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On baseline conditions for zero-inflated longitudinal

count data

Antonello Maruotti ∗and Valentina Raponi†

Abstract

We describe a mixed-effects hurdle model for zero-inflated longitudinal count data,

where a baseline variable is included in the model specification. Association between

the count data process and the endogenous baseline variable is modeled through a

latent structure, assumed to be dependent across equations. We show how model

parameters can be estimated in a finite mixture context, allowing for overdispersion,

multivariate association and endogeneity of the baseline variable. The model behavior

is investigated through a large scale simulation experiment. An empirical example on

health care utilization data is provided.

Keywords: Hurdle model - Baseline conditions - Longitudinal count data - Zero-

inflation.

1 Introduction

Great attention has recently been devoted to model longitudinal count data in a regres-

sion framework. Salient features of longitudinal count data may include, in addition to

non-negativity of outcomes, a large fraction of zeros, the presence of association between
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repeated measures recorded on the same unit and unobserved heterogeneity. Even if the

Poisson regression model represents a useful tool for dealing with count data processes,

different approaches need to be investigated to account for all data features. Variance com-

ponents models (see e.g. Aitkin, 1996) can be used to account for unobserved heterogeneity;

while dynamics models can be used to capture the dependence across repeated measures (see

e.g. Aitkin and Alfò, 2003). Several models have been recently proposed to deal appropri-

ately with the zero-modification (zero-truncated and zero-inflated/deflated) issue, i.e. more

zeros than expected under standard count distribution (Min and Agresti, 2005; Hasan and

Sneddon, 2009; Greene, 2009; Todem et al., 2010).

In the following we focus on two-part models, also known as hurdle models (Mullahy,

1986), to introduce flexibility by allowing the zeros and the positive outcomes to be generated

by two different processes: a binary model generating the zeros and a truncated at zero model

generating the conditional distribution of the positives. In such a framework, generally, the

two processes are assumed independent or, equivalently, the binary process (describing the

hurdle) is considered exogenous. The independence assumption allows to factorize the log-

likelihood as the sum of two log-likelihood functions (one for each process) and, therefore, the

computational burden is dramatically simplified since parameter estimates can be obtained

maximizing the two terms separately. This assumption may be too restrictive when dealing

with real data (see e.g. Deb et al., 2006; Auteri and Maruotti, 2011) and a model structure

allowing for dependence between the processes can be required. If the exogeneity assumption

is invalid, parameter estimates from standard hurdle models could be inconsistent. Thus, we

define a mixed effects hurdle model (Alfò and Maruotti, 2010), relying on a simple association

structure, described through the inclusion of random terms in the model specification, which

allows for the endogeneity of the hurdle. In order to include some sort of serial dependence,

we integrate the mixed effects hurdle model by considering the effect of baseline outcomes

on subsequent responses, with special focus on short longitudinal datasets. Nevertheless,

the baseline itself is subject to the influence of same covariates as the response variable; it

is thus not exogenous and is not independent of the random effects in the model. This is
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usually known in the literature as endogeneity bias, i.e. the statistical bias that arises when

an endogenous variable is treated as exogenous (see e.g. Davidson and Mackinnon, 1993).

The issue of endogeneity has long been recognized in econometrics literature, where several

techniques for dealing with it exist (see e.g. Alfò et al., 2011). Even if the inconsistency of

the maximum likelihood estimation which results from ignoring the baseline disappears as

the length of the sequence tends to infinity (Hsiao, 2003), simply ignoring the endogeneity

of the baseline may lead to model misspecification and misleading interpretation for the

baseline effect.

The importance of modeling the baseline in longitudinal data has been deeply analyzed

by Fotouhi (2007; 2005) via simulations, and has a long history in econometrics since the

seminal paper of Heckman (1981). In the following two approaches are considered: the naive

approach of ignoring the endogenous nature of the baseline variable and the joint approach

where the baseline is modeled as an endogenous variable in a mixed-effects hurdle model

framework. The impact of baseline outcome on subsequent observations has been evaluated

via a large-scale simulation study. The Expectation-Maximization (EM) algorithm for non-

parametric maximum likelihood is adopted (see e.g. Alfó and Aitkin, 2006 for further details

in a count data framework). We leave the random effects distribution unspecified and show

how parameter estimation can be performed in a finite mixture context.

The plan of the paper is as follows. We provide model details in Section 2: the naive and

the joint approaches are described as well as the mixed-effects hurdle model and its compu-

tational details. A simulation study is conducted in Section 3 in order to understand the

model behavior under different sample sizes, panel lengths and random effects distributions.

An example on health service utilization is provided in Section 4. A discussion on further

developments and drawbacks of the proposed approach concludes.

3



2 Modeling approach

In this section we discuss the general mixed effects hurdle model specification. The naive and

the joint approaches are presented and, thus, a model taking into account the data features

and the endogeneity of the baseline is developed. Computational details are provided to

obtain maximum likelihood estimates by using an EM-based algorithm.

2.1 Model specification

Consider a count data process Yit recorded on each of n units (i = 1, . . . , n) over T time

periods (t = 1, . . . , T ) and two sets of covariates xit1 and xit2 that may or may not be the

same. The mixed effects hurdle model postulates a hierarchical structure: first a decision

process leading to the choice yit = 0 versus yit > 0, and then a process accounting for yit > 0.

The probability function of the observed variable is then given by

f(yit | ·) = Pr(Yit = yit) =

 πit, yit = 0

(1− πit)
exp(−λit)λ

yit
it

yit!(1−exp(−λit))
, yit > 0

where πit = Pr(yit = 0) and λit represent the canonical parameters for the binary and the

count processes, respectively. A generalized linear mixed model is then used to focus on πit

and λit: a logistic model for πit and a log-linear model for λit

logit(πit) = x′
it1β + bi1 (1)

log(λit) = x′
it2γ + bi2 (2)

where β and γ are vectors of regression parameters associated with xit1 and xit2, respectively;

while bi = (bi1, bi2) denotes a set of unit- and process-specific random effects drawn from a

bivariate distribution, h(·).

We aim at extending this approach to include dependence on baseline counts, allowing for

a quite general association structure. A common and straightforward strategy of accounting

for the baseline, say yi0, in the model specification is to include it in the linear predictors.
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In this case, equations (1) and (2) can be rewritten as

logit(πit) = x′
it1β + α1yi0 + yi0x

′
it1ϕ1 + bi1 (3)

log(λit) = x′
it2γ + α2yi0 + yi0x

′
it2ϕ2 + bi2 (4)

where ϕ1 and ϕ2 are vectors of regression parameters associated with interactions between

baseline counts and other covariates. Not all these interactions will be taken into account;

therefore, some elements of ϕ1 and ϕ2 can be set equal to zero.

Given the model assumptions, we can write down the conditional distribution of the

observed responses for the i-th unit as

Li(yi1, yi2, . . . , yiT | yi0) =
∫ T∏

t=1

f(yit | xit1,xit2, yi0, bi1, bi2)h(bi | yi0)dbi (5)

2.2 The naive approach

The naive approach simply assumes independence between the baseline and the random

terms. Therefore, we can integrate function (5) over the distribution of bi without the need

of specifying the conditional distribution h(bi | yi0).The resulting integrated conditional

likelihood for the i-th unit is given by

Li(yi1, yi2, . . . , yiT | yi0) =
∫ T∏

t=1

f(yit | xit1,xit2, yi0, bi1, bi2)h(bi)dbi (6)

The independence assumption, i.e. assuming the baseline exogenous while it is in fact en-

dogenous, can be too restrictive, even if it reduces the computational burden. A confounding

effect may arise: we cannot distinguish between the influence of the baseline on the follow-

ing counts and the dependence between this term and the random effects. This may lead to

misleading inference and to a miss-interpretation of the baseline-related coefficients.

2.3 The joint approach

The joint distribution of (yi0, yi1, . . . , yiT ) is not determined from the generalized linear mixed

model assumptions about the conditional model, since the marginal distribution of yi0 is
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not specified. The joint approach involves the specification of an equation for the baseline

and maximum likelihood estimates are obtained using the full set of sample observations,

allowing correlation between the initial and the follow-up periods equations. Hence, the joint

approach starts from the joint density of (yi0, yi1, . . . , yiT )

Li(yi0, yi1, yi2, . . . , yiT ) =

∫
f(yi0 | xi0, bi0)

T∏
t=1

f(yit |,xit1,xit2, yi0, bi1, bi2)h(bi)dbi (7)

where bi = (bi0, bi1, bi2) and xi0 is a set of covariates which can be included in the linear

predictor for yi0.

In other words, we assume that the baseline counts are conditionally Poisson distributed

random variables with canonical parameter, λi0, modeled as

log(λi0) = x′
i0ψ + bi0 (8)

where ψ is a vector of regression parameters and bi0 is an individual-specific random effect.

2.4 Computational details

To evaluate the integrals in (6) and in (7), which can be analytically solved only in few

cases (see e.g. Molenberghs et al., 2010 for a review on this topic), we can use Gaussian

Quadrature or Adaptive Gaussian Quadrature. Both numerical methods work well only if

the random effects distribution, h(·), is Gaussian and as long as sufficient quadrature points

are used; nevertheless, possible inaccuracy may arise for the logistic part of the model when

even 20-points integration are considered (Crouch and Spiegelman, 1990). To overcome such

a limitation and to relax the assumption of normally distributed random effects, an alter-

native is leaving h(·) unspecified and rely on non-parametric maximum likelihood (NPML)

estimation of the mixing distribution (Laird, 1978). The NPML estimation of a mixing dis-

tribution is a discrete distribution on a finite number of mass-points, say K. We focus on

the joint approach, since the naive can be viewed as as special case. Under this assumption,

the Li(·) function for the joint approach is given by

Li(yi0, yi1, yi2, . . . , yiT ) =
K∑
k=1

f(yi0 | xi0, bk0)
T∏
t=1

f(yit |,xit1,xit2, yi0, bk1, bk2)pk (9)
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where the mass-points bk = {bk0, bk1, bk2} and the corresponding probabilities pk = Pr(Bi =

bk) = Pr(Bi0 = bk0, Bi1 = bk1, Bi2 = bk2) have to be estimated together with other model

parameters. Therefore, we can write down the likelihood function as

L(·) =
n∏

i=1

K∑
k=1

f(yi0 | xi0, bk0)
T∏
t=1

f(yit |,xit1,xit2, yi0, bk1, bk2)pk

n∏
i=1

K∑
k=1

exp(−λi0k)λyi0i0k

yi0!

T∏
t=1

πdit
itk

[
(1− πitk)

exp(−λitk)λyititk

yit! exp(1− λitk)

]1−dit

pk (10)

where dit = I(yit = 0),

logit(πitk) = x′
it1β + α1yi0 + yi0x

′
it1ϕ1 + bk1 (11)

log(λitk) = x′
it2γ + α2yi0 + yi0x

′
it2ϕ2 + bk2 (12)

and

log(λi0k) = x′
i0ψ + bk0. (13)

As can be easily noticed, the likelihood function (10) is the likelihood of a finite mixture

with an unknown number of components, K, which should be estimated together with other

model parameters. To obtain parameter estimates we make standard assumptions:

• K is fixed and unknown;

• yi0 and yit are conditionally independent random variables

• there is an unobserved multivariate random variableBi following a discrete distribution

with K support points with associated mass points pk, where pk = Pr(Bi = bk) with∑K
k=1 pk = 1.

For fixed K we can use the following EM algorithm to obtain the maximum likelihood es-

timation for model parameters. We introduce an unobservable vector of component indicator

variables, zi = (zi1, zi2, . . . , ziK) where

zik =

 1, Bi = bk

0, otherwise
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Adopting a multinomial distribution for the unobservable vector zi, we can derive the

complete data log-likelihood

ℓc(·) =
n∑

i=1

K∑
k=1

zik{log(pk) + log(fi0k) +
T∑
t=1

log(fitk)} (14)

where

fi0k =
exp(−λi0k)λyi0i0k

yi0!

and

fitk = πdit
itk

[
(1− πitk)

exp(−λitk)λyititk

yit! exp(1− λitk)

]1−dit

.

Within the E-step of the algorithm, the presence of the missing data indicator in the

complete data log-likelihood is handled by taking the conditional expectation of (14) given

the observations and the current parameter estimates, say θ = {δ,p} = {β,γ,α,γ0, b,p}.

In other words, at iteration r, we replace zik with its conditional expectation, say wik

E
[
zik | yi,θ

(r)
]
= w

(r)
ik =

p
(r)
k

[
fi0k

∏T
t=1 fitk

]
∑K

k=1 p
(r)
k

[
fi0k

∏T
t=1 fitk

]
where w

(r)
ik is the posterior probability that unit i belongs to component k. The conditional

expectation of (14) is thus given by

Eθ(r) [ℓc(·) | yi] = Q(·) =
n∑

i=1

K∑
k=1

w
(r)
ik

{
log(pk) + log(fi0k) +

T∑
t=1

log(fitk)

}
. (15)

Conditionally on updated weights, we maximize Q(·) with respect to θ to obtain maxi-

mum likelihood parameter estimates

∂Q
∂pk

=
n∑

i=1

{
w

(r)
ik

p̂
(r)
k

− w
(r)
iK

p̂
(r)
K

}
= 0 (16)

∂Q
∂δ

=
n∑

i=1

K∑
k=1

w
(r)
ik

∂

∂δ

[
log(fi0k) +

T∑
t=1

log(fitk)

]
= 0 (17)
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Solving the first equation we obtain

p̂
(r)
k =

n∑
i=1

w
(r)
ik

n

which represents a well-known result in the finite mixture context. Given w
(r)
ik , the score

equations in (17) are weighted sums of likelihood equations for three independent generalized

linear models: the baseline model, the binary model and the one for the positive counts.

However, as a consequence of truncation, the sample should be augmented to consistently

estimate the parameter vector for the truncated data model (details are provided in Böhning

and Schön, 2005).

The E- and M- steps are repeatedly alternated until the log-likelihood difference between

two iterations decreases by an arbitrary small amount.

3 Simulation study

The aim of the study is to investigate if ignoring endogeneity of the baseline variable could

lead to biased estimates for the corresponding effect as well as for the effects of those co-

variates which are correlated with the baseline variable. In each simulation, 250 samples

from the proposed model with T = 3, 5, 7 (panel length), n = 100, 250, 500 (sample size)

and K = 2, 3 (number of latent classes) have been generated. Only balanced designs are

considered, but the extension to unbalanced designs is straightforward. We fit the models

introduced in Sections 2.2 and 2.3. Parameter estimates are obtained via maximum likeli-

hood as described in Section 2.4 using Matlab programming. All the estimates are averaged

over the number of simulations.

The samples have been generated according to the following true generating process

log(λi0) = ψ0 + ψ1xi0 + bk0

logit(πit) = β0 + β1xit1 + α1yi0 + bk1

log(λit) = γ0 + γ1xit2 + α2yi0 + bk2
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The covariates are independently generated from a standard Normal distribution for

i = 1, . . . , n and t = 1, . . . , T . The true values of the regression parameters are chosen as

γ =

 γ0

γ1

 =

 0.45

−0.50

 , β =

 β0

β1

 =

 −0.30

0.25

 ;

we also define

ψ =

 ψ0

ψ1

 =

 0.30

0.50

 , α =

 α1

α2

 =

 0.50

0.25

 .
According to the value of K, the parameters for the latent process are chosen as follows:

K = 2: b1 = (b10, b11, b12) = (0.70;−0.70; 1.05),b2 = (b20, b21, b22) = (−1.30; 1.30;−1.95),

p = (p1, p2) = (0.65, 0.35);

K = 3: b1 = (b10, b11, b12) = (0.70;−0.70; 1.05),b2 = (b20, b21, b22) = (−0.30; 0.30;−0.45),

b3 = (b30, b31, b32) = (−1.30; 1.30;−1.95),p = (p1, p2, p3) = (0.5, 0.3, 0.2)

The simulation results in terms of MSE of the ML estimator of each parameter of interest

(we provide only estimates of covariate coefficients and prior probabilities, p, for sake of

brevity) are shown in Table 1-3 (when K = 2) and Table 4-6 (when K = 3), together with

the average and the interquartile range of the standard errors computed for every sample.

We can observe that, with both K = 2 and K = 3, the MSE of each estimator is always

moderate and decreases as n and T increase. Moreover, its standard deviation decreases at

the expected rate of
√
n with respect to n and at a faster rate with respect to T . Finally, for

each estimator, the average standard error is always close to the standard deviation, these

standard errors also have a very low variability from sample to sample.

As can be seen, in the naive approach, the baseline estimated effects are permanently

biased in the binary equation. The variance of the parameter estimates reduces with in-

creasing sample size (n), but the bias does not, at least not substantially. Other model

parameters are consistently estimated, as the adopted covariates are independent on the

mechanism generating the baseline variable. However, this setting is likely unrealistic, and

the behavior of the exogenous model should be better investigated to understand the effect
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of ignoring endogeneity of the baseline variable when some of the adopted covariates are

dependent on the baseline mechanism, as in the joint approach. In fact, taking into account

the endogeneity, we find evidence indicating that the baseline estimates are more efficient

than ones obtained in the naive one.

To verify the effect of model misspecification, we consider a further setting in which the

individual- and outcome-specific random effects follow a multivariate continuous distribution.

The simulation settings were formulated as previously discussed with the only difference that

bis are independently generated from a multivariate Gaussian random variable with mean

µ = [0, 0, 0] and covariance matrix

Σ =


σ2
0 ρ01σ0σ1 ρ02σ0σ2

ρ10σ0σ1 σ2
1 ρ12σ1σ2

ρ20σ0σ2 ρ21σ1σ2 σ2
2

 .
Two settings are considered with respect to Σ to account for different associations among

outcomes. Thus, for the correlations coefficients, the following vectors are assumed: ρjj′ =

ρj′j, j, j
′ = 0, 1, 2. For ease of discussion, we assume ρ = (ρ01, ρ02, ρ12) = (−0.5, 0.5,−0.5)

or ρ = (−0.25, 0.25,−0.25), and σ0 = σ1 = σ2 = 0.5; in this way, the random effects

are dependent and the baseline variable can not be considered exogenous. Table 7 shows

the simulation results concerning the MLE with n = 100; 250 and T = 7. Under this

setting the number of latent classes K is unknown and we computed the MLE of parameters

adopting the value of K chosen with AIC (or BIC). In most cases the number of latent

classes selected with this criterion is small. Using different values for n and T , we obtain

similar results, confirming that the proposed model can adequately approximate a model

based on a multivariate Gaussian latent distribution. With regards to obtained results, we

can observe the same consistent behavior of parameter estimates shown in Table 1-6, even

if in this case, the mean square error is often greater, reflecting the greater heterogeneity

present under this simulation scheme. On average, a larger sample size is necessary to

obtain reliable parameter estimates, which, in the case n = 100, show huge variability. Table

7 shows a clear and consistent path with respect to model parameters as the sample size
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increases, irrespective of the values of the correlations. This implies that the proposed model

can be used even when the association between outcomes is weak or some doubts about the

endogeneity of the baseline variable might arise; indirectly confirming the robustness of the

proposed method.

4 An example: Outpatient psychiatric service use data

In this section we provide an application of the naive and the joint approaches using a dataset

on outpatient psychiatric service use. Data are from the Access to Community Care of Ef-

fective Services and Support (ACCESS) study (Rosencheck et al., 2002). Socio-demographic

characteristics, housing, income, psychiatric and substance use, as well as mental health

symptoms and the use of various types of health and social services have been collected

during the study.

We consider a subsample of the ACCESS study already analyzed by Neelon et al. (2010)

in a Bayesian framework. This study involves 680 individuals, which self-report their uti-

lization of any health services at baseline, 3- and 12-month follow-ups. Race, gender and an

indicator of whether the subject participated in a substance abuse treatment program are

recorded as well. Variables description is provided in Table 8. As the 42.72% of the observa-

tions in the follow-ups are zeros, the equidispersion assumption (i.e. mean equals variance)

is not plausible and a mixed-effects hurdle model may represent an alternative to standard

Poisson regression model to deal with overdispersion due to zero-inflation. Furthermore, the

hurdle framework is quite established in the health economic literature, since it resembles

accurately the principal-agent model: a decision/participation process (usually represented

by a binary choice) and an utilization process.

According to the available variables (and to indications provided in Neelon et al.; 2010),

we specify the following equations:

logit(πit) = β0 + β1Raceit + β2Genderit + β3Treatmentit

+ β4V isit12i + β5RaceiV isit12i + α1Yi0 + bi1 (18)
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log(λit) = γ0 + γ1Racei + γ2Genderi + γ3Treatmentit

+ γ4V isit12i + γ5RaceiV isit12i + α2Yi0 + bi2 (19)

and, when the joint approach is considered,

log(λi0) = ψ0 + ψ1Racei + ψ2Genderi + ψ3Treatmenti0 + bi0 (20)

where πit, λit and λi0 are defined in the Section 2.

Looking at parameter estimates, provided in Table 9, and considering a significance level

of 5%, the 12-month follow-up indicator variable has a strong influence on the decision to use

a health service, showing the presence of a trend effect which tends to reduce the probability

of looking for a health service. The gender seems to affect the utilization process: males

tend to use health services less frequently than females. We also get a quite interesting re-

sult: the treatment does not affect the utilization process, but only the decision one (posing,

however, some questions on program effectiveness). Finally, the baseline mainly depends on

the race: whites are more subject to health service usage than minorities (blacks/latinos).

This last result represents a difference with the work of Neelon et al. (2010), which ob-

tain a non-significant estimate of the race coefficient. Similar results arise by adopting the

naive approach, but, in general, parameter estimates obtained via the joint approach are

more efficient than those obtained by applying the naive approach, confirming the intuition

enlightened by the simulation study.

The presence of heterogeneity between individuals leads to a number of different utiliza-

tion experiences captured by the latent structure. In fact, as a by-product of the adopted

estimation procedure, we identify a different number of homogeneous clusters among sub-

jects. It is interesting to notice that in the naive approach we estimate 3 groups, while

by using a joint approach we obtain 9 groups. Formally, for the random effects in the

naive approach, we have the following three-points bivariate distribution b = {b1,b2,b3} =

{(2.1460; 1.0916), (−0.2465;−0.7111); (−2.3937, 0.4429)} with probabilities π = {π1, π2, π3} =

{0.2731; 0.5347; 0.1895}. In other words, we have three well defined groups: the first cluster

groups subjects who have a low propensity to use service but, once they decide to use any
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service they use it more than the average; the second group can be interpreted in an opposite

way; while the third group can be defined as the usage group.

Similarly, in the joint approach, we have a nine-points trivariate distribution given by b =

{(−1.3004; 1.1220; 1.2443); (2.9043,−0.3020;−0.8099); (1.4923;−0.4710;−0.4331); (−2.1367;

2.9582; 0.1239); (1.8753; 1.0443; 1.1583); (−0.8312;−0.1115;−0.6548); (0.4877;−2, 8438; 0.5645);

(3.1647; 0.8442; 1.2018); (2.6841;−3.2628; 0.5979)} with probabilities π = {0.0943; 0.0370; 0.1978;

0.1638; 0.0416; 0.2809; 0.1256; 0.0125; 0.0464}. Even if different in number the estimated

groups identify behaviors close to those described by the naive approach. The main dif-

ference relies on the fact the groups are identified accounting for baseline random effects too,

which strongly modified the random effects distribution, changing not only the location of

the random terms but its entire distribution. As already remarked in the theoretical part

of this work (see Section 2.2), the naive approach does not allow to distinguish between

the impact that baseline may have on the observed follow-ups and on the random effects

distribution. Therefore, the independence assumption between random effects and baseline

may not be suitable. As a further confirmation of this statement, we obtain a relatively

high negative correlation between the baseline and the binary process (ρbk0,bk1 = −0.4491)

which confirms that the need of specifying an association structure accounting, somehow, for

correlations among variables. Similarly a positive correlation has been estimated between

the random terms in the two parts of the hurdle model (ρbk1,bk2 = 0.1012) indicating that

subjects having a lower propensity toward the use of any service tend to use services more

days than the average once they decide to use them.

5 Discussion

In this paper we discuss a mixed-effects hurdle model for zero-inflated longitudinal counts,

where a baseline variable, potentially endogenous, is included in the linear predictors for the

two parts describing the hurdle model. To solve the endogeneity problem, we proceed by

defining a secondary model for the baseline variable, linked to the hurdle model through a
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common latent structure. We propose to use a finite mixture representation for the regression

model, estimating the unknown (multivariate) random effect distribution through a discrete

(multivariate) distribution. By assuming that the latent process is discrete, we avoid any

parametric assumptions with the advantage of permitting exact computation of the likelihood

of the model without requiring quadrature or Monte Carlo methods. On the other hand,

some simulation results show that the maximum likelihood estimator of the parameters has

an acceptable bias even when data are generated by a continuous latent process. However,

it should be stressed that the idea one has about the nature of the latent structure may be

quite different from one case to another. In some cases, the probabilistic structure of the

finite mixture is used only as a tool for modeling unobserved heterogeneity.

Introducing the problem of initial conditions we applied the simulation approach and

showed inefficiency of the naive approach which ignores the baseline issue. Using the joint

approach, the baseline is model in a generalized linear mixed model framework and consistent

parameter estimates are obtained. Our overall conclusion from the performed simulation

study is that modeling the baseline as an endogenous variable, we improve the performance

of the model, producing more accurate estimates than the analogous based on the naive

approach. The application of both approaches to real data enlightens that the baseline

may influence the latent structure as well, and a different association structure between

longitudinal measurements on the same individual can be specified by including in the latent

structure a model which accounts explicitly for the baseline (e.g. via a logit specification of

the prior probabilities).

A possible drawback in correlations estimate may arise when correlation is high, i.e.

correlation tends towards the bounds of the interval [-1;1]. In fact, when a discrete mixing

distribution is adopted, the correlation coefficient is estimated on a small number (K) of

points, and, when correlation is high, this can lead to a set of almost aligned K points.

Nevertheless, it should be noticed that the correlation coefficient is not a formal parameter

in the proposed model, but it is rather a by-product of the adopted estimation approach.

A final point concerns possible extensions of the proposed approach. An interesting
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extension consists of allowing the panel length to vary among individuals, where different

mechanisms of missingness can be considered. The different types of missing-data mecha-

nisms impact the validity of statistical analysis, and thus identification (or informed guess)

of the mechanisms by which incomplete data come to be missing is crucial to select the opti-

mal model to address data missingness, distinguishing between ignorable from non-ignorable

dropout mechanisms. Another possible extensions concerns the specification of a different

latent structure. The individual-specific random effects, used in the mixed-effects hurdle

model to take into account unobserved heterogeneity between individuals and correlation

between processes, are assumed to be time-constant. This assumption is common to many

other models for longitudinal data. However, if the effect of unobservable factors is not

time-constant, there can be bias in the parameter estimates and a more flexible proposal

accounting for time-dependence might be considered.
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n = 100 T =3

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

γ1 -0.022 0.530 0.281 0.504 0.017 -0.010 0.555 0.308 0.507 0.020

α1 -0.038 0.184 0.035 0.109 0.009 -0.164 0.139 0.046 0.100 0.010

β1 0.021 0.194 0.038 0.165 0.009 0.012 0.208 0.043 0.165 0.009

α2 0.006 0.068 0.005 0.032 0.004 0.017 0.064 0.004 0.031 0.004

ψ1 -0.134 0.205 0.060 0.212 0.011

p1 0.091 0.073 0.014 0.124 0.071 0.020

p2 -0.091 0.073 0.014 -0.124 0.071 0.020

n = 100 T =5

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

γ1 0.030 0.397 0.158 0.387 0.012 0.032 0.402 0.162 0.389 0.011

α1 -0.027 0.146 0.022 0.085 0.006 -0.091 0.105 0.019 0.082 0.006

β1 0.022 0.132 0.018 0.128 0.006 0.022 0.131 0.018 0.128 0.006

α2 0.005 0.055 0.003 0.024 0.003 0.003 0.046 0.002 0.024 0.003

ψ1 -0.084 0.213 0.052 0.209 0.009

p1 0.070 0.058 0.008 0.134 0.052 0.021

p2 -0.069 0.058 0.008 -0.134 0.052 0.021

n = 100 T =7

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

γ1 -0.004 0.337 0.113 0.324 0.008 -0.004 0.335 0.112 0.325 0.007

α1 -0.029 0.113 0.014 0.072 0.005 -0.067 0.086 0.012 0.071 0.005

β1 -0.003 0.118 0.014 0.107 0.006 -0.004 0.121 0.015 0.107 0.006

α2 0.006 0.051 0.003 0.020 0.002 0.001 0.036 0.001 0.020 0.002

ψ1 -0.092 0.186 0.043 0.211 0.007

p1 0.061 0.054 0.007 0.111 0.050 0.015

p2 -0.061 0.054 0.007 -0.111 0.050 0.015

Table 1: Simulation results for n = 100 and K = 2
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n = 250 T =3

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

γ1 0.026 0.319 0.103 0.317 0.009 0.034 0.330 0.110 0.320 0.009

α1 -0.026 0.126 0.017 0.068 0.004 -0.138 0.080 0.025 0.063 0.004

β1 0.019 0.103 0.011 0.103 0.005 0.018 0.106 0.011 0.103 0.005

α2 0.002 0.037 0.001 0.019 0.002 0.006 0.029 0.001 0.019 0.002

ψ1 -0.077 0.127 0.022 0.132 0.003

p1 0.040 0.046 0.004 0.119 0.053 0.017

p2 -0.040 0.046 0.004 -0.119 0.053 0.017

n = 250 T =5

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

γ1 0.007 0.239 0.057 0.242 0.004 0.012 0.241 0.058 0.244 0.031

α1 -0.019 0.093 0.009 0.053 0.003 -0.083 0.061 0.011 0.051 0.019

β1 0.004 0.081 0.007 0.079 0.003 0.003 0.081 0.006 0.079 0.021

α2 0.003 0.036 0.001 0.014 0.001 0.001 0.024 0.001 0.014 0.008

ψ1 -0.095 0.127 0.025 0.132 0.004

p1 0.023 0.036 0.002 0.091 0.036 0.010

p2 -0.023 0.036 0.002 -0.091 0.036 0.010

n = 250 T =7

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

γ1 0.014 0.219 0.048 0.204 0.003 0.016 0.222 0.050 0.205 0.003

α1 -0.019 0.092 0.009 0.045 0.002 -0.052 0.047 0.005 0.045 0.002

β1 0.000 0.068 0.005 0.067 0.002 0.000 0.066 0.004 0.067 0.002

α2 0.005 0.038 0.001 0.012 0.001 -0.001 0.019 0.000 0.012 0.001

ψ1 -0.101 0.118 0.024 0.132 0.003

p1 0.018 0.034 0.001 0.071 0.036 0.006

p2 -0.018 0.034 0.001 -0.070 0.036 0.006

Table 2: Simulation results for n = 250 and K = 2
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n = 500 T =3

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

γ1 0.009 0.248 0.062 0.224 0.003 0.017 0.254 0.065 0.226 0.004

α1 -0.031 0.130 0.018 0.048 0.002 -0.148 0.061 0.026 0.044 0.002

β1 0.013 0.078 0.006 0.072 0.002 0.008 0.076 0.006 0.072 0.002

α2 0.010 0.042 0.002 0.013 0.001 0.009 0.022 0.001 0.013 0.001

ψ1 -0.106 0.098 0.021 0.093 0.002

p1 0.091 0.050 0.011 0.167 0.026 0.028

p2 -0.091 0.050 0.011 -0.167 0.026 0.028

n = 500 T = 5

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

γ1 0.006 0.151 0.023 0.171 0.002 0.011 0.154 0.024 0.173 0.003

α1 -0.008 0.058 0.003 0.038 0.001 -0.088 0.044 0.010 0.036 0.001

β1 0.001 0.063 0.004 0.056 0.001 0.000 0.064 0.004 0.056 0.001

α2 0.000 0.020 0.000 0.010 0.001 0.002 0.014 0.000 0.010 0.001

ψ1 -0.098 0.092 0.018 0.093 0.002

p1 0.077 0.024 0.006 0.145 0.025 0.022

p2 -0.077 0.024 0.006 -0.145 0.025 0.022

n = 500 T =7

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

γ1 -0.002 0.138 0.019 0.144 0.001 0.000 0.140 0.020 0.145 0.001

α1 -0.008 0.050 0.003 0.032 0.001 -0.058 0.034 0.005 0.032 0.001

β1 0.008 0.052 0.003 0.047 0.001 0.009 0.052 0.003 0.047 0.001

α2 0.001 0.019 0.000 0.008 0.000 0.001 0.012 0.000 0.008 0.000

ψ1 -0.099 0.087 0.017 0.093 0.002

p1 0.065 0.021 0.005 0.119 0.022 0.015

p2 -0.065 0.021 0.005 -0.119 0.022 0.015

Table 3: Simulation results for n = 500 and K = 2
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n = 100 T =3

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

β1 0.003 0.504 0.254 0.492 0.018 0.006 0.502 0.252 0.492 0.019

α1 -0.013 0.173 0.030 0.118 0.0123 -0.146 0.141 0.041 0.104 0.009

γ1 0.035 0.232 0.055 0.183 0.016 0.030 0.260 0.069 0.183 0.014

α2 0.006 0.072 0.005 0.037 0.005 0.060 0.101 0.014 0.035 0.005

ψ1 -0.122 0.237 0.071 0.220 0.009 -0.500

p1 -0.044 0.084 0.009 -0.029 0.078 0.007

p2 0.054 0.061 0.007 0.035 0.058 0.005

p3 -0.009 0.069 0.005 -0.005 0.083 0.007

n = 100 T =5

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

β1 0.014 0.400 0.16’ 0.374 0.011 0.270 0.398 0.159 0.375 0.012

α1 -0.019 0.099 0.010 0.090 0.005 0.395 0.099 0.021 0.084 0.006

γ1 0.017 0.155 0.024 0.138 0.007 -0.488 0.159 0.026 0.138 0.007

α2 -0.0081 0.036 0.001 0.027 0.003 0.271 0.064 0.004 0.026 0.004

ψ1 -0.109 0.191 0.049 0.217 0.010

p1 -0.065 0.077 0.010 0.161 0.084 0.009

p2 0.067 0.064 0.009 0.359 0.061 0.007

p3 -0.002 0.054 0.003 0.480 0.068 0.005

n = 100 T =7

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

β1 0.032 0.319 0.103 0.314 0.007 0.033 0.324 0.106 0.315 0.007

α1 -0.018 0.087 0.008 0.076 0.004 -0.072 0.080 0.012 0.073 0.004

γ1 0.012 0.125 0.016 0.116 0.005 0.010 0.128 0.016 0.116 0.005

α2 -0.002 0.030 0.001 0.022 0.003 0.014 0.048 0.003 0.022 0.003

ψ1 -0.112 0.198 0.052 0.219 0.010

p1 -0.050 0.075 0.008 -0.034 0.079 0.007

p2 0.059 0.064 0.008 0.060 0.055 0.007

p3 -0.009 0.051 0.003 -0.025 0.060 0.004

Table 4: Simulation results for n = 100 and K = 3
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n = 250 T =3

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

β1 0.005 0.322 0.104 0.306 0.007 0.010 0.329 0.108 0.307 0.007

α1 -0.030 0.084 0.008 0.071 0.003 -0.160 0.074 0.031 0.064 0.003

γ1 0.022 0.129 0.017 0.112 0.005 0.016 0.147 0.022 0.112 0.005

α2 0.003 0.030 0.001 0.021 0.002 0.045 0.052 0.005 0.020 0.002

ψ1 -0.115 0.132 0.031 0.137 0.003

p1 -0.042 0.080 0.008 -0.022 0.085 0.008

p2 0.064 0.065 0.008 0.052 0.055 0.006

p3 -0.022 0.003 -0.030 0.075 0.007

n = 250 T =5

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

β1 -0.017 0.233 0.055 0.235 0.004 -0.012 0.236 0.056 0.236 0.004

α1 -0.031 0.058 0.004 0.055 0.002 -0.106 0.058 0.015 0.052 0.002

γ1 0.016 0.092 0.009 0.086 0.003 0.015 0.095 0.009 0.086 0.003

α2 0.001 0.019 0.000 0.016 0.001 0.020 0.036 0.002 0.016 0.001

ψ1 -0.109 0.136 0.030 0.137 0.004

p1 -0.049 0.073 0.008 -0.025 0.081 0.007

p2 0.064 0.066 0.008 0.060 0.056 0.007

p3 -0.015 0.038 0.002 -0.035 0.057 0.004

n = 250 T =7

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

β1 0.005 0.207 0.043 0.198 0.002 0.006 0.209 0.044 0.198 0.002

α1 -0.026 0.053 0.004 0.048 0.002 -0.078 0.050 0.009 0.046 0.002

γ1 0.005 0.081 0.007 0.073 0.002 0.008 0.082 0.007 0.073 0.002

α2 0.000 0.016 0.000 0.014 0.001 0.011 0.029 0.001 0.013 0.001

ψ1 -0.117 0.123 0.029 0.137 0.003

p1 -0.0502 0.074 0.008 -0.026 0.073 0.006

p2 0.058 0.067 0.008 0.058 0.055 0.006

p3 -0.008 0.035 0.001 -0.032 0.049 0.003

Table 5: Simulation results for n = 250 and K = 3
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n = 500 T =3

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

β1 -0.008 0.232 0.054 0.216 0.003 0.002 0.235 0.055 0.217 0.003

α1 -0.020 0.058 0.004 0.050 0.001 -0.145 0.057 0.024 0.046 0.002

γ1 0.009 0.094 0.009 0.078 0.002 0.006 0.098 0.010 0.078 0.002

α2 0.003 0.017 0.000 0.015 0.001 0.035 0.033 0.002 0.014 0.001

ψ1 -0.119 0.101 0.024 0.097 0.002

p1 -0.048 0.080 0.009 -0.016 0.076 0.006

p2 0.066 0.065 0.009 0.052 0.051 0.005

p3 -0.018 0.048 0.003 -0.036 0.068 0.006

n = 500 T = 5

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

β1 0.021 0.1662 0.028 0.166 0.002 0.026 0.169 0.029 0.166 0.002

α1 -0.027 0.043 0.003 0.039 0.001 -0.102 0.042 0.012 0.037 0.001

γ1 0.001 0.069 0.005 0.060 0.001 0.002 0.070 0.005 0.060 0.001

α2 0.003 0.014 0.000 0.011 0.001 0.019 0.028 0.001 0.011 0.001

ψ1 -0.120 0.085 0.022 0.096 0.002

p1 -0.045 0.071 0.007 -0.033 0.073 0.006

p2 0.057 0.066 0.008 0.067 0.054 0.007

p3 -0.012 0.029 0.001 -0.034 0.055 0.004

n = 500 T =7

Joint Naive

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

β1 0.011 0.133 0.018 0.139 0.001 0.013 0.134 0.018 0.140 0.001

α1 -0.029 0.034 0.002 0.033 0.001 -0.077 0.032 0.007 0.032 0.001

γ1 -0.003 0.061 0.004 0.051 0.001 -0.001 0.062 0.004 0.051 0.001

α2 0.002 0.011 0.000 0.009 0.001 0.009 0.012 0.000 0.009 0.000

ψ1 -0.122 0.089 0.023 0.096 0.002

p1 -0.030 0.065 0.005 -0.016 0.068 0.005

p2 0.040 0.061 0.005 0.055 0.054 0.006

p3 -0.010 0.025 0.001 -0.039 0.042 0.003

Table 6: Simulation results for n = 500 and K = 3
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n = 100 T =7

ρ = (ρ01, ρ02, ρ12) = (−0.5, 0.5,−0.5) ρ = (ρ01, ρ02, ρ12) = (−0.25, 0.25,−0.25)

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

β1 -0.022 0.313 0.098 0.302 0.006 0.003 0.312 0.097 0.302 0.006

α1 -0.055 0.111 0.015 0.078 0.006 -0.029 0.112 0.013 0.080 0.005

γ1 -0.003 0.217 0.047 0.148 0.006 0.008 0.220 0.048 0.149 0.006

α2 0.041 0.103 0.012 0.033 0.005 0.020 0.115 0.014 0.035 0.005

ψ1 -0.174 0.238 0.087 0.229 0.008 -0.178 0.240 0.089 0.229 0.007

n = 250 T =7

ρ = (ρ01, ρ02, ρ12) = (−0.5, 0.5,−0.5) ρ = (ρ01, ρ02, ρ12) = (−0.25, 0.25,−0.25)

bias s.e. m.s.e. ave.s.e. IQR s.e. bias s.e. m.s.e. ave.s.e. IQR s.e.

β1 0.003 0.190 0.036 0.190 0.003 0.006 0.196 0.038 0.191 0.003

α1 -0.068 0.070 0.010 0.049 0.002 -0.026 0.075 0.006 0.050 0.002

γ1 -0.005 0.117 0.014 0.092 0.002 0.003 0.144 0.021 0.093 0.003

α2 0.045 0.087 0.010 0.020 0.002 0.021 0.081 0.007 0.021 0.001

ψ1 -0.160 0.151 0.048 0.144 0.003 -0.168 0.142 0.048 0.144 0.004

Table 7: Simulation results for n = 100; 250 and T = 7 with multivariate Gaussian random

effects

Variable Definition Relative frequency

Race 1 if black or latino 0.5603

Gender 1 if male 0.5985

Treatment 1 if a subject participated a treatment program 0.5015

Visit12 1 if the visit is the 12-month follow-up

Table 8: Variables description
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Variables Naive Approach Joint Approach

Binary model Truncated model Binary model Truncated model Baseline model

coeff s.e. coeff s.e. coeff s.e. coeff s.e. coeff s.e.

Intercept -0.901 0.227 1.480 0.053 -1.067 0.298 1.332 0.076 -0.477 0.175

Visit12 0.663 0.202 -0.085 0.054 0.684 0.205 -0.090 0.054

Race 0.073 0.194 -0.029 0.049 0.137 0.196 -0.058 0.049 -0.134 0.021

RaceVisit12 -0.407 0.270 0.004 0.072 -0.427 0.272 0.003 0.072

Gender 0.136 0.138 -0.072 0.036 0.248 0.140 -0.090 0.037 -0.083 0.178

Treatment 0.306 0.136 -0.079 0.037 0.400 0.138 -0.048 0.037 0.105 0.075

Baseline (Yi0) -0.002 0.021 -0.012 0.006 -0.012 0.021 -0.013 0.006

Table 9: Empirical application results

26


