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Abstract: We present a Bayesian sampling approach to parameter estimation in a discrete-

response model with double rules of selectivity, where the dependent variables contain

two layers of binary choices and one ordered response. Our investigation is motivated by

an empirical study using such a double-selection rule for three labor-market outcomes,

namely labor force participation, employment and occupational skill level. Full information

maximum likelihood (FIML) estimation often encounters convergence problems in numerical

optimization. The contribution of our investigation is to present a sampling algorithm through

a new reparameterization strategy. We conduct Monte Carlo simulation studies and find that

the numerical optimization of FIML fails for more than half of the simulated samples. Our

Bayesian method performs as well as FIML for the simulated samples where FIML works.

Moreover, for the simulated samples where FIML fails, Bayesian works as well as it does for

the simulated samples where FIML works. We apply the proposed sampling algorithm to the

double-selection model of labor-force participation, employment and occupational skill level.

We derive the 95% Bayesian credible intervals for marginal effects of the explanatory variables

on the three labor-force outcomes. In particular, the marginal effects of mental health factors

on these three outcomes are discussed.
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1 Introduction

Modeling non-random samples has been an important issue in microeconometrics since

the seminal work of Heckman (1979) on sample selection. For example, sample selection

models are widely used to illustrate female labor supply and health expenditures (Amemiya,

1985; Cameron and Trivedi, 2005, among others). Although Heckman’s model has the most

outstanding impact on empirical studies in economics, some researchers argue that unem-

ployed individuals are misspecified as non-participants in this model (Blundell, Ham, and

Meghir, 1987). This has motivated various studies related to unemployed individuals who

want to work at the market wage but cannot find a job. One specification uses double se-

lections, where participation determines the first selection, and employment determines

the second. For example, Henneberger and Sousa-Poza (1998) and Mohanty (2001) applied

such a double-selection rule to the wage equations in their models. In this paper, we aim to

investigate parameter estimation for a double-selection model, which involves three discrete

response variables under two layers of sample selection.

Our investigation is motivated by an empirical study involving three labor-market out-

comes, which are the labor-force participation, employment and occupational skill level.

In this situation, an individual’s occupational skill level can only be observed when she/he

passes two barriers of sample selection in the following manner. Employment status can

be observed after an individual chooses to participate in the labor force; and the intensive

labor outcomes such as income and occupation, can only be observed after the individual

is employed. Moreover, the occupational skill level is of particular interest and becomes the

focus of our model. Therefore, our model has three discrete outcomes modeled by three

equations, in which the error terms are correlated with each other. In addition, the selection

rule of participation dominates the selection rule of employment in our model. The same

model was discussed by Smith (2003) to illustrate the computation of likelihood under the

Archimedean copula, and an application of this model was recently studied by Cornwell,

2



Forbes, Inder, and Meadows (2009).

Models with simple selectivity could be extended to other realistic models with complex

selection rules, and the issue of parameter estimation was discussed by Maddala (1983) and

Vella (1998). The most commonly used approach is Heckman’s (1979) two-step method,

which corrects selection bias by including an inverse Mills ratio as an additional regressor.

This method is only suitable for a single-selection model with a continuous outcome in the

main equation. Nonetheless, one might sacrifice a certain degree of estimation accuracy for

the convenience of using the two-step method in double-selection models. In terms of the

model that is of our interest, Cornwell et al. (2009) used such a two-step estimation procedure

twice in order to take the error-term correlations into the estimation without specifying such

correlations explicitly. However, this estimation method ignores such correlations when

estimating parameters in the first equation; and it cannot reveal the strength of correlation

between any pair of error terms. Moreover, the nonlinear feature of the main equation in our

model also makes the two-step method inappropriate.

An alternative estimation method is the full information maximum likelihood (FIML)

estimation that is often used in empirical studies. However, numerical optimization of FIML

often encounters convergence problems even for models with one barrier of sample selec-

tion. In the double-selection model under our investigation, such numerical optimization is

likely to result in serious convergence problems due to the complicated nature of the model,

although a full likelihood can be obtained under the normality assumption of the error terms.

This paper aims to provide a Bayesian sampling approach to parameter estimation in

the three-equation model with double rules of sample selection. In the literature of sample

selection models, van Hasselt (2011) presented a Bayesian sampling algorithm to estimate

parameters in a single selection model, where the second equation is a Tobit model condi-

tional on the binary outcomes resulted from selection in the first equation. Chib, Greenberg,

and Jeliazkov (2009) presented a Bayesian sampling approach to parameter estimation for
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semiparametric models in the presence of endogeneity and sample selection. The model

under our investigation is different from the above-mentioned two types of models, and

therefore, a new sampling algorithm has to be developed. A remarkable benefit of our pro-

posed Bayesian sampling algorithm is that it allows for explicit specification of correlation

parameters among the three error terms, and these parameters can be sampled at the same

time as when the coefficients in the mean equations are sampled. Therefore, all parame-

ters in the three-equation model can be sampled within a hybrid of the Gibbs sampler and

Metropolis-Hastings (MH) algorithm. The proposed Bayesian estimation also facilitates the

computation of the 95% Bayesian credible interval for the marginal effect of any regressor on

its corresponding response variable. Moreover, the proposed Bayesian approach can always

produce reasonable results even when the numerical optimization of FIML fails to converge.

We present a new reparameterization method, whose purpose is to derive conditional

posteriors of some parameters, and therefore, these parameters can be sampled conditional

on the other parameters using either the Gibbs sampler or the MH algorithm. The reparame-

terization is certainly necessary because the derivation of such conditional posteriors can

speed up the convergence of the resulting sampling procedure. In the literature of Bayesian

sampling for discrete-response models, Cowles (1996) found that a slow mixing was some-

times caused by high correlation between the estimated threshold and latent variables in

ordered probit models. Li and Tobias (2006) applied Nandram and Chen’s (1996) reparame-

terization method to a bivariate ordered probit model to solve this problem. Li and Tobias

(2006) reparameterized the parameters in the variance-covariance matrix and derive their

conditional posteriors that are the inverse Wishart densities. However, this reparameteriza-

tion method cannot be directly used in our model, which has only one equation of ordered

response. McCulloch, Polson, and Rossi (2000) presented a reparameterization of the pa-

rameters of the error variance-covariance matrix in a subset of their multinomial model.

In our three-equation model, we propose a reparameterization strategy that combines the
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techniques from Li and Tobias (2006) and McCulloch, Polson, and Rossi (2000). Therefore, the

conditional posteriors of some parameters can be derived.

We carry out a Monte Carlo simulation study to compare the performance of the proposed

Bayesian sampling method with that of FIML estimation. The numerical optimization of

FIML fails for more than half of the simulated samples due to the problem that the Hessian

matrix cannot be inverted. The Bayesian approach is comparable with FIML in terms of the

mean and variation measures of parameter estimates for the simulated samples where FIML

works. For the simulated samples where FIML fails, the Bayesian method performs as well

as it does for the simulated samples where FIML works. The proposed Bayesian estimation

method is applied to the three-equation model that models an individual’s participation,

employment and occupational skill level in the labor force. We derive the point and interval

estimates of the marginal effect of each explanatory variable on its associate response.

The rest of this paper is organized as follows. The next section describes the formulation

of the model. In Section 3, we derive the joint posterior, as well as the conditional posteriors

of some parameters through a new reparameterization technique. A Bayesian sampling

procedure is also presented. Section 4 presents a Monte Carlo simulation study to compare

the performance of the proposed Bayesian method with that of FIML. We use the proposed

model and its estimation method to investigate the effect of mental illness on labor-force

outcomes in Section 5. The last section concludes the paper.

2 A discrete-response model with double selections

The model of interest has three equations, where in the first equation, the response variable

denoted as y1, is binary and decides the first hurdle of selection. In the second equation,

the response variable denoted as y2, is binary and is only observable when y1 = 1. In other

words, the second selection rule is censored based on the outcome of the first selection rule.

In the third equation that is the main equation, the dependent variable denoted as y3, has
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ordered categorical outcomes, which can only be observed after individuals pass the two

selection rules. The response variable in our main equation, however, is different from that in

Heckman’s (1979) main equation, where the latter is continuous. To fully describe the features

of each response variable, we assume that yi 1, yi 2 and yi 3 are generated respectively, from the

following reduced latent variable forms:

zi 1 = x ′
i 1β1 +εi 1,

zi 2 = x ′
i 2β2 +εi 2,

zi 3 = x ′
i 3β3 +εi 3,

(1)

for i = 1,2, · · · ,n, with n being the sample size, where xi 1, xi 2 and xi 3 are respectively, vectors

of explanatory variables, and β1 β2 and β3 are parameter vectors. It is assumed that in each

equation, the errors are independent and identically distributed (iid).

The binary choice response yi 1 is defined according to the value of the latent variable zi 1.

If an individual does not pass the first selection rule, this individual’s status is missing and

yi 1 is assigned a zero value; otherwise, the second equation’s response variable is observable

with yi 2 = 1, for zi 2 > 0; and yi 2 = 0, for zi 2 < 0. In the third equation, the ordered outcomes of

y3i can only be observed when yi 2 = 1; otherwise, this response variable is assigned a zero

value. The ordered outcomes are characterized by threshold values
{
γ0,γ1,γ2, · · · ,γJ

}
, which

divide the values of the latent variable zi 3 into J categories, where we assume that γ0 =−∞,

γ1 = 0 and γJ =∞ to avoid any possible identification problem. Therefore, the three observed

dependent variables are defined as

yi 1 = I (zi 1 > 0),

yi 2 = I (zi 2 > 0)× yi 1,

yi 3 = j × yi 2, if γ j−1 ≤ zi 3 ≤ γ j , for 1 ≤ j ≤ J ,

(2)

for i = 1,2, · · · ,n, where I (·) is the indicator function with a value one if its argument is true.

The largest threshold value γJ−1 will be reparameterized, and therefore, the vector of threshold

parameters is γ = (γ2, · · · ,γJ−2)′.
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Under the normality assumption for εi 1, εi 2 and εi 3, the first two equations in (2) are the

probit models, while the last is an ordered probit model. Thus, it is required that the variance

of the error term in each equation be one for identification reasons. Moreover, the errors

of the three equations are correlated with each other. In the labor market, the decision to

participate and the possibility of finding jobs are driven by unobservable factors; and people

who target professional jobs may be less likely to be employed than those who target other

jobs. Therefore, the assumption of correlated error terms is realistic. Thus, we assume that

(εi 1,εi 2,εi 3) ∼ N (0,Ω) with

Ω=
 1 ρ1 ρ2

ρ1 1 ρ3

ρ2 ρ3 1

 . (3)

3 A Bayesian sampling algorithm

In this paper, we derive the posterior of all parameters in (2) and develop a sampling algo-

rithm to sample these parameters. Due to the complicated feature of this model, we are

interested in deriving conditional posteriors of some parameters, and thus, certain types of

reparameterization are necessary.

3.1 Reparameterization

In a multivariate ordered probit model, Li and Tobias (2006) proposed to divide each equation

by the largest threshold parameter. As our third equation has an ordered outcome, we propose

to divide the latent equation, which is the third equation in (1), by the largest threshold

parameter. Therefore, the transformed threshold parameters can be sampled through the

Metropolis-Hastings (MH) algorithm with a Dirichlet proposal density.

Let β∗
3 = β3/γJ−1, z∗

i 3 = zi 3/γJ−1 and ε∗i 3 = εi 3/γJ−1. The latent variables that determine
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the corresponding responses are modeled as

zi 1 = x ′
i 1β1 +εi 1,

zi 2 = x ′
i 2β2 +εi 2,

z∗
i 3 = x ′

i 3β
∗
3 +ε∗i 3,

(4)

for i = 1,2, · · · ,n, where we assume that (εi 1,εi 2,ε∗i 3)′ ∼ N (0,Ω∗) with

Ω∗ =
 1 ρ1 ρ2/γJ−1

ρ1 1 ρ3/γJ−1

ρ2/γJ−1 ρ3/γJ−1 1/γ2
J−1

 .

Then the double-selection model given by (2) becomes

yi 1 = I(zi 1>0),

yi 2 = I(zi 2>0) × yi 1,

yi 3 = j × yi 2, if γ∗j−1 ≤ z∗
i 3 ≤ γ∗j , for 1 ≤ j ≤ J ,

(5)

for i = 1,2, · · · ,n, where γ∗ =γ/γJ−1 = (γ∗2 , · · · ,γ∗J−2)′.

We also reparameterize the parameters in the variance-covariance matrix by generalizing

McCulloch, Polson, and Rossi’s (2000) reparameterization method from their 2×2 matrix

to the 3×3 matrix in our model given by (2). As a consequence, a new parameter defined

by ψ= |Ω∗| = (1−ρ2
1 −ρ2

2 −ρ2
3 +2ρ1ρ2ρ3)/γ2

J−1, is introduced. Let λ1 = ρ1, λ2 = ρ2/γJ−1 and

λ3 = ρ3/γJ−1. Thus, the reparameterized variance-covariance matrix is

Ω∗ =
 1 λ1 λ2

λ1 1 λ3

λ2 λ3 (ψ+λ2
2 +λ2

3 −2λ1λ2λ3)/(1−λ2
1)

 .

Let’s define some notations: β∗ = (β′
1,β′

2,β∗′
3 )′; θ∗ = (β∗′,γ∗′,ψ,λ1,λ2,λ3)′; Z∗

i = (zi 1, zi 2, z∗
i 3)′;

and µ∗
i = (x ′

i 1β1, x ′
i 2β2, x ′

i 3β
∗
3 )′. Let y denote the collection of observed y1, y2 and y3, p(θ∗)

the joint prior of θ∗, and L(y|θ∗, Z∗) the likelihood for given θ∗ and Z∗. The posterior of the
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reparameterized latent variables and parameters is (up to a normalizing constant)

p(θ∗, Z∗|Y ) ∝ p(θ∗)p(Z∗|θ∗)L(y|θ∗, Z∗)

= p(θ∗)
n∏

i=1
φ3(Z∗

i ;µ∗
i ,Ω∗)

[
I (zi 1 ≤ 0)I (yi 1 = 0)I (yi 2 = 0)I (yi 3 = 0)

+ I (zi 1 > 0)I (yi 1 = 1)I (zi 2 ≤ 0)I (yi 2 = 0)I (yi 3 = 0)

+ I (zi 1 > 0)I (yi 1 = 1)I (zi 2 > 0)I (yi 2 = 1)
J∑

j=1
I (yi 3 = j )I (γ∗j−1 < z∗

i 3 < γ∗j )
]

, (6)

where φ3(Z∗
i ;µ∗

i ,Ω∗) ∝ψ−1/2 exp
{−1

2 (Z∗
i −µ∗

i )′Ω∗−1(Z∗
i −µ∗

i )
}

.

3.2 Conditional posteriors of latent variables

We start with sampling from the conditional posterior of reparameterized latent variables

expressed as

p(Z∗
i |θ∗,Yi ) ∝φ3

(
Z∗

i ;µ∗
i ,Σ∗)

×
[

I (zi 1 ≤ 0)I (yi 1 = 0)I(yi 2=0)I (yi 3 = 0)

+ I (zi 1 > 0)I (yi 1 = 1)I (zi 2 ≤ 0)I (yi 2 = 0)I (yi 3 = 0)

+ I (zi 1 > 0)I (yi 1 = 1)I (zi 2 > 0)I (yi 2 = 1)
J∑

j=1
I (yi 3 = j )I (γ∗j−1 < z∗

i 3 < γ∗j )
]

,

which is a truncated normal (TN) density. We use the Gibbs sampler discussed by Robert

(1995) to sample Z∗
i from this condition posterior. In fact, these latent variables are sampled

sequentially. The conditional posterior of zi 1 is given as

zi 1|zi 2, z∗
i 3 ∼


TN

(
µ∗

zi 1,σ∗2
zi 1

)∣∣
(0,+∞), if yi 1 = 1,

TN
(
µ∗

zi 1,σ∗2
zi 1

)∣∣
(−∞,0], if yi 1 = 0,

(7)

where the mean and variance in the two univariate truncated normal distributions are

µ∗
zi 1 = x ′

i 1β1 +
(
λ1

λ2

)′ (
1 λ3

λ3
(
ψ+λ2

2 +λ2
3 −2λ1λ2λ3

)
/
(
1−λ2

1

) )−1 (
zi 2 −x ′

i 2β2

z∗
i 3 −x ′

i 3β
∗
3

)
, (8)

σ∗2
zi 1 = 1−

(
λ1

λ2

)′ (
1 λ3

λ3
(
ψ+λ2

2 +λ2
3 −2λ1λ2λ3

)
/
(
1−λ2

1

) )−1 (
λ1

λ2

)
. (9)
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The posterior of each latent variable in the second component is

zi 2|zi 1, z∗
i 3 ∼



TN
(
µ∗

zi 2,σ∗2
zi 2

)∣∣
(0,∞) , if yi 1 = 1 and yi 2 = 1,

TN
(
µ∗

zi 2,σ∗2
zi 2

)∣∣
(−∞,0] , if yi 1 = 1 and yi 2 = 0,

N
(
µ∗

zi 2,σ∗2
zi 2

)
, if yi 1 = 0,

(10)

where the mean and variance in the above normal distributions are

µ∗
zi 2 = x ′

i 2β2 +
(
λ1

λ3

)′ (
1 λ2

λ2
(
ψ+λ2

2 +λ2
3 −2λ1λ2λ3

)
/
(
1−λ2

1

) )−1 (
zi 1 −x ′

i 1β1

z∗
i 3 −x ′

i 3β
∗
3

)
, (11)

σ∗2
zi 2 = 1−

(
λ1

λ3

)′ (
1 λ2

λ2
(
ψ+λ2

2 +λ2
3 −2λ1λ2λ3

)
/
(
1−λ2

1

) )−1 (
λ1

λ3

)
. (12)

In the third equation, the conditional posterior of each latent variable is

z∗
i 3|zi 1, zi 2 ∼


TN

(
µ∗

zi 3,σ∗2
zi 3

)∣∣∣∣(γ∗j−1,γ∗j
), if yi 3 = j ,

N
(
µ∗

zi 3,σ∗2
zi 3

)
, if yi 3 = 0,

(13)

which is a univariate truncated normal distribution for yi 3 6= 0 and a normal distribution for

yi 3 = 0 with their means and variances given by

µ∗
zi 3 = x ′

i 3β
∗
3 +

(
λ2

λ3

)′ (
1 λ1

λ1 1

)−1 (
zi 1 −x ′

i 1β1

zi 2 −x ′
i 2β2

)
, (14)

σ∗2
zi 3 =

ψ+λ2
2 +λ2

3 −2λ1λ2λ3

1−λ2
1

−
(
λ2

λ3

)′ (
1 λ1

λ1 1

)−1 (
λ2

λ3

)
. (15)

3.3 Conditional posterior of each parameter

Let Z∗ = {
Z∗

i = (zi 1, zi 2, zi 3)′ : 1 ≤ i ≤ n
}

and

Xi =
 x ′

i 1 0 0
0 x ′

i 2 0
0 0 x ′

i 3

 .

The prior of β∗ is assumed to be p(β∗) = φk
(
β∗|β0,B−1

0

)
, where φk (·|β0,B−1

0 ) is the density

function of k-dimensional normal distribution with mean vector β0 and variance-covariance

matrix B0. The conditional posterior of β∗ is

β∗|Z∗,Σ∗ ∼ N
(
β̂∗,B−1) , (16)
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where β̂∗ = B−1
(
B0β0 +∑n

i=1 X ′
iΩ

∗−1Z∗
i

)
with B = B0 +∑n

i=1 X ′
iΩ

∗−1Xi .

Assume that the prior ofλ1 denoted as p(λ1), is the density of N (λ01,C−1
1 ). The conditional

posterior of λ1 is (up to a normalizing constant)

p
(
λ1|Z∗,β∗,λ2,λ3,ψ

)∝ p(λ1)exp

{
−1

2

n∑
i=1

(Z∗
i −µ∗

i )′Ω∗−1(Z∗
i −µ∗

i )

}
, (17)

from which we sample λ1 using the random-walk Metropolis algorithm.

Assuming that the prior of λ2 denoted as p(λ2), is the density of N
(
λ02,C−1

2

)
, we derive

the conditional posterior of λ2 as (up to a normalizing constant)

p(λ2|Z∗,β∗,λ1,λ3,ψ) ∝ p(λ2)exp

{
−1

2

n∑
i=1

(Z∗
i −µ∗

i )′Ω∗−1(Z∗
i −µ∗

i )

}
.

It follows that

λ2|Z∗,β∗,λ1,λ3,ψ∼ N
(
µλ2 ,σ2

λ2

)
, (18)

where

µλ2 =σ2
λ2

{
λ02C2 +

n∑
i=1

[
λ3(µi 1λ1 −µi 2)

ψ(1−λ2
1)

+ µi 3

ψ

]
(µi 1 −λ1µi 2)

}
, (19)

σ2
λ2

=
[

C2 + 1

ψ(1−λ2
1)

n∑
i=1

(µi 1 −µi 2λ1)2

]−1

. (20)

The prior of λ3 denoted as p(λ3), is assumed to be the density of N
(
λ03,C−1

3

)
, and the

conditional posterior of λ3 is (up to a normalizing constant)

p
(
λ3|Z∗,β∗,λ1,λ2,ψ

)∝ p(λ3)exp

{
−1

2

n∑
i=1

(Z∗
i −µ∗

i )′Ω∗−1(Z∗
i −µ∗

i )

}
.

It turns out that

λ3|Z∗,β∗,λ1,λ2,ψ∼ N
(
µλ3 ,σ2

λ3

)
, (21)

where

µλ3 =σ3
λ3

{
λ03C3 +

n∑
i=1

[
λ2(µi 2λ1 −µi 1)

ψ(1−λ2
1)

+ µi 3

ψ

]
(µi 2 −λ1µi 1)

}
,

σ3
λ3

=
[

C3 + 1

ψ(1−λ2
1)

n∑
i=1

(µi 2 −µi 1λ1)2

]−1

.
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Therefore, λ3 can be directly sampled from N
(
µλ3 ,σ2

λ3

)
.

We assume that the prior ofψ denoted as p(ψ), is the inverse Gamma (IG) density denoted

as IG(a0/2,b0/2). Then the conditional posterior of ψ is (up to a normalizing constant)

p(ψ|Z∗,β∗,λ) ∝ p(ψ)
n∏

i=1
φ3(Z∗

i ;µ∗
i ,Ω∗)

∝
(

1

ψ

)−a0/2+1

exp

{
− b0

2ψ

}(
1

ψ

)−n/2

exp

{
− 1

2ψ

n∑
i=1

[
µi 1(λ2 −λ1λ3)+µi 2(λ3 −λ1λ2)−µi 3(1−λ2

1)
]2

1−λ2
1

}
.

A little algebra shows that the conditional posterior of ψ is also an IG density:

ψ|Z∗,β∗,λ∼ IG(a1/2,b1/2), (22)

where a1 = a0+n and b1 = b0+(1−λ2
1)−1 ∑n

i=1

[
µi 1(λ2 −λ1λ3)+µi 2(λ3 −λ1λ2)−µi 3(1−λ2

1)
]2

.

Finally, the conditional posterior of the threshold parameters (γ∗2 , · · · ,γ∗J−2)′ is (up to a

normalizing constant)

p
(
γ∗2 , · · · ,γ∗J−2|β∗,Ω∗, Z

)∝ n∏
i=1

{
Φ

(
(γ∗yi 3

−µ∗
zi 3

)/σ∗
zi 3

)
−Φ

(
(γ∗yi 3−1 −µ∗

zi 3
)/σ∗

zi 3

)}
, (23)

where µ∗
zi 3

and σ∗
zi 3

are given by (14) and (15), and Φ(·) is the cumulative density function

(CDF) of the standard normal distribution. We sample the threshold parameters from the

conditional posterior given by (23) using the MH algorithm with a Dirichlet proposal density.

This sampling strategy is described in details in Nandram and Chen (1996) and Li and Tobias

(2006).

After the reparameterized parameter vector θ∗ = (β∗′,γ∗′,ψ,λ1,λ2,λ3)′ is sampled from

the above-given conditional posteriors, the original parameters are calculated as follows:

γJ−1 = (
(1−λ2

1)/(ψ+λ2
2 +λ2

3 −2λ1λ2λ3)
)1/2

, β3 = β∗
3γJ−1, ρ1 = λ1, ρ2 = λ2γJ−1, ρ3 = λ3γJ−1

and γ= γ∗γJ−1.

4 Monte Carlo simulation studies

In this section, we conduct a Monte Carlo simulation study with 1,000 simulated samples to

compare the performance of our proposed Bayesian estimation method with that of the FIML

estimation method, where the sample size is n = 1000.
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4.1 Full information maximum likelihood (FIML) estimation

If yi 1 = 0, the joint distribution of yi 1, yi 2 and yi 3 is simply Pr
{

yi 1 = 0|xi 1
}

denoted by P0,

because yi 2 and yi 3 are not observable. Therefore, P0 =Φ
(−x ′

i 1β1
)
. If yi 1 = 1 and yi 2 = 0, we

cannot observe yi 3, and the joint distribution of yi 1, yi 2 and yi 3 is simply Pr
{

yi 1, yi 2|xi 1, xi 2
}

denoted by P10. Therefore, we have

P10 =Φ2
(
x ′

i 1β1,−x ′
i 2β2,−ρ1

)
,

whereΦ2(·) is the CDF of a bivariate normal distribution with variances one and correlation

given by its third argument.

If yi 1 = 1 and yi 2 = 1, the observations of yi 3 can be collected as ordered values from 1 to J .

The joint distribution of yi 1, yi 2 and yi 3 denoted as P11, j is Pr
{

yi 1 = 1, yi 2 = 1, yi 3 = j |xi 1, xi 2, xi 3
}

,

which is expressed explicitly as follows:

P11,1 =Φ3
(
x ′

i 1β1, x ′
i 2β2,−x ′

i 3β3;ρ1,−ρ2,−ρ3
)

,

P11, j =Φ3
(
x ′

i 1β1, x ′
i 2β2,γ j −x ′

i 3β3;ρ1,−ρ2,−ρ3
)

−Φ3
(
x ′

i 1β1, x ′
i 2β2,γ j−1 −x ′

i 3β3;ρ1,−ρ2,−ρ3
)

, for j = 2, · · · , J −1,

P11,J =Φ3
(
x ′

i 1β1, x ′
i 2β2, x ′

i 3β3 −γJ−1;ρ1,ρ2,ρ3
)

, (24)

whereΦ3 (d1,d2,d3;r1,r2,r3) is the CDF of a trivariate normal density with variances one, r1

is the correlation coefficient between d1 and d2, r2 is the correlation coefficient between d1

and d3, and r3 is the correlation coefficient between d2 and d3.

The FIML estimation method is to maximize the likelihood given by

L
(
Y1,Y2, · · · ,Yn |θ∗

)= n∏
i=1

{
P (1−yi 1)

0 P yi 1(1−yi 2)
10

(
J∑

j=1
I (yi 3 = j )P11, j

)yi 1 yi 2
}

, (25)

with respect to θ∗.

4.2 Monte Carlo design

We generated samples with sample size n=1,000 through (1) and (2), where the true parameter

values are β1 = (β11,β12)′ = (0.6,−1.2)′, β2 = (β21,β22,β23)′ = (1,−1.5,−1)′, β3 = (β31,β32)′ =

13



(−0.4,1.5)′ and γ= (γ2,γ3)′ = (0.8,1.6)′. We considered three sets of values for the correlation

parameters. The first set is (ρ1,ρ2,ρ3) = (0,0,0), which means no correlation between any pair

of the three error terms. The second set is (ρ1,ρ2,ρ3) = (0.25,0.25,0.5), which reflects medium

strength of error correlation. The last set is (ρ1,ρ2,ρ3) = (0.5,0.8,0.7), which represents strong

correlation among the three error terms.

Note that xi 1 and xi 3 are 2×1 vectors, while xi 2 is a 3×1 vector. Due to the existence of an

intercept in each equation, the first elements of xi 1, xi 2 and xi 3 were set to be one. The second

elements of xi 1 and xi 2 were randomly generated from the standard normal distribution.

The third element of xi 2 and the second element of xi 3 were independently generated from

the Bernoulli distributions with success probability 0.7. The vector of three error terms was

generated from the trivariate normal distribution with its mean being a vector of zeros and

variance-covariance matrix given by (3). Latent variables were calculated and then used to

decide the values of yi 1, yi 2 and yi 3 according to (1) and (2). For each set of the true values

of (ρ1,ρ2,ρ3), 1,000 samples were generated from the above process, and both the FIML and

Bayesian sampler were conducted to estimate parameters based on each generated sample.

For the proposed Bayesian sampler, the starting values are all zero, except γ∗2 = 0.5 and

ψ= 1; the burn-in period contains the first 2,000 draws, and the following 10,000 draws are

recorded; and the point estimate of each parameter is the arithmetic mean of 10,000 draws

from the corresponding conditional posterior. The starting values are all zero for FIML, except

γ2 = 1 and γ3 = 2 because these threshold values must be larger than zero.

4.3 Hyperparameter choices and convergence of the sampler

Hyperparameters of the priors for the Bayesian sampler are chosen as follows: β0 = 0, B−1
0 =

1000I7 where I7 is the seven-dimensional identity matrix, λ01 = 0, C1 = 1, λ02 = 0, C2 = 1,

λ03 = 0, C3 = 1, a0 = 2 and b0 = 0.01. Whenever the random-walk Metropolis algorithm was

used, the acceptance rate was controlled to be between 0.2 and 0.3.

As the proposed sampling algorithm for the discrete-response model with double se-
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lections are new, one might be interested in the mixing performance, or loosely speaking,

the convergence of the sampler. In the literature on Bayesian sampling for binary- and

discrete-response models, it is known that the simulated chains of the correlation parameters

usually exhibit slow convergence. This is likely to be the consequence of the absence of

full information conveyed through the observed sample due to sample selections. Unob-

served individuals also contain information on the correlations between error terms, but the

unobserved individuals contribute nothing to the estimation.

We monitored the convergence status of the simulated chains through the simulation

inefficiency factors (SIF) (see for example, Roberts, 1996; Kim, Shepherd, and Chib, 1998;

Zhang, Brooks, and King, 2009). The computation of SIF requires us to calculate the batch-

mean standard deviation of each simulated chain, which was calculated using 100 batches of

the chain with 100 draws in each batch. The SIF value can be approximately explained as the

number of draws that are required to produce independent draws. For example, a SIF value of

50 means that we should keep one draw for every 50 draws, and thus, the retained draws are

approximately independent. Usually, the smaller a SIF value is, the better the convergence of

the simulated chain. The mean and standard deviation of the SIF values obtained through

the 1,000 generated samples are computed, and they would indicate the overall convergence

of the proposed Bayesian sampler. Generally speaking, the convergence of our sampler is

acceptable.

4.4 Results

The simulation results are given in Tables 1–3. The FIML estimator sometimes fails to produce

meaningful results due to the problem that the Hessian matrix fails to invert. In each table, the

notation “FIML*” means that the reported statistics were summarized based on the simulated

samples resulting in meaningful results with the corresponding Hessian matrices invertible.

Meanwhile, the proposed Bayesian sampler always produces meaningful results, and the

reported statistics were summarized based on all 1,000 generated samples. For comparison
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purposes, we also report the summarized results based on the generated samples, at which

the reported FIML results were summarized. The summaries of such results are marked as

“Bayesian*” and are compared to those marked by “FIML*”.

The FIML failed to converge in more than half of the simulated samples, and it was able

to produce meaningful results in 420, 453 and 458 simulated samples in the three situations

of different levels of error correlation. Obviously, the complexity of the model and the high

dimension of its parameter vector have resulted in difficulties in the numerical optimization

required by FIML. In contrast, the overall convergence of our sampler is reasonable, even

though the simulated chain of ρ1 exhibits slow convergence, but is acceptable.

Table 1 presents results of the two estimation methods when the 1,000 samples were

simulated with (ρ1,ρ2,ρ3) = (0,0,0). The summary measures for FIML were derived based on

420 simulated samples, for which the numerical optimization of FIML reached convergence.

Both estimation methods produced similar results. First, the mean estimate of each parameter

obtained through each method is close to the true value of the corresponding parameter. This

indicates that both methods can provide largely unbiased estimates when the three error

terms are not correlated with each other.

Second, the standard deviation of the estimated values of ρ1 is obviously larger than that

of any other parameter. Moreover, such standard deviations of ρ2 and ρ3 are respectively,

larger than those of the parameters in mean equations. Also, standard deviations of β21 and

β3 are twice as large as those of β1. This phenomenon is likely to be the consequence of

information loss due to double selections.

Third, the mean absolute errors (MAEs) of β21, β3 and (ρ1,ρ2,ρ3) are relatively larger

than those of the other parameters. Once again, we tend to believe that this phenomenon is

probably due to information loss caused by double selections.

Finally, the SIF values of the parameters in mean equations are quite small, indicating that

the simulated chains of these parameters have achieved very reasonably convergence. The
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largest mean SIF value across all simulated samples is 77 for ρ1, which indicates an acceptable

convergence status.

When samples were generated under the situation of (ρ1,ρ2,ρ3) = (0.25,0.25,0.5), the

simulation results are presented in Table 2. With the Bayesian method, the mean estimate for

each parameter is quite close to the corresponding true value, except that for ρ2 with its bias

being 0.02. Meanwhile, based on the 453 simulated samples for which the FIML estimator

works properly, FIML produced largely unbiased estimates for all parameters with the largest

bias being 0.015.

In terms of the mean and standard deviation of the estimated values of each parameter,

the two measures in the situation of medium level correlation among the three error terms

are similar to those in situations of no correlation. The MAE for each parameter are almost

similar to those in the situation of no correlation among error terms. The largest mean SIF

value is 84 for ρ1.

Table 3 presents the simulation results derived through the two estimation methods,

while the samples were simulated under the situation of (ρ1,ρ2,ρ3) = (0.5,0.8,0.7). With the

Bayesian method, the mean estimate of ρ1 is less than the true value by 0.048, while the

mean estimates of the other parameters are all very close to the corresponding true values.

FIML achieved convergence in only 458 out of 1,000 simulated samples. Based on the 458

simulated samples, the mean estimates of all parameters are very close to the corresponding

true values. The other measures such as the standard deviation and MAE, obtained under

this situation, are similar to those obtained under the situation of no correlation or medium

level correlation. The mean SIF values of the parameters in mean equations are all small,

indicating that the sampler achieved reasonable convergence. The largest mean SIF value

is 92 for ρ1, while the mean SIF values for ρ2 and ρ3 are also larger than those under the

situation of no correlation or medium level correlation. In our experience, the three SIF values

indicate that the convergence status is not too bad and acceptable, considering the fact that

17



data containing information on such correlations could only be partly observed due to double

selections.

4.5 Findings revealed from the simulation study

To conclude, the numerical optimization of FIML fails for more than half of the simulated

samples because of the problem that the Hessian matrix cannot be inverted. In contrast,

our proposed Bayesian sampling approach can always produce meaningful results even for

those samples where FIML fails. Of the simulated samples where FIML works, on average, the

estimate of each parameter is very close to the corresponding true value, and the variation

measures of the estimated values derived across different simulated samples are reasonable.

The Bayesian method is comparable with FIML in terms of the mean and variation mea-

sures of parameter estimates for the simulated samples where FIML works. Moreover, for the

simulated samples where FIML fails, the Bayesian method performs as well as it does for the

simulated samples where FIML works. The only limitation of the Bayesian sampling approach

is that the simulated chains of the correlation coefficients exhibit slow convergence, which

we think, is the consequence of information loss due to double selections. A practical remedy

to the problem of slow convergence is to use the posterior mode, rather than the commonly

used posterior mean, as an estimate of each correlation parameter after a posterior sample is

simulated through the sampling procedure.

For each simulated sample, we calculated the mode of each correlation parameter based

on its simulated chain. Table 4 presents a summary of the mode statistic under each situation

of the correlation setting, where the simulated samples are exactly the same as those used

previously. Summarizing among the 1,000 simulated samples, we found that the mean of

the mode statistics for each parameter is very close to its corresponding true value. The

standard deviation of the mode statistics for each parameter is slightly larger than that of the

corresponding mean statistics previously derived. On average, the mode statistic leads to a

similar set of results as the mean statistic, while the former is more robust than the latter with
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respect to different values of the simulated chain. Therefore, when a simulated chain results

in a large SIF value, we recommend using the mode of the simulated chain as an estimate of

the corresponding parameter.

5 Modelling the effect of mental health on labor outcomes

It is widely acknowledged that mental health is an important factor in determining labor

market outcomes. Mental illness can affect not only individuals’ chances to be employed, but

also their capacity to work, the occupational skill levels at which they work, and their earnings.

Australian nationwide mental health surveys provide us with the opportunity to examine the

relationship between labor market outcomes and mental health factors. In this empirical

study, we look at the impact of mental illness on an individual’s chances of participating the

labor force and being employed; and for the employed, we look at the impact of mental illness

on an individual’s occupational skill level. It is usually expected that an individual’s mental

illness would hinder her/his chances of participating in the labor force and finding a job.

Also, people with mental illness usually work in occupational skill categories that are at a

lower level that they would otherwise work in, if they did not suffer from such an illness. This

application investigates whether there exists empirical evidence supporting these effects.

5.1 Data

The data are from the National Survey of Mental Health and Wellbeing of Adults in 1997 at

Australia. This survey collects information about normal demographic factors and various

mental health indicators from 10,614 participants, where 6,928 individuals were employed.

In this study, we investigate the effects of various explanatory variables including mental

health factors, on the probabilities of participation, employment and occupational skill levels.

Double rules of sample selection exist because we could only observe occupational levels

for individuals who participated in the labor market and then were employed. This data set

was first analyzed by Cornwell et al. (2009), who seek to explain labor market outcomes by
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mental health status. However, if there exist causality in the other direction, the mental health

variables would be endogenous, and the resulting parameter estimates would be biased.

Therefore, they dealt with endogeneity by the use of temporal information in the data to make

sure that mental illness could not have been caused by unemployment experience. It has been

found that there exists an obvious effect of mental illness on employment and occupational

skill level.

We used the following specification of exogenous regressors. These include mental illness

indicators, categorized into substance use disorder, anxiety disorder and affective disorder.

They are all binary. The other regressors include age, gender, education, geographic location

indicators, and a socio-economic index for area (SEIFA). The participation equation contains

two more regressors, which are the number of children in the household and a binary variable

indicating whether the individual is currently studying, but they are not included in the

employment equation. The purpose of such an exclusion restriction is to make estimation

easier than it would be otherwise by providing identifying variables. However, in the second

hurdle, the factors that have an effect on employment are all likely to affect occupational

skill levels. Thus, regressors are exactly the same for the second and third equations. This

means that there exist no exclusion restrictions in the second and third equations. Greene

(2002, p.E21-115) mentioned that the conventional rules for identification in simultaneous-

equation models do not apply in ‘treatment effects’ models. Because of the nonlinearity of the

conditional mean function, it is not necessary to exclude some variables from any equation.

5.2 Estimation

We applied the FIML and Bayesian methods to the estimation of parameters in this three-

equation model. The numerical optimization of FIML was carried out through the CML

package in GAUSS 9.0 and ended with a failure to derive the variance-covariance matrix,

even though we tried all available numerical optimization methods provided by this package.

Therefore, FIML is not practically applicable. In contrast, our proposed Bayesian method is
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able to estimate not only the parameters in the three mean equations, but also the correlation

parameter between any pair of the three error terms. The estimates of some parameters are

presented in Table 5. Importantly, our Bayesian method can also facilitate the computation of

point and interval estimates of marginal effects of any explanatory variable.

The hyperparameters of the priors were chosen as follows: β0 = 0, B−1
0 = 1000I65 with

I65 being the 65-dimensional identity matrix, λ01 = 0, C1 = 1, λ02 = 0, C2 = 1, λ03 = 0, C3 = 1,

a0 = 2 and b0 = 0.01. The burn-in period contains 10,000 iterations, and the following 100,000

iterations were recorded to calculate either the mean or mode of each simulated chain. The

SIF was used to monitor the convergence status of each simulated chain. All the simulated

chains of regression parameters and threshold parameters have achieved very reasonable

convergence, while the simulated chains of ρ1 and ρ3 produced large SIF values. Therefore,

each of the three correlation parameters was estimated by the mode of the corresponding

simulated chain.

The estimated parameters, their 95% Bayesian credible intervals and the corresponding

SIF values for the first and second equations are reported in the left panels of Table 5 and

Table 6, respectively. For the third equation, the estimated parameters and their associated SIF

values are reported in the left panel of Table 7, and the corresponding 95% Bayesian credible

intervals are given in the second column of Table 8. The estimated correlation parameters

are respectively, 0.0958 (97), 0.3268 (8) and 0.4021 (49) based on the mean of each simulated

chain, where the associated SIF values are given in parentheses. They suggest some sizeable

correlations between unobservables across equations. With the posterior mode, the three

correlation parameters are estimated as 0.1248, 0.3273 and 0.4050.

5.3 Marginal effects

The proposed Bayesian sampling approach also makes a contribution to the computation of

the marginal effect of each explanatory variable on the probability of a certain response value
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that is of interest. The probability of participating the labor force is formulated as

Pr
{

yi 1 = 1|xi 1
}=Φ(

x ′
i 1β1

)
. (26)

The probability of being employed conditional on participation is described by

Pr
{

yi 2 = 1|yi 1 = 1, xi 1, xi 2
}= Φ2

(
x ′

i 1β1, x ′
i 2β2,ρ1

)
Φ

(
x ′

i 1β1
) . (27)

The probability of working in each occupational skill category conditional on employment

can be calculated from

Pr
{

yi 3 = j |yi 1 = 1, yi 2 = 1, xi 1, xi 2, xi 3
}= P11, j

Φ2
(
x ′

i 1β1, x ′
i 2β2,ρ1

) , (28)

for j = 1,2, · · · ,5, where P11, j is given by (24). With our proposed Bayesian sampling procedure,

we are able to derive the point estimate and 95% Bayesian credible interval of the marginal

effect of each regressor on its corresponding probability given by (26)–(28).

First, we studied the marginal effect of each explanatory variable on the probability of

participation, which is modelled by the first equation. The right-hand-side panel of Table 5

presents the point estimates and 95% Bayesian credible intervals of the marginal effects of

all the regressors in the first equation. Individuals aged between 25 and 44 are most likely to

participate in the labor force, while those aged between 45 and 64 are 28.9% more likely to

participate than those aged between 18 and 24. Males have a larger probability to participate

than females. People with higher levels of education are more likely to participate than those

with less education.

Coming from a reginal center has no obvious effect on participation, because the 95%

Bayesian credible interval of its marginal effect covers zero. People from a rural area are 4.7%

more likely to participate than those from an urban area. The participation rates in more

socio-economically advanced areas are generally higher than those in less advanced areas,

except the area in the 8th decile that has the highest participation rate. An increase in the

number of children would reduce the chance of an individual participating in the labor force.
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People who are currently studying are more likely to seek jobs than those who are not studying.

Physical illness would decrease the possibility of an individual’s participation. The mental

health problem of anxiety and affective disorders has no obvious effect on participation,

shown by the fact that the 95% Bayesian credible interval of the corresponding marginal

effect covers zero. However, individuals with substance use disorders are 9.5% more likely to

participate than those without this type of disorder.

Second, we studied the marginal effect of each explanatory variable in the second equation

on the probability of being employed conditional on participation in the labor force given by

(27). The parameter estimates and the corresponding values of marginal effects are presented

in Table 6. Individuals in the age groups 25–44 and 45–64 are equally likely to be employed,

and both groups have higher employment rates than the age group 18–24. Being a male would

not obviously increase or decrease his chance of being employed, because the corresponding

95% Bayesian credible interval contains zero. Thus, gender has little impact on employment.

People with a secondary school education have the same opportunity to be employed as those

with a vocational qualification. At the same time, those who have not completed secondary

school are least likely to be employed, while higher education would be most likely to increase

the possibility of being employment.

Whether an individual is from a regional center has no obvious effect on the probability of

being employed. People in rural areas are 1.2% more likely to be employed that those in urban

areas. In terms of socio-economic indices, more advanced areas have higher employment

rates than less advanced areas. Although physical illness has no effect on the probability of

being employed, the three types of mental disorders would all reduce the possibility of being

employed. For example, individuals with substance use disorders would be 5.2% less likely to

be employed than those without this type of disorders.

Last, we studied the marginal effect of each explanatory variable in the third equation on

the probability of working in each occupational skill category conditional on employment
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based on the formulae given by (28). Table 7 presents the estimates of parameters and their

corresponding marginal effects, while Table 8 presents the corresponding 95% Bayesian credi-

ble intervals. Older people are more likely to be employed in higher levels of skill categories

and less likely to be employed in elementary and intermediate levels of skill categories. Males

are more likely to get a job as associate professionals and professionals than females, and less

likely to be employed in lower-level occupational skill categories. With a marginal effect of

52.4%, people with a tertiary education are much more likely to be employed as professionals,

while they are least likely to be employed in lower-level skill categories.

Being based in a regional center has no obvious effect on the levels of occupational skill

categories. Individuals from rural areas are more likely to be employed at higher skill levels,

and less likely to be employed at lower skill levels than those from urban areas. In terms of the

SEIFA indices, people in more advanced areas usually have a high opportunity to be employed

as associate professionals and professionals, and a low opportunity to work in the other

three categories than people in less advanced areas. Even though the estimated coefficient of

physical illness is negative in the third equation, its marginal effects on four different levels of

occupational skill category are not obvious, with the exception of the advanced skill category.

As a result, physical illness has little impact on levels of occupational choice. The estimated

coefficient of anxiety disorders is negative, but its marginal effects on most skill levels are not

obvious, except the marginal effect on the intermediate skill category. The marginal effect of

affective disorders suggests no clear impact on the level of skill category. However, substance

use disorders would reduce the probability of being employed in higher occupational skill

levels and increase the chance of being employed in elementary and intermediate levels.

6 Conclusion

This paper has presented a Bayesian sampling approach to parameter estimation for a discrete-

response model with double rules of sample selection, where we presented a new reparam-
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eterization strategy to facilitate the derivation of conditional posteriors. A benefit of the

proposed Bayesian method is that it allows for specification and estimation of the correlation

coefficients between any pair of the three error terms, while this cannot be achieved by the

conventional two-step estimation discussed by Heckman (1979). An alternative estimation

method is the full information maximum likelihood (FIML) estimation. However, the nu-

merical optimization used in FIML estimation often encounters convergence problems. We

have carried out a Monte Carlo simulation study and found that the FIML failed for more

that half of the simulated samples due to the problem that the Hessian matrix failed to invert.

However, for those simulated samples where FIML fails, our Bayesian method works as well

as it does for the simulated samples where FIML works. Moreover, the reparameterization

strategy presented here could be used in a range of multiple-equation models involving or-

dered responses, where numerical optimization used by FIML estimation is likely to struggle

for achieving convergence.

We employed the three-equation model with double selection rules to model people’s

participation in the labor force, employment status and occupational skill levels, where the

the correlation between any pair of three Gaussian error terms is specified. Applying the

proposed sampling algorithm to this model, we derived the estimates of all parameters, as

well as their corresponding 95% Bayesian credible intervals. This Bayesian approach allows us

to derive the 95% Bayesian credible interval for the marginal effect of any explanatory variable

on its corresponding response. Consequently, we can evaluate whether such a marginal effect

is obvious or not. The results show that although the mental illness of anxiety and affective

disorders have no obvious impact on participation, they obviously reduce the chance of being

employed. However, conditional on being employed, the two types of mental illness have

no obvious effect on the levels of occupational skill. In terms of substance use disorders,

individuals with this type of illness are more likely to participate in the labor force, but they

are less likely to be employed. Moreover, even if they are employed, this type of illness would
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reduce their chance to be employed in higher levels of occupational skill categories.
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Table 1: A summary of parameter estimates with samples simulated under no correlation
among the three error terms

β11 β12 β21 β22 β23 β31 β32 γ2 γ3 ρ1 ρ2 ρ3

True values 0.6 -1.2 1.0 -1.5 -1.0 -0.4 1.5 0.8 1.6 0.0 0.0 0.0
Mean

FIML* 0.605 -1.213 0.995 -1.504 -0.989 -0.396 1.499 0.791 1.598 0.001 0.003 -0.006
Bayesian 0.606 -1.206 1.001 -1.510 -1.001 -0.398 1.484 0.784 1.570 0.008 -0.004 0.000
Bayesian* 0.608 -1.211 0.998 -1.504 -0.991 -0.399 1.483 0.777 1.570 0.004 0.003 -0.003

Standard deviation
FIML* 0.053 0.076 0.149 0.107 0.149 0.143 0.140 0.075 0.096 0.193 0.164 0.145
Bayesian 0.054 0.073 0.149 0.109 0.149 0.141 0.143 0.074 0.095 0.176 0.165 0.140
Bayesian* 0.054 0.076 0.148 0.107 0.148 0.142 0.139 0.074 0.096 0.183 0.168 0.144

Mean absolute error
FIML* 0.043 0.060 0.119 0.085 0.118 0.112 0.112 0.061 0.076 0.159 0.137 0.120
Bayesian 0.043 0.058 0.117 0.086 0.118 0.110 0.114 0.061 0.079 0.140 0.134 0.113
Bayesian* 0.044 0.060 0.117 0.085 0.117 0.110 0.111 0.063 0.080 0.150 0.140 0.119

SIF
Mean 7 12 26 25 12 24 7 10 16 77 48 40
Standard deviation 2 3 5 5 3 4 2 2 3 6 7 5

Note: The symbol * indicates that the corresponding summaries are based on 420 simulated samples, for which

FIML achieved convergence.
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Table 2: A summary of parameter estimates with samples simulated under medium level of
correlation among the three error terms

β11 β12 β21 β22 β23 β31 β32 γ2 γ3 ρ1 ρ2 ρ3

True values 0.6 -1.2 1.0 -1.5 -1.0 -0.4 1.5 0.8 1.6 0.25 0.25 0.5
Mean

FIML* 0.599 -1.211 1.002 -1.515 -1.005 -0.391 1.511 0.805 1.610 0.255 0.245 0.489
Bayesian 0.606 -1.206 1.015 -1.514 -1.004 -0.397 1.486 0.787 1.578 0.233 0.230 0.500
Bayesian* 0.603 -1.209 1.013 -1.515 -1.007 -0.394 1.496 0.790 1.583 0.237 0.234 0.487

Standard deviation
FIML* 0.052 0.072 0.153 0.106 0.149 0.123 0.131 0.085 0.101 0.166 0.151 0.112
Bayesian 0.054 0.073 0.159 0.111 0.154 0.126 0.133 0.081 0.100 0.172 0.158 0.113
Bayesian* 0.052 0.072 0.152 0.106 0.149 0.123 0.129 0.083 0.100 0.161 0.156 0.114

Mean absolute error
FIML* 0.043 0.059 0.121 0.084 0.117 0.100 0.103 0.068 0.079 0.130 0.120 0.089
Bayesian 0.043 0.058 0.125 0.087 0.121 0.101 0.106 0.066 0.081 0.137 0.128 0.091
Bayesian* 0.043 0.059 0.120 0.084 0.117 0.099 0.102 0.067 0.079 0.127 0.123 0.091

SIF
Mean 7 14 34 34 18 28 11 16 24 84 58 50
Standard deviation 2 4 7 8 6 5 4 4 6 5 8 8

Note: The symbol * indicates that the corresponding summaries are based on 453 simulated samples, for which

FIML achieved convergence.

Table 3: A summary of parameter estimates with samples simulated under strong level of
correlation among the three error terms

β11 β12 β21 β22 β23 β31 β32 γ2 γ3 ρ1 ρ2 ρ3

True values 0.6 -1.2 1.0 -1.5 -1.0 -0.4 1.5 0.8 1.6 0.5 0.8 0.7
Mean

FIML* 0.601 -1.207 1.013 -1.514 -1.009 -0.394 1.515 0.810 1.614 0.500 0.793 0.699
Bayesian 0.607 -1.206 1.038 -1.521 -1.014 -0.405 1.493 0.791 1.583 0.452 0.790 0.689
Bayesian* 0.605 -1.204 1.040 -1.520 -1.015 -0.403 1.499 0.796 1.589 0.455 0.788 0.689

Standard deviation
FIML* 0.053 0.070 0.158 0.111 0.147 0.109 0.124 0.090 0.115 0.147 0.079 0.084
Bayesian 0.053 0.072 0.161 0.113 0.149 0.104 0.124 0.085 0.112 0.154 0.081 0.089
Bayesian* 0.053 0.071 0.162 0.112 0.148 0.110 0.123 0.089 0.116 0.154 0.082 0.089

Mean absolute error
FIML* 0.042 0.055 0.124 0.089 0.114 0.087 0.099 0.073 0.093 0.115 0.062 0.067
Bayesian 0.042 0.057 0.131 0.091 0.118 0.083 0.099 0.069 0.092 0.125 0.064 0.070
Bayesian* 0.042 0.056 0.130 0.090 0.116 0.088 0.098 0.072 0.094 0.123 0.065 0.070

SIF
Mean 19 39 44 52 30 40 35 42 59 92 75 70
Standard deviation 8 15 11 13 12 10 13 11 13 4 8 10

Note: The symbol * indicates that the corresponding summaries are based on 458 simulated samples, for which

FIML achieved convergence.

29



Table 4: A summary of the mode statistic for the correlation parameters

No correlation Medium correlation High correlation
ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3

True values 0.0 0.0 0.0 0.25 0.25 0.5 0.5 0.8 0.7
Mean 0.009 -0.005 -0.002 0.262 0.243 0.521 0.448 0.819 0.712
Standard deviation 0.220 0.180 0.149 0.225 0.173 0.119 0.204 0.083 0.091
Mean absolute error 0.174 0.145 0.119 0.178 0.138 0.098 0.164 0.070 0.074

Table 5: Parameter estimates and marginal effects on the probability of participation

Coefficient Marginal effect
Variable Estimate SIF 95% credible interval Mean 95% credible interval
Age 25-44 1.260 4 (1.199, 1.320) 0.409 (0.391, 0.426)
Age 45-64 0.934 3 (0.872, 0.996) 0.289 (0.272, 0.305)
Male 0.062 4 (-0.001, 0.126) 0.022 (0.000, 0.044)
Secondary school 0.217 3 (0.164, 0.270) 0.076 (0.057, 0.094)
Higher education 0.390 4 (0.309, 0.473) 0.127 (0.103, 0.151)
Vocational education 0.170 3 (0.087, 0.254) 0.058 (0.030, 0.085)
From a regional center 0.014 3 (-0.053, 0.082) 0.005 (-0.019, 0.029)
From a rural area 0.136 3 (0.072, 0.199) 0.047 (0.025, 0.068)
SEIFA: 2nd decile 0.203 3 (0.098, 0.307) 0.068 (0.034, 0.101)
SEIFA: 3rd decile 0.279 3 (0.175, 0.382) 0.092 (0.060, 0.123)
SEIFA: 4th decile 0.285 3 (0.179, 0.391) 0.094 (0.061, 0.126)
SEIFA: 5th decile 0.358 3 (0.254, 0.463) 0.116 (0.085, 0.146)
SEIFA: 6th decile 0.390 3 (0.282, 0.499) 0.125 (0.093, 0.155)
SEIFA: 7th decile 0.388 3 (0.286, 0.491) 0.125 (0.095, 0.154)
SEIFA: 8th decile 0.487 3 (0.380, 0.593) 0.152 (0.123, 0.180)
SEIFA: 9th & 10th deciles 0.448 3 (0.357, 0.538) 0.147 (0.120, 0.174)
Number of children -0.250 4 (-0.271, -0.229) -0.088 (-0.096, -0.081)
Currently studying 0.434 2 ( 0.051, 0.823) 0.128 (0.018, 0.217)
Physical illness -0.511 3 (-0.560, -0.462) -0.183 (-0.201, -0.166)
Anxiety disorder -0.079 3 (-0.171, 0.013) -0.028 (-0.062, 0.005)
Affective disorder 0.011 3 (-0.087, 0.110) 0.004 (-0.031, 0.038)
Substance use disorder 0.290 4 (0.197, 0.383) 0.095 (0.067, 0.123)
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Table 6: Parameter estimates and marginal effects on the probability of being employed

Coefficient Marginal effect
Variable Estimate SIF 95% credible interval Mean 95% credible interval
Age 25-44 0.347 66 (0.178, 0.513) 0.032 (0.019, 0.045)
Age 45-64 0.369 46 (0.219, 0.518) 0.034 (0.022, 0.046)
Male 0.004 38 (-0.094, 0.103) 0.000 (-0.011, 0.011)
Secondary school 0.232 23 (0.135, 0.329) 0.025 (0.015, 0.036)
Higher education 0.515 24 (0.362, 0.673) 0.044 (0.033, 0.054)
Vocational education 0.262 15 (0.112, 0.415) 0.025 (0.011, 0.037)
From a regional center -0.080 11 (-0.190, 0.031) -0.010 (-0.025, 0.004)
From a rural area 0.120 15 (0.009, 0.231) 0.012 (0.000, 0.023)
SEIFA: 2nd decile 0.159 13 (-0.010, 0.329) 0.015 (-0.002, 0.030)
SEIFA: 3rd decile 0.300 14 (0.126, 0.475) 0.027 (0.013, 0.040)
SEIFA: 4th decile 0.348 15 (0.168, 0.528) 0.031 (0.017, 0.043)
SEIFA: 5th decile 0.358 16 (0.182, 0.535) 0.032 (0.018, 0.044)
SEIFA: 6th decile 0.582 18 (0.389, 0.780) 0.045 (0.034, 0.055)
SEIFA: 7th decile 0.431 17 (0.254, 0.609) 0.037 (0.024, 0.048)
SEIFA: 8th decile 0.368 18 (0.189, 0.546) 0.032 (0.018, 0.044)
SEIFA: 9th & 10th deciles 0.522 21 (0.362, 0.679) 0.048 (0.035, 0.060)
Physical illness -0.025 47 (-0.137, 0.087) 0.000 (-0.010, 0.011)
Anxiety disorder -0.151 10 (-0.297, -0.004) -0.020 (-0.042, 0.000)
Affective disorder -0.240 9 (-0.386, -0.092) -0.034 (-0.059, -0.012)
Substance use disorder -0.334 16 (-0.457, -0.210) -0.052 (-0.073, -0.032)

Table 7: Parameter estimates and marginal effects on the probability of being employed
differen levels of occupation skill category

Coefficient Mean of marginal effect
Variable Estimate SIF Elementary Intermediate Advanced Associate Professionals

skill skill skill professionals
Age 25-44 0.331 2 -0.020 -0.021 -0.005 0.009 0.037
Age 45-64 0.313 2 -0.030 -0.027 -0.005 0.014 0.049
Male 0.309 2 -0.072 -0.047 0.000 0.034 0.086
Secondary school 0.219 2 -0.039 -0.027 -0.001 0.018 0.049
Higher education 1.543 2 -0.200 -0.228 -0.105 0.009 0.524
Vocational education 0.791 1 -0.129 -0.132 -0.041 0.041 0.261
From a regional center 0.032 2 -0.009 -0.006 0.000 0.004 0.010
From a rural area 0.270 2 -0.053 -0.041 -0.004 0.025 0.073
SEIFA: 2nd decile 0.157 2 -0.025 -0.020 -0.002 0.012 0.035
SEIFA: 3rd decile 0.132 2 -0.014 -0.013 -0.002 0.006 0.022
SEIFA: 4th decile 0.181 2 -0.024 -0.020 -0.003 0.011 0.036
SEIFA: 5th decile 0.252 2 -0.037 -0.030 -0.005 0.017 0.055
SEIFA: 6th decile 0.225 2 -0.027 -0.024 -0.005 0.012 0.043
SEIFA: 7th decile 0.308 2 -0.046 -0.039 -0.006 0.021 0.071
SEIFA: 8th decile 0.338 2 -0.050 -0.042 -0.007 0.022 0.078
SEIFA: 9th & 10th deciles 0.398 2 -0.062 -0.051 -0.007 0.028 0.093
Physical illness -0.062 2 -0.008 -0.003 0.002 0.004 0.006
Anxiety disorder -0.093 2 0.016 0.011 0.000 -0.008 -0.019
Affective disorder -0.057 2 0.008 0.006 0.001 -0.004 -0.011
Substance use disorder -0.084 2 0.024 0.015 -0.001 -0.012 -0.027
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Table 8: The 95% Bayesian credible intervals of parameters and marginal effects on the
probability of being employed differen levels of occupation skill category

Credible Credible interval of marginal effect
Variable interval of Elementary Intermediate Advanced Associate Professionals

coefficient skill skill skill professionals
Age 25-44 (0.283, 0.380) (-0.033,-0.008) (-0.029,-0.013) (-0.006,-0.004) (0.003, 0.015) (0.023, 0.051)
Age 45-64 (0.262, 0.364) (-0.042,-0.018) (-0.035,-0.019) (-0.006,-0.004) (0.008, 0.019) (0.034, 0.064)
Male (0.271, 0.346) (-0.082,-0.063) (-0.054,-0.041) (-0.002, 0.001) (0.030, 0.039) (0.075, 0.097)
Secondary school (0.178, 0.261) (-0.049,-0.029) (-0.034,-0.021) (-0.003, 0.000) (0.014, 0.023) (0.038, 0.061)
Higher education (1.481, 1.604) (-0.208,-0.192) (-0.237,-0.218) (-0.113,-0.096) (0.000, 0.017) (0.502, 0.545)
Vocational Education (0.730, 0.853) (-0.137,-0.121) (-0.143,-0.121) (-0.048,-0.035) (0.037, 0.046) (0.237, 0.284)
From a regional center (-0.023, 0.087) (-0.022, 0.004) (-0.014, 0.003) ( 0.000, 0.001) (-0.002, 0.011) (-0.005, 0.026)
From a rural area (0.220, 0.320) (-0.064,-0.043) (-0.049,-0.032) (-0.006,-0.002) (0.020, 0.030) (0.058, 0.089)
SEIFA: 2nd decile (0.067, 0.246) (-0.044,-0.005) (-0.034,-0.005) (-0.004,-0.001) (0.002, 0.020) (0.009, 0.062)
SEIFA: 3rd decile (0.043, 0.220) (-0.033, 0.007) (-0.027, 0.001) (-0.004,-0.001) (-0.003, 0.015) (-0.003, 0.048)
SEIFA: 4th decile (0.091, 0.271) (-0.043,-0.004) (-0.035,-0.006) (-0.005,-0.002) (0.002, 0.020) (0.010, 0.063)
SEIFA: 5th decile (0.164, 0.341) (-0.055,-0.018) (-0.046,-0.016) (-0.008,-0.002) (0.008, 0.024) (0.029, 0.083)
SEIFA: 6th decile (0.136, 0.315) (-0.045,-0.007) (-0.039,-0.010) (-0.007,-0.003) (0.003, 0.020) (0.017, 0.070)
SEIFA: 7th decile (0.222, 0.394) (-0.063,-0.029) (-0.054,-0.025) (-0.010,-0.004) (0.013, 0.028) (0.044, 0.098)
SEIFA: 8th decile (0.250, 0.426) (-0.067,-0.033) (-0.058,-0.028) (-0.011,-0.004) (0.015, 0.029) (0.050, 0.106)
SEIFA: 9th & 10th deciles (0.322, 0.474) (-0.078,-0.047) (-0.064,-0.038) (-0.010,-0.005) (0.021, 0.035) (0.069, 0.117)
Physical illness (-0.102,-0.021) (-0.018, 0.002) (-0.009, 0.003) ( 0.001, 0.002) (-0.001, 0.009) (-0.006, 0.017)
Anxiety disorder (-0.169,-0.018) (-0.003, 0.036) (0.000, 0.021) (-0.002, 0.001) (-0.017, 0.001) (-0.038, 0.001)
Affective disorder (-0.137, 0.023) (-0.012, 0.028) (-0.006, 0.018) (-0.001, 0.002) (-0.014, 0.006) (-0.032, 0.011)
Substance use disorder (-0.154,-0.015) (0.006, 0.042) (0.005, 0.024) (-0.002, 0.001) (-0.021,-0.003) (-0.044,-0.009)
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