serving a
‘metropolitan area’, according to Italy’s Law no. 142/199016, which might have either positive
or negative effects on efficiency; BORD = 1 if the zone is on Italy’s political borderline, which
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might capture either positive or negative externalities coming from interconnected
neighbouring countries), and other technical-economic characteristics (INDUSD = 1 if the
zone is located within an industrial district, which might show co-linearity with other
variables introduced before, and have similar effects on efficiency; MUNID = 1 if the zone is
either in the neighbourhood of, or perhaps surrounds, a municipal distributor to which
expensive connection has to be granted, thus affecting the zone’s technical performance in a
negative fashion; finally, GEND = 1 if the zone also includes some generating plants, whose
costs might be partially passed through by ENEL onto distributing branches, thus
jeopardising their technical efficiency record due to mere accounting tricks).

The above variables should be carefully assessed until a final model - including a strict
subset of them - is accepted as the closest approximation to the ‘true’ model.

Before concluding this discussion, we would like to introduce some variables to be used
in a following analysis featuring a pooled 1994-1996 sample of both ENEL’s local zones and
municipally-owned electricity distributors. Whereas the main sample was made up of 147
ENEL distribution zones for the financial year 1996, we only managed to get a 1994 cross-
section of 37 municipal utilities running electricity distribution (as a separate business) among
their activities. Moreover, we were not able to obtain data on costs. Differently from ENEL,
municipally-owned distributors are not compelled to deliver their ‘regulatory accounts’ to the
electricity regulator (AEG, or Autorit à per l’Energia Elettrica ed il Gas). Therefore, we only
obtained production figures on municipalities. The input-output data which were collected
are to be used within a dual production function setting.

We decided to pool the two samples, in spite of their different dates, because no
significant technical progress seemed to have occurred for Italian electricity distribution from
1994 to 199617. Furthermore, inflation issues are ruled out a priori since input-output data only
will be used in the pooled regression, with no monetary values involved. Even though
technical progress might have been present to some extent in distribution technology, this
would simply increase the robustness of our results, which - as shown later on - are
sometimes in strong agreement with the view that some municipal distributors, especially in
medium-sized towns and in Lombardy, show higher efficiency levels than their surrounding
ENEL-run electricity distribution zones do.

The production values which were collected for the 37 municipal distributors at 31
December 1994 are as follows:

(a) traditional output definition (Y = GWh delivered to final customers);

(b) alternative definition of output, as CUST (number of customers);

(c) capital values: kilometres of distribution line, all voltages (LINES); number of
transforming plants (substations), both primary and secondary (TRANS);

(d) labour values: number of full-time equivalent employees at 31.12.1994 (N = end-year
average);

                                                     

17 We ran a simple production regression for municipalities over the 1987-1994 interval, and found that the time
trend coefficient was low and insignificant at 5%. This extrapolates low progress from 1994 onwards, too, provided
that one excludes (unlikely) exogenous shocks over the 1994-1996 time period.
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(e) a set of environmental variables, similarly defined as those employed within the
ENEL analysis, except for those ones which could not be built up because of limited data de-
aggregation (for example, AIRMT, AIRBT, and PTP). Among the dummy variables, for
reasons which should be obvious, MUNID was redefined, being now equal to 1 for all
municipalities in the pooled sample, and to 0 for all ENEL zones.

As previously noticed, the above values will not only be useful for (production-based)
econometric analysis, but will also act as crucial inputs for the linear programming method
(DEA) to be discussed at the end of the paper.

It should be noticed that the computer program which we used did not allow the
analysis to include equation systems. Therefore, we excluded the two cost-share equations for
capital and labour. We also have the total number of customers (CUST) as a different output
indicator. Since, as Neuberg (1977) noticed, customers can be separately ‘priced’ as a result of
different tariff schemes being applied to different groups of customers (second-degree price
discrimination - quantity discounts - and so on), we can consider both energy and customers
as two distinct outputs in the total cost function. There are reasons to believe that, in the
absence of effective regulation, customers are much more ‘exogenous’ than GWh of energy
delivered as a measure for output in electricity distribution. The translog total cost function
was normalised in terms of the materials price pm (degree-one homogeneity in input prices).
Non-homotheticity was also guaranteed by full interaction terms.

We took advantage of the TEE model by separating traditional input-output variables
from environmental effects. Therefore, we inserted input prices (capital, labour, and -
implicitly - materials) and outputs only in the translog model, thus confining all
environmental effects18 to a simultaneous, ‘auxiliary’ regression of m on Z (Z is the
environmental effects’ vector). The latter regression defines the mean (m) of the truncated
normal distribution N(m, σ2) which is assumed for the one-sided efficiency error (u). Of
course, u is non-negative, since it represents erroneous shifts of the i-th firm above its total
cost contour (or AC curve), as a result of technical inefficiency. Input-allocative efficiency is
imposed ex ante.

With no starting values being imposed, we estimated the above, general model and
found that some environmental effects either had the wrong sign, were collinear with other
variables, or were statistically insignificant. Therefore, we dropped the percentage of
industrial customers (INDCUS) and lines (INDLIN), together with the percentage of overhead
medium-voltage lines (AIRMT) and the generation dummy (GEND), which were severely
insignificant at 5%. Then, we re-estimated the stochastic frontier model according to the three-
step estimation procedure without inserting INDCUS, INDLIN, AIRMT, and GEND among
our Zs (the environmental regressors). This gave rise to the following outcomes for a
restricted, 12-environmental effects model (labelled ‘Model 12TE’):
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Table 1: Model 12TE: Estimation Outcomes [Dependent Variable: )ln(
mp

TDC
]

Coefficient Relating to
ariable...

Parameter
stimate

Standard Error t-statistic

(Constant) 34.89948 1.01000 34.60205

pl 0.56502 0.28785 1.96287

pl2 -0.51774 0.19900 -2.59764

pk 0.82507 0.39432 2.09387

pk2 -0.49249 0.17600 -2.79739

Y 3.01455 0.98800 3.05093

Y2 0.10035 0.05278 1.90137

CUST 7.17963 0.61400 11.68960

CUST2 0.33661 0.08100 4.15749

plpk 0.97712 0.35500 2.75266

Ypk 0.30703 0.20200 1.51675

pk (CUST) -0.44321 0.19100 -2.32533

Ypl -0.22636 0.20700 -1.09563

pl (CUST) 0.39444 0.18800 2.09511

Y(CUST) -0.13168 0.18800 -0.70018
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EXTERNAL COST DRIVERS

Coefficient Relating to
ariable...

[Dependent Variable: mu]

Parameter
stimate

Standard Error t-statistic

DENS -0.154229 0.039900 -3.866100

INDY -0.184793 0.094196 -1.961780

THIRD -0.284339 0.050200 -5.660420

AIRBT 0.094981 0.029200 3.253540

PTP 0.055148 0.022100 2.496420

SOUD -0.074541 0.065700 -1.135150

MOUNTD -0.003534 0.084300 -0.041950

METRD 0.193281 0.372000 0.519890

MUNID 0.172778 0.075800 2.280120

SEAD -0.072725 0.069800 -1.041940

BORD -0.189787 0.139000 -1.363830

INDUSD 0.023613 0.069400 0.340150

σσ-squared 0.031803 0.00521 6.104223

Gamma (Grid Search) 0.0198 0.0103 1.9223301

Log-Likelihood Function 52.469

LR Test of the One-Sided Error19 17.659

No. of Iterations 55/100

Sample Size 147

Time Periods 1

                                                     

19 Notice that this statistic has a mixed Chi-square distribution.
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With respect to the above results, notice that all quadratic elements in the translog
entered directly, i.e. with no 0.5 re-scaling (due to software restrictions). Of course, this will
not influence estimation outcomes, since second-order effects will be computed as doubled
quadratic-term coefficients. Secondly, iterations in the program were set at a maximum value
of 100. The program managed to get converging ML estimates after 55 iterations out of the 100
which were technically available.

Standard checks for the total cost relationship to be well-behaved show that the function
is actually non-decreasing in input prices and outputs. It is also quasi-concave in input prices.
Output coefficients show that total cost is well-behaved in both energy delivered and the
number of customers. Second-order effects also demonstrate that scale economies are
decreasing in output size. Finally, degree-one homogeneity in input prices had been imposed
prior to estimation, as a result of the pm normalisation. A separate examination of
environmental effects highlights the fact that, even after eliminating four badly-behaved
variables, there are still some ‘wrong’ (or 5%-insignificant) external effects left. Before looking
at the efficiency scores which are implied by the above estimated stochastic cost frontier, we
now compute some standard statistics of interest.

Scale economies for multi-output total cost functions are usually calculated following
Panzar and Willig (1977), who introduced the concept of ‘Overall Scale Economies’ (OSE).
OSE are computed as the inverse of the sum of all partial log derivatives of total cost with
respect to each relevant output, minus one. Thus, they are derived from the sum of partial
cost-output scale elasticities. Partial scale economies are not relevant within those cost
functions which ‘split up’ output effects among several outputs. We then computed Global
Returns To Scale (GRTS) as OSE + 1, and found that
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Therefore, increasing returns to scale are detected at sample-mean values (the Taylor’s
series expansion points). This is more compatible with a U-shaped AC curve – rather than
with a L-shaped one. The second-order effect of output on total cost was computed as
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The above (constant) value implies that global returns to scale are definitely decreasing
as both outputs rise. Therefore, one might say that the ‘extent’ of scale economies (Nerlove,
1963) is such that overall economies of scale are decreasing in output. Alternatively, it could
be said that the second-order elasticity of normalised total cost with respect to outputs (Y,
CUST) is significantly positive. This again suggests the idea of a U-shaped average cost
relationship. In order to detect the Minimum Efficient Scale (MES), we solved the equation
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for both physical energy delivered and the number of customers, alternatively, at
expansion point values. By taking anti-logs, we found that MES occurred at

.417,195 ;GWh 107,1 ;9.687,364  ;GWh 403 ==== meanmeanYMESTSUCMES CUSTYCUSTY

We can see - by comparing MES with average values for energy and customers - that
economies of scale are much more caused by customers than by Y. Once again, multiple-
output cost functions are able to spot peculiar features which are overlooked by more
traditional functional specifications. Not only physical output exhausts returns to scale at
quite a low level, but also customers - which indeed show considerable scale economies -
accommodate a region of decreasing returns for those local utilities featuring more than
365,000 customers (mainly, metropolitan zones). Therefore, even though scale economies are
not in doubt, the AC relationship being suggested by the stochastic frontier analysis is a non-
symmetric U-shaped 3D curve with a small region of decreasing returns in customers, and a
large region of decreasing returns in physical output.

Consumer density should matter in lowering both total and average cost. By looking at
our ‘environmental effects’, we can confirm that density is relevant to total cost minimisation.
In particular, our estimate for the ‘density effect’ is negative (−0.15423) and statistically
significant. This is in agreement with the returns-to-scale finding on customers. Since density
has not been considered to a second order in our linear TEE auxiliary regression, we are not
able to say whether increasing density results in congestion of electricity distribution or not.

We conclude this Section by briefly commenting on the ‘environmental effects’ estimates
being computed by means of the TEE model. As previously discussed, such external variables
neither were inserted in the main translog cost function, nor were they excluded from the
estimation. Instead of performing a second-stage Tobit regression of efficiency scores on
environmental factors, we preferred to run an auxiliary, internal regression to give the
efficiency errors (u) a plausible mean on which their statistical distribution function could be
suitably centred. Truncation of such a function was imposed at zero, in order to comply with
the non-negativity constraint binding on u (which is a one-sided efficiency error). The
auxiliary (internal) regression of the efficiency errors’ mean on external effects gave origin to
the ML estimates which are discussed below:

(a) as previously noticed, consumer density was found to be beneficial in terms of total
cost minimisation, at least to a first order (the model was not able to compute any second-
order effects for environmental variables);

(b) industrial output (as a percentage of total energy delivered) also contributed to
lower distribution costs; the industrial district dummy (INDUSD), however, turned out to be
insignificant;
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(c) third-party works were also beneficial to cost: this is perhaps a suggestion to
ENEL’s zones in favour of ‘buying’ external services rather than ‘making’ them internally20;

(d) overhead cables in low-voltage distribution are more expensive than standard
underground connections;

(e) primary (PTP) substations raise distribution cost, but are needed in large numbers
for system security reasons, and for minimisation of electricity losses throughout the
distribution system;

(f) the territorial North-South dummy (SOUD) was not statistically significant, and its
coefficient had the ‘wrong’ sign. Therefore, no systematic ‘Southern effects’ were spotted by
the stochastic frontier model;

(g) both landscape effects (MOUNTD) and metropolitan areas (METRD) were found to
be statistically insignificant with respect to total cost minimisation;

(h) the presence of municipal distributors at zonal borders was discovered to rise
distribution cost. This is probably due to urban ‘cream-skimming’21 being performed by those
municipalities which serve city centres, by connecting to ENEL’s access points at city
outskirts. This obviously involves connection costs to ENEL, which are probably reflected by
the positive sign of MUNID’s coefficient;

(i) finally, all coefficients for SEAD, BORD, and INDUSD turned out to be
insignificant, meaning that the presence of either the sea or national borders as geographical
limits to ENEL’s zones did not significantly influence distribution cost. Industrial districts
were found to be irrelevant as well; however, industrial output showed the ‘right’ sign with
statistical significance. It should also be recalled that the GEND dummy for generation had
been excluded from the model at the outset, after showing severe insignificance in a
preliminary run. This confirms the view according to which location of generating units may
perhaps influence transmission and vice versa - with distribution being left unaffected,
though.

Efficiency rankings for ENEL’s 147 local zones are available by writing to the author22.

                                                     

20 See Williamson (1975) on transaction cost economics.

21 We say ‘cream-skimming’ in the sense that municipalities take the best from city centres, with ENEL being
confined to outskirts and surrounding rural areas. We do not mean that ENEL and local municipalities are
allowed to compete on the same territories. Therefore, ‘cream-skimming’ is here meant in a non-traditional
sense.

22 Gian Carlo Scarsi, Consultant, London Economics Ltd., 66 Chiltern Street, London W1M 1PR, Tel. ++44
171 446 8448, Fax ++44 171 446 8484/5, E-mail Giancarlo@Londecon.co.uk, http://www.londecon.co.uk.
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3. Stochastic Frontier Analysis of ENEL’s Zones and MUNIs: Comparative Rankings
From a Pooled Cross-Sectional Sample (1994-1996)

We built up a 1994-1996 pooled sample made up of 39 ENEL’s zones (‘peers’) and 37
MUNIs. When analysing the pooled sample, we chose to keep the translog production
function’s specification as parsimonious as possible, in view of the following considerations:

(a) by construction, the pooled sample showed strong similarity between MUNIs and
ENEL’s peers, which allowed us to save on environmental effects, thus gaining several
degrees of freedom for estimation. Peculiar cost drivers are in fact useful whenever
structurally different firms (for example, those belonging to Northern and Southern regions)
make up the sample. However, if the sample is intentionally calibrated so as to include similar
firms only, the number of environmental (Z) effects may be substantially cut down, in order
to estimate a lighter specification;

(b) data homogenisation problems forced us to drop some environmental effects for
which we had no complete figures (e.g., simultaneous maximum demand, industrial lines,
industrial customers, percentage of PTP transformers, and so on);

(c) ‘smoothing’ of rankings is also an issue to be worth investigating: by considering
relevant external effects only, we limited overlapping rankings, while keeping model
specification parsimonious enough according to a general-to-simple methodology;

(d) insignificance of most environmental effects when examining the homogeneous
pooled sample (instead of the slightly inconsistent ENEL or MUNI one) pushed us to refine
the model from a purely statistical point of view, so as to reach for a very light specification,
including three environmental variables only23.

We estimated a 3-effects stochastic translog production model being based on a sample
of 76 pooled observations for 37 municipal utilities (business year 1994) and 39 ENEL’s ‘peers’
(business year 1996), which were selected according to both geographical and economic
criteria. As a rule, all ‘twins’ - i.e., ENEL zones relating to the same town as MUNIs - were
inserted as peers, plus ‘proxy twins’ being chosen among the nearest ENEL units and/or
those provincial units which most resembled - in both economic and environmental terms -
the MUNI they were coupled with. We also tried to run the same stochastic regression on a
non-restricted, 184-observation sample (made up of all the 147 zones from ENEL, plus 37
MUNIs), with negligible outcomes. These were attributed to heterogeneity of most ENEL
zones as opposed to the 37 MUNIs, which originated considerable interference with the
relevant comparisons to be made. After realising that the MUNIs should have been compared
to some ‘twins’ (or ‘peers’) only, we non-randomly selected 39 ENEL units, so as to go for the
‘calibrated pooled sample’ mentioned above. Such a sample is obviously homogeneous by
construction.

To sum up, after excluding irrelevant external effects and selecting the 76-observation
pooled sample as the ‘right’ one, we fitted the following stochastic translog TEE production
model (named SFM3, three effects):

                                                     

23 Notice that this strictly relates to the homogeneity issue, as a result of ENEL’s peers being chosen by
construction. Consequently, sample selection itself tends to invalidate statistical significance of most initial
external effects, thus confirming the basic argument sub (a).
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Note the extreme simplification imposed on the model as a consequence of the
‘calibrated’ pooled sample adopted. As regards external effects, it is worth noticing that both
DENS and GEND are as defined before, whereas the municipal dummy (MUNID) has now a
new meaning, following the direct introduction of MUNIs in the analysis. In this Section,
define MUNID as a dummy variable assuming the value ‘one’ for all MUNIs (37 units), and
the value ‘zero’ for all ENEL peers (39 zones). We would like to recall this here because it will
help the reader interpret MUNID’s effect on total energy delivered - as outlined by the
analysis below. Estimated coefficients from the pooled translog stochastic frontier regression
are reported in the following Table.

Table 2: Pooled Sample (37 MUNIs, 39 ENEL): SFM3 Estimation Outcomes [Dependent Variable: lnY]

Coefficient Relating to
ariable...

Parameter Estimate Standard Error t-statistic

(Constant) 6.14266 0.55300 11.10440

Labour 0.24248 0.12190 1.98941

(Labour)2 -0.10112 0.06520 -1.56516

Capital 0.61358 0.29200 2.10298

(Capital)2 -0.10551 0.05290 -1.99557

L×K 0.21803 0.11100 1.97300
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EXTERNAL EFFECTS

[Dep. Var.: mu]

Coefficient Relating to Var. Parameter Estimate Standard Error t-statistic

DENS 0.146050 0.049400 2.959490

GEND 0.437790 0.134000 3.267220

MUNID 1.181000 0.251000 4.700580

σσ-squared 0.116000 0.032200 3.612626

γγ (Grid Search) 0.824000 0.113000 7.265297

Log-L. Function 8.83E+06

LR Test of the

One-Sided Error

0.54414E+02

Number of Iterations 25

Max. Number of Iterations 100

Number of Cross-Sections 76

First, from estimation outcomes one notices that the stochastic production function is
well-behaved in both capital and labour, with capital (expressed in kilometres of distribution
line) showing a stronger first-order effect on output (GWh). As regards second-order
coefficients, decreasing marginal returns are shown by both inputs. Given the sample’s self-
imposed homogeneity, we were able to restrict our environmental analysis to three Zs only
(customer density, presence of generating plants within MUNIs/zones, and the MUNID
dummy), whose coefficients all showed a positive and significant relationship with output.
Customer density had a positive effect on Y - meaning that, as the number of customers per
square kilometre rises (ceteris paribus), energy delivered will consequently go up.

The GEND dummy also indicated a positive relationship between generating plants and
delivered output. Since GEND’s coefficient was deemed insignificant in the previous total cost
analysis, a special comment must be made on this outcome. First, power stations are generally
located by ENEL where demand for electricity is stronger. This obviously creates a positive
correlation between the presence of generating plants in the area and the amount of delivered
output, which was not spotted within a total cost framework, as ENEL always separates
generation, transmission, and distribution in its internal accounts. Moreover, one expects that
transmission costs - and not distribution costs - are influenced by the location of generators,
whereas delivered output - directly stemming from transmitted energy - has a more direct
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relationship with maximum demand in each area, and - therefore - with ENEL’s locational
choices concerning generating units. Finally, as regards MUNIs, the generation/output
relationship is even deeper, because several municipal distributors own their dedicated
power stations in order to minimise dependence on ENEL’s supplies24 and maximise system
security. Since both metropolitan distributors and those holding franchises for medium-sized
Northern towns are the biggest auto-generators, the positive effect of GEND upon Y is further
explained, and GEND’s coefficient turns out to be fully justified.

With reference to the MUNID dummy, it must be noticed that its positive relationship
with delivered output should be interpreted in the light of MUNID’s new definition within
the current, ‘pooled’ analysis. Because of the presence of MUNIs together with ENEL zones in
the sample, MUNID has been redefined in such a way to be worth one for each MUNI, and
zero otherwise. Positive correlation between the ‘new’ MUNID and delivered output might
then be simply due to the fact that some municipal utilities are very large (metropolitan
distributors, and urban ones).

An appropriate analysis would entail direct comparisons between MUNIs and their
peers. The following Table accomplishes this task by displaying the ‘winner’ (MUNI/ENEL)
for each single comparison.

Table 3: MUNIs and their ENEL Peers (SFM3): Winners/Losers

MUNIs Peers (ENEL) Winner

Roma ROMA ENEL

Milano MILANO ENEL

Torino TORINO ENEL

Brescia BRESCIA ENEL

Bolzano BOLZANO ENEL

Verona VERONA NORD, VERONA SUD ENEL

Vicenza VICENZA ENEL

Rovereto SALO', TRENTO ENEL

Tolentino MACERATA ENEL

Primiero TRENTO ENEL

                                                     

24 These are unilaterally priced by ENEL itself.
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Brunico BOLZANO MUNI

Tione SALO', TRENTO ENEL

Laces BOLZANO ENEL

Silandro BOLZANO ENEL

Modena MODENA ENEL

Trieste TRIESTE MUNI

Parma PARMA MUNI

Imola BOLOGNA, RIMINI ENEL

Terni TERNI MUNI

Cremona CREMONA MUNI

Sanremo IMPERIA ENEL

Voghera VIGEVANO, LODI ENEL

Bressanone BOLZANO ENEL

Trani MONOPOLI MUNI

Seregno BOVISIO, CORSICO, MELZO, MILANO EXT., LODI, BUSTO A.,
ONZA

ENEL

Vercelli VERCELLI MUNI

Rep.S.Mar. RIMINI, PESARO ENEL

Riva d/G SALO', TRENTO ENEL

Osimo ANCONA ENEL

Sondrio SONDRIO MUNI

Levico T. TRENTO ENEL

Soresina CREMONA, LODI MUNI

Tirano SONDRIO, LECCO MUNI

Gattinara VERCELLI, BIELLA, VERBANIA MUNI

Mezzolomb. TRENTO ENEL

Selvino BERGAMO EXT., BRENO MUNI

Vigo d/C BELLUNO, BASSANO MUNI
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It is clear from the Table above that 13 out of 37 MUNIs outperformed their ENEL
comparators. This entails that more than 35% of MUNIs were relatively more efficient - in
technical terms - than their surrounding/neighbouring ENEL zones. This may not seem to be
an exciting outcome for MUNIs in general, thus crediting the view according to which
ENEL’s zones are, on average, more efficient than municipalities. However, if urban areas
only are allowed for - thus excluding mountain villages in the Trentino/South Tyrol region -
the percentage of municipalities which were found to be relatively more efficient jumps to
46.15%. Apart from metropolitan areas - where ENEL turned out to outperform MUNIs
dramatically (Rome, Milan, Turin) - smaller towns in the North and Centre of Italy had their
MUNI as the relative efficiency winner against the surrounding ENEL zone (Trieste, Parma,
Terni, Cremona, Vercelli, Sondrio). Moreover, when one restricts the efficiency comparison to
Lombardy’s MUNIs only, the percentage of winner MUNIs reaches 55.6%. In particular,
several urban and suburban distributors in the Milanese region outperformed their ENEL
peers (Cremona, Sondrio, Soresina, Tirano, Selvino).

A final word should be spent on ENEL’s dominance over MUNIs in the main
metropolitan contexts, and on Trani’s successful comparison  its closest ENEL peer
(Monopoli). As regards metropolitan comparisons, the insertion of only three environmental
effects does not suffice to claim excessive ‘punishment’ for city centres (which are served by
MUNIs). Since our pooled analysis is almost a ‘naked’ one (when it comes to external
variables), comparisons are crude. Therefore, MUNIs in Milan, Turin, and Rome were simply
outperformed by surrounding ENEL zones. This may be partially due to the fact that
efficiency was measured in production (not in cost) terms. Since medium-sized towns in the
North and Centre of Italy were better managed by MUNIs, one suspects that municipal
distribution technology satisfactorily suits provincial towns, although it is ‘defeated’ in
metropolitan areas. This consideration is strengthened by the fact that some smaller MUNIs
(Brunico, Trani, Soresina, Tirano, Gattinara, Selvino, Vigo di Cadore) managed to outscore
their ENEL peers within either rural or mountain contexts.

It then appears that, as Pollitt (1995) suggested, different companies enjoy different
technologies, which cannot be constrained within any particular functional form, because
they are tailored to different environmental contexts. For instance, according to our results, it
seems that municipal distributing technology does better in smaller towns - despite the scale
economies issue - whereas ENEL’s performance is definitely higher within metropolitan
areas. However, because of small sample problems, one cannot seriously make authoritative
inference on this. Furthermore, if one believed that ENEL zones and MUNIs have different
technologies in electricity distribution, constraining their production functions to be the same
across the whole pooled sample would simply be wrong in the first place. It would be much
wiser to suspend our judgement on relative efficiency in metropolitan contexts until a non-
parametric technique is introduced, in order to cross-check our comparative results against a
‘distribution-free’ approach25 which does not force production relationships to have a
particular functional form (even though as general as the translog).

To conclude, it is worth noticing that the only Southern MUNI in the sample (Trani,
Apulia) outperformed its ENEL peer (Monopoli). This is obviously not enough to predict any
municipal superiority over ENEL in the South, simply because electric municipalities from
Southern Italy are non-existent. However, this outcome per se is interesting, as it shows that

                                                     

25 Data Envelopment Analysis (DEA) computes efficiency scores - instead of estimating them - and eliminates
model specification problems (at some cost).
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the only Southern municipality26 not only fared better than its ENEL comparator (66.4%
against 66.3% technical efficiency, a negligible difference) but - what’s more important - also
managed to join the first efficiency group (1−38), thus locating its efficiency score at a higher
level than the average one (66.4% vs. 61.9%). In ranking terms, Trani’s MUNI stands at
number 31 (out of 76), which is a respectable result for a non-urban unit. In practice, however,
future prospects for municipal electricity distribution in the South are bleak, due to traditional
ENEL incumbency resulting from Southern electrification being completed, upgraded, and
co-ordinated by ENEL itself in the early 1960s. On the contrary, non-urban Northern
electrification had already been provided by local firms during the first decades of this
century, prior to electricity nationalisation under ENEL (1962). To sum up, no one really
believes that a municipal electricity system could really develop in the Mezzogiorno, so as to
follow the pattern of those local structures which are traditionally present in the North and -
albeit to a lesser extent - Centre of Italy.

Finally, the relevant percentages of winning units are displayed in the following Table.

Table 4: MUNI/ENEL Efficiency Comparison (SFM3): Statistics of Interest

Percentage of MUNI winners 35.13%

Percentage of MUNI winners if no mountain villages in
Trentino/South Tyrol are considered

46.15%

Percentage of MUNI winners if Lombardy only is
onsidered

55.56%

Largest Winner Towns (MUNIs) Parma, Terni, Vercelli, Cremona, Trieste,
Sondrio

Winner in Metropolitan Areas (Rome, Milan, Turin) ENEL

4. DEA Outcomes from a MUNI-ENEL Pooled Sample (1994-1996)

This Section provides a cross-check of the Stochastic Frontier outcomes by means of the
increasingly used Data Envelopment Analysis (DEA) technique, a linear-programming tool
described at length by Charnes, Cooper, and Rhodes (1978), by Banker, Charnes, and Cooper
(1984), and – more recently – by Fried, Lovell, and Schmidt (eds., 1993).

The basic, American-style assumption regarding exogeneity of output does not hold for
Italy’s distributing units, which are not strictly compelled to provide customers with
whatever electricity amounts they need. Moreover, inputs can be reasonably thought of as
‘moderately’ fixed in the short run because of both stickiness in labour management and
political interference in capital investment. Therefore, output maximisation with fixed inputs
seemed to be the best starting option for our DEA computations. This gave rise to model
DEA22(OUT), featuring two outputs (electricity, customers) plus two inputs (labour,

                                                     

26 Note that Apulia is one of the most developed regions in the Mezzogiorno.
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capital/lines). Generally speaking, the comments made on stochastic-frontier results are still
valid after DEA. The Table in the Appendix clearly shows that the efficient ENEL-MUNI units
under SFE had their results confirmed in the vast majority of cases.

Output orientation was selected in the pooled analysis so as be consistent with
stochastic-frontier outcomes on the same mixed sample (model SFM3, a translog production
frontier with energy delivered as output, and kilometres of line and employees as inputs).
Moreover, variable returns to scale were assumed. The Table in the Appendix provides usual
comparisons of scores for three DEA models27 and model SFM3, developed in Section 3 and
featuring three environmental variables only.

In terms of notation, recall that the reported Table features ENEL’s units - chosen on the
basis of both geographic and economic proximity to their municipal counterparts - in block
capitals, whereas municipal utilities are in small letters (with a final M indicating
‘municipality’). If one looks at the comparative table of efficiency scores, it once again seems
that DEA and SFE outcomes are not dramatically different. Among 100% efficient units, DEA
often spotted municipalities that had been deemed efficient by the SFM3 model, too. It is
useful to recall from Section 3 that, even though a minority (slightly more than 35%) of
municipalities were found to be more efficient than their ENEL peers, the picture became
much less unbalanced (46%) after excluding non-significant mountain distributors in the
Trentino-South Tyrol region. After considering Lombardy only, the percentage of MUNIs
outscoring their ENEL comparators jumped from 46.15% to 55.6%. It would be interesting to
know whether such mixed conclusions are also confirmed by the DEA models being applied
to the 1994-1996 pooled sample. The most elegant way to possibly confirm that the national
monopolist is actually wrong when claiming that all municipalities are less efficient than
ENEL’s own local units is simply to test whether efficiency scores from model SFM3 are
statistically in agreement with at least one of the three DEA series presented in this Section. At
a first glance, the towns that even in DEA had their municipality outscoring ENEL are
Brunico (South Tyrol), Cremona (Lombardy), Gattinara (Piedmont), Parma (Emilia), Selvino
(Lombardy), Sondrio (Lombardy), Soresina (Lombardy), Terni (Umbria), Tirano (Lombardy),
Trieste (Venezia Giulia), Vercelli (Piedmont), and Vigo di Cadore (Veneto).

Obviously, such similarities between DEA and SFE should be statistically confirmed.
The Tables below provide batteries of descriptive statistics and comparison tests, which will
be commented on in detail throughout the following paragraphs.

                                                     

27 The three DEA models used are: DEA22OUT (two outputs and two inputs, output orientation), DEA1C
(total customers as the only output, plus two inputs), and DEA1Y (energy delivered as the only output,
plus two inputs).
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Table 5: Pooled Sample: Non-Parametric and Parametric Tests

Descriptive Statistics

Models N Mean Std. Deviation Minimum Maximum

DEA1C 76 0.676018 0.226345 0.2296 1

DEA1Y 76 0.602 0.274529 0.1662 1

DEA22 76 0.713093 0.22532 0.261 1

SFM3 76 0.618842 0.205177 0.226 0.99

One-Sample Kolmogorov-Smirnov Test

DEA1C DEA1Y DEA22 SFM3

K-S Z (Normal) 0.803 1.027 1.12 0.588

Z Prob (2-tailed) 0.539 0.242 0.162 0.88

K-S Z (Uniform) 1.376 1.467 1.902 0.895

Z Prob (2-tailed) 0.045 0.027 0.001 0.399

Parametric Paired-Samples t-tests

Pairs/Values DEA1C-SFM3 DEA1Y-SFM3 DEA22-SFM3

t-value 5.304 -0.649 6.405

Deg. Freed. 75 75 75

t-prob 0.000 0.518 0.000
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Non-Parametric Tests

Not appropriate.

Additional Cross-Checking (Paired-Samples Parametric t-tests)

Not needed.

K Related-Samples Tests

Tests Friedman Kendall's W Cochrane

Chi-Sq. Value 107.368 107.368 n/a

Deg. Freed. 3 3 n/a

Chi-Sq. Prob 0.000 0.000 n/a

From the one-sample Kolmogorov-Smirnov tests, it appears that normality failed to be
rejected for all series, with uniformity being also accepted for SFM3. This allowed us to
perform standard parametric t-tests on paired samples, with no need for rank-order
procedures. The t-tests strongly rejected the null hypothesis of zero mean for the series of
differences between matched pairs of samples DEA1C-SFM3 and DEA22OUT-SFM3. On the
contrary, statistical agreement between DEA1Y and SFM3’s efficiency series strongly failed to
be rejected, with t’s probability standing at almost 52%. This basically confirms the
conclusions reached in Section 4 with regard to the relative efficiency of some Northern
(especially Lombard) MUNIs as compared to their ENEL counterparts. Therefore, the most
similar DEA model to SFM3 - which, once again, is the one featuring energy delivered as the
only output, in line with SFM3’s translog production equation – corroborates our previous
results. Even the remaining DEA models, however, confirmed that such town-based
municipal units as Terni, Parma, Vercelli, Cremona, Trieste, and semi-urban ones as Soresina,
Tirano, and Brunico managed to outperform their ENEL peers. Once more, the conclusion to
be drawn is that no generalisation is possible when comparing MUNIs to ENEL’s zones. It is
probably true that ENEL does better than small rural and mountain municipal utilities, but
sometimes in towns - and especially in the Milanese region - municipalities take the lead.
ENEL claims that all MUNIs are less efficient than its distributing local zones. Such
generalisation should be rejected, as all comparisons must be carried out on a strict case-by-
case basis.

Finally, we emphasise the fact that related-samples tests being performed on all series
from pooled sample analysis rejected any similarity, thus crediting the alternative hypothesis
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that at least two of the examined samples were actually telling the investigator different
things. As we saw, however, one out of three matches was actually successful in delivering
the same statistical information, and this was - not by chance - the pair which coupled the two
most similar specifications, i.e. one-output DEA (with energy as Y) vs. one-output SFE.

5. Policy-Making Suggestions and Regulatory Perspectives

The policy-making suggestions which might be put forward as a result of the work
carried out so far stem from the following couple of considerations:

(a) ENEL's econometric analysis showed that (1) non-exhausted economies of scale
were found at sample-mean values, and that (2) Northern dominance in efficiency terms
persisted even after allowing for exogenous handicaps (with some noticeable exceptions of
Southern non-default efficient units);

(b) statistical paired-samples testing and direct rank comparisons found no systematic
ENEL dominance over MUNIs: the case-by-case comparison approach was then proposed.
DEA comparisons failed to spot any statistically significant superiority of ENEL's units.

As regards point (a), given the results on scale economies it seems that town-based
electricity distribution is not optimal, as it does not allow firms to work at efficient scale.  In
fact, ENEL is not organised as a series of local distributors.  Its distributing ‘compartments’
are actually in the number of eight, and operate on an inter-regional basis.  The distribution
branches of  ENEL generally cover much larger areas than the British RECs do, and there are
reasons to believe that their size is incompatible with efficiency maximisation.  Something
intermediate might be sought by the electricity regulator when reforming Italy's electricity
distribution sector.  For instance, those municipalities which were found to be comparatively
more efficient might be granted permission to expand beyond city limits so as to reach for
optimal scale, while retaining - at the same time - their local nature28.  As regards scope
economies, it would be probably a good policy choice to keep medium and low-voltage
distribution together.  Moreover, sub-additivity of cost at local levels should be assumed as a
default condition, unless the reverse is proven.

Again on point (a), Northern dominance on efficiency grounds was robust to the
insertion of pro-Southern environmental variables.  Even though some Southern branches
managed to feature among the first 50 most efficient units, the majority of them failed to
deliver satisfactory results.  In policy-making terms, this could lead the regulator to seriously
re-consider the cross-subsidy issue between Northern and Southern ENEL distributing units.
In order to sustain national price uniformity in the energy industries, the Italian Government -
formerly, ENEL's only shareholder - has traditionally allowed massive cross-subsidies to be
directed towards ENEL's Southern branches over the years (either transferring profits from
Northern units, or raising funds out of general taxation schemes).  The present analysis shows
that, apart from rural Southern units, there is no strong reason to believe that such North-
South cross-subsidies should be maintained.  Of course, countryside and mountain units -
both from the North and South of Italy - should continue being subsidised in order for
universal service to be provided; yet, standard urban branches from the South should be
(yardstick) regulated in a similar fashion as should Northern areas.  On yardstick competition,
as Bogetoft (1994) notices, DEA techniques in particular might be viewed within a principal-

                                                     

28 Local distributors proved to be a sensible economic choice in some other European contexts, e.g. Scandinavia and
Switzerland.
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agent (regulator-regulatee) perspective, since DEA's output provides the investigator with
‘peer’ firms, i.e. those frontier-efficient units whose input-output mix is closest to that of the
relatively inefficient unit under examination.  By linking the DMU's performance target to the
input-output values which DEA reports for its 100% efficient peers, the energy regulator
might implement yardstick competition even in the absence of input price figures.

Furthermore, linear combinations of peers (so-called 'projected points' on the efficient
isoquant) might be constructed in order to compare the inefficient unit to its 'virtual' efficient
twin, thus linking regulatory targets to 'optimal' production mixes.  Of course, DEA's purely
deterministic nature is a major obstacle to ‘plain’ yardstick regulation of the kind shown
above.  However, after adjusting for peculiar features and allowing for measurement error -
which new stochastic-DEA models might do in the future - DEA will naturally lend itself to
practical yardstick regulation of geographically-separated local monopolies lying within the
public utility realm29.

As regards point (b), neither the econometric nor the linear programming analyses
managed to spot any statistically significant superiority of ENEL's local units over municipal
distributors (MUNIs) located in the North and Centre of Italy.  Lombard municipalities even
proved to fare better than ENEL local branches in five out of nine direct comparisons.  Paired-
samples statistical tests and DEA runs again spotted no significant efficiency differences
between ENEL units and MUNIs, thus failing to support ENEL's claims according to which
MUNIs should either be shut down, or be incorporated with the national monopolist's
distributing arm.  With reference to the ENEL-MUNI dispute (shut down MUNIs vs. allow
them to survive and - possibly - expand beyond municipal limits), case-by-case analysis is
called for, as no generalisation was suggested by the work carried out in this paper.  We
immediately put this into practice by sketching a tentative, crude table reporting those
MUNIs which could be granted expansion. Also notice that the MUNIs which systematically
outscored their ENEL comparators - according to all methodologies - are mainly from the
Northern plains (Po Valley) and, more precisely, from the Milanese region of Lombardy.

                                                     

29 Yardstick regulation typically applies to electricity, water, and gas distribution.
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Table 6. Relatively Efficient MUNIs (Candidate for Expansion).

MUNI > ENEL Region ENEL Comparators

Brunico Trentino-A.A. BOLZANO

Trieste Friuli-V.G. TRIESTE

Parma Emilia-R. PARMA

Terni Umbria TERNI

Cremona Lombardia CREMONA

Trani Puglia MONOPOLI

Vercelli Piemonte VERCELLI

Sondrio Lombardia SONDRIO

Soresina Lombardia CREMONA, LODI

Tirano Lombardia SONDRIO, LECCO

Gattinara Piemonte VERCELLI,

BIELLA, VERBANIA

Selvino Lombardia BERGAMO EXT., BRENO

Vigo di Cadore Veneto BELLUNO, BASSANO d/G

As regards ENEL-MUNI comparisons, metropolitan areas cannot be unambiguously
classified. Moreover, because of self-evident environmental reasons, Alpine MUNIs from
North-Eastern districts should not be included in the comparison altogether.  We preferred
not to express any judgement on metropolitan areas either, because MUNIs and ENEL units
operating there (e.g., in Milan and Rome) are not fruitfully comparable. Differently from
medium-sized towns, metropolitan areas are very heterogeneous in that they feature separate
residential (often managed by MUNIs) and industrial (often operated by ENEL) districts,
which are much more integrated with each other - and usually served by the local MUNI - in
medium-sized towns.  Therefore, whereas MUNI-ENEL comparisons were - albeit imperfectly
- possible for the average city, their feasibility was seriously jeopardised with respect to
metropolitan areas due to the above-mentioned heterogeneity reasons.  Of course, limited
homogeneity is also encountered for smaller towns' MUNIs and surrounding ENEL zones
(which sometimes serve rural provincial districts), but the magnitude of this drawback is
probably more acceptable for small cities30.

                                                     

30 In other words, higher uniformity between urban and peripheral territories is assumed for medium-sized towns
as opposed to large conurbations, which seems to be a sensible hypothesis.
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To conclude, the regulatory perspectives stemming from this paper point towards:

(a) fewer cross-subsidies among ENEL's local distributing branches - maybe leading to a
revision of national price uniformity constraints on electricity distribution;

(b) feasible yardstick regulation as a consequence of DEA outcomes on efficient 'peers'
for each inefficient DMU under examination;

(c) case-by-case analysis of which MUNIs should be authorised to survive future
horizontal restructuring of electricity distribution, and which ones should - on the contrary -
be merged into ENEL's surrounding distributing branches.

As regards point (c), the whole discussion being carried out in the previous Sections
unambiguously rejected the feasibility of any generalisation with respect to the ongoing,
comparative efficiency dispute between ENEL's distribution zones and local municipal
administrations.
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Numerical Appendix

Pooled Sample (1994-1996): DEA Efficiency Scores (DEA22OUT, DEA1C2,
DEA1Y2) as Compared to SFE Results (Model POOL3TE)

Unit SFM3 DEA22OUT DEA1C DEA1Y

ANCONA 0.712 0.7845 0.7845 0.6112

BASSANO 0.666 0.7725 0.731 0.752

BELLUNO 0.552 0.5825 0.5825 0.3639

BERGAMO EXT. 0.855 0.8987 0.8891 0.8375

BIELLA 0.56 0.7077 0.5692 0.7077

BOLOGNA 0.85 1 1 0.9939

BOLZANO 0.334 0.379 0.349 0.379

Bolzano (M) 0.241 0.261 0.261 0.2324

BOVISIO 0.899 0.9268 0.9268 0.8908

BRENO 0.533 0.5494 0.5494 0.5426

BRESCIA 0.706 1 0.7774 1

Brescia (M) 0.418 0.5643 0.523 0.5643

Bressanone (M) 0.295 0.2983 0.2983 0.2268

Brunico (M) 0.448 0.4412 0.4412 0.3174

BUSTO A. 0.855 0.9757 0.8942 0.9757

CORSICO 0.975 1 1 1

CREMONA 0.569 0.663 0.596 0.663

Cremona (M) 0.685 0.7112 0.7112 0.5181

Gattinara (M) 0.662 1 1 1

Imola (M) 0.44 0.4596 0.4505 0.4548

IMPERIA 0.717 0.7495 0.7495 0.3326
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Laces (M) 0.226 0.2911 0.2296 0.2911

LECCO 0.797 0.8966 0.8045 0.8966

Levico Terme (M) 0.293 0.2905 0.2905 0.1662

LODI 0.721 0.7405 0.7405 0.5861

MACERATA 0.619 0.6523 0.6523 0.4043

MELZO 0.936 1 0.9715 1

Mezzolombardo (M) 0.412 0.962 0.4405 0.962

MILANO 0.977 1 1 1

MILANO EXT. 0.862 0.921 0.8839 0.921

Milano (M) 0.537 1 0.9595 1

MODENA 0.744 0.9906 0.834 0.9821

Modena (M) 0.432 0.455 0.455 0.4229

MONOPOLI 0.663 0.7207 0.7207 0.3746

MONZA 0.99 1 1 1

Osimo (M) 0.405 0.4102 0.4102 0.2264

PARMA 0.683 0.7556 0.7333 0.7428

Parma (M) 0.946 1 1 0.8767

PESARO 0.66 0.7225 0.7225 0.451

Primiero (M) 0.324 0.3606 0.3606 0.216

Rep. S. Marino (M) 0.297 0.3521 0.2994 0.3521

RIMINI 0.642 0.6537 0.6537 0.4706

Riva del Garda (M) 0.511 0.513 0.513 0.2997

ROMA 0.744 1 1 1

Roma (M) 0.495 1 1 1

Rovereto (M) 0.288 0.6323 0.3408 0.6323

SALO’ 0.687 0.7134 0.7134 0.6594

Sanremo (M) 0.468 0.4874 0.4874 0.2016

Selvino (M) 0.99 1 1 0.2362
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Seregno (M) 0.61 0.6473 0.6473 0.5303

Silandro (M) 0.328 0.4026 0.3288 0.4026

SONDRIO 0.556 0.5593 0.5593 0.3873

Sondrio (M) 0.605 0.6923 0.6841 0.5877

Soresina (M) 0.99 1 1 0.4933

TERNI 0.433 0.4687 0.4687 0.3572

Terni (M) 0.976 1 1 1

Tione (M) 0.462 0.5358 0.4766 0.5166

Tirano (M) 0.599 0.591 0.591 0.2825

Tolentino (M) 0.471 0.462 0.462 0.3983

TORINO 0.886 0.9862 0.9862 0.9286

Torino (M) 0.476 0.8445 0.8445 0.7017

Trani (M) 0.664 0.7072 0.7072 0.2991

TRENTO 0.633 0.689 0.689 0.599

TRIESTE 0.481 0.5758 0.4844 0.5758

Trieste (M) 0.608 0.6118 0.6118 0.3045

VERBANIA 0.62 0.6357 0.6357 0.3607

VERCELLI 0.435 0.4695 0.4552 0.4675

Vercelli (M) 0.752 0.8519 0.8519 0.5307

Verona (M) 0.344 0.8126 0.4586 0.8126

VERONA NORD 0.692 0.7236 0.7236 0.5749

VERONA SUD 0.707 0.7884 0.7694 0.7639

VICENZA 0.693 1 0.7476 1

Vicenza (M) 0.547 0.6581 0.6581 0.4634

VIGEVANO 0.658 0.6771 0.6771 0.48

Vigo di Cadore (M) 0.937 1 1 1

Voghera (M) 0.548 0.5587 0.5587 0.1984


